SEMICONDUCTOR

## 2-Input NOR Gate / CMOS Logic Level Shifter with LSTTL-Compatible Inputs <br> MC74VHC1GT02

The MC74VHC1GT02 is a single gate 2-input NOR fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.
The device input is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS Logic or from 1.8 V CMOS logic to 3.0 V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT02 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1GT02 to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $\mathrm{V}_{c c}=0 \mathrm{~V}$. These input and output structures help prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $\mathrm{tPD}=4.7 \mathrm{~ns}$ (Typ) at $\mathrm{VCC}=5 \mathrm{~V}$
- Low Power Dissipation: ICC $=2 \mathrm{~mA}(\mathrm{Max})$ at $\mathrm{TA}=25^{\circ} \mathrm{C}$
- TTL-Compatible Inputs: VIL $=0.8 \mathrm{~V} ; \mathrm{VIH}=2.0 \mathrm{~V}$
- CMOS-Compatible Outputs: VOH > 0.8 VCC ; VOL < 0 . 1 VCC @Load
- Power Down Protection Provided on Inputs and Outputs

MARKING DIAGRAMS


Pin 1
d = Date Code


Figure 1. Pinout (Top View)


Figure 2. Logic Symbol

| PIN ASSIGNMENT |  |
| :---: | :---: |
| 1 | IN B |
| 2 | IN A |
| 3 | GND |
| 4 | OUTY |
| 5 | V $_{\mathrm{cc}}$ |

FUNCTION TABLE

| Inputs |  | Output |
| :---: | :---: | :---: |
| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{Y}$ |
| L | L | H |
| L | H | L |
| H | L | L |
| H | H | L |

## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHC1GT02

MAXIMUM RATINGS


1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter |  | Min | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{cc}}$ | DC Supply Voltage |  | 3.0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{IN}}$ | DC Input Voltage |  | 0.0 | 5.5 | V |
| $\mathrm{~V}_{\text {out }}$ | DC Output Voltage |  | $\mathrm{V}_{\mathrm{cC}}=0$ | 0.0 | 5.5 |
|  |  | High or Low State | 0.0 | V |  |
|  |  |  |  | $\mathrm{~V}_{\mathrm{cc}}$ |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range |  | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Rise and Fall Time | $\mathrm{V}_{\mathrm{cC}}=3.3 \pm 0.3 \mathrm{~V}$ | 0 | 100 | $\mathrm{~ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{\mathrm{cC}}=5.0 \pm 0.5 \mathrm{~V}$ | 0 | 20 |  |

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

| Junction <br> Temperature ${ }^{\circ} \mathrm{C}$ | Time, <br> Hours | Time, <br> Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |



Figure 3. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

| Symbol | Parameter | Test Conditions | $\begin{aligned} & \hline V_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$ |  | $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\mathrm{V}_{\text {IH }}$ | Minimum High-Level Input Voltage |  | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.4 \\ 2.0 \\ 2.0 \\ \hline \end{array}$ |  |  | $\begin{array}{r} 1.4 \\ 2.0 \\ 2.0 \\ \hline \end{array}$ |  | $\begin{array}{r} 1.4 \\ 2.0 \\ 2.0 \\ \hline \end{array}$ |  | V |
| $\mathrm{V}_{\text {IL }}$ | Maximum Low-Level Input Voltage |  | $\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \\ \hline \end{gathered}$ |  | $\begin{array}{\|c\|} \hline 0.53 \\ 0.8 \\ 0.8 \\ \hline \end{array}$ |  | $\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \\ \hline \end{gathered}$ | V |
| $\mathrm{V}_{\text {он }}$ | Minimum High-Level Output Voltage$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{IL}}$ | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {н }} \text { or } \mathrm{V}_{\text {II }} \\ & \mathrm{I}_{\text {он }}=-50 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 4.4 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$ |  | $\begin{aligned} & 2.9 \\ & 4.4 \end{aligned}$ |  | $\begin{aligned} & 2.9 \\ & 4.4 \end{aligned}$ |  | V |
|  |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}^{\text {or }} \mathrm{V}_{\text {IL }} \\ & \mathrm{I}_{\text {он }}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\text {он }}=-8 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$ |  |  | $\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$ |  | $\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$ |  |  |
| V oL | Maximum Low-Level Output Voltage$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{IL}}$ | $\begin{aligned} & \mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {HH }}^{\text {or }} \mathrm{V}_{\text {IL }} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$ |  | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ |  | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ |  | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | V |
|  |  | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$ |  |  | $\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$ |  | $\left\|\begin{array}{l} 0.44 \\ 0.44 \end{array}\right\|$ |  | $\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$ |  |
| $\mathrm{I}_{\text {IN }}$ | Maximum Input Leakage Current | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND | 0 to5.5 |  |  | $\pm 0.1$ |  | $\pm 1.0$ |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| 1 cc | Maximum Quiescent Supply Current | $\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\text {cc }}$ or GND | 5.5 |  |  | 2.0 |  | 20 |  | 40 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {ССт }}$ | Quiescent Supply Current | Input: $\mathrm{V}_{\mathbb{1}}=3.4 \mathrm{~V}$ | 5.5 |  |  | 1.35 |  | 1.50 |  | 1.65 | mA |
| I opd | Output Leakage Current | $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ | 0.0 |  |  | 0.5 |  | 5.0 |  | 10 | $\mu \mathrm{A}$ |

AC ELECTRICAL CHARACTERISTICS $C_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$

| Symbol | Parameter | Test Conditions | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ |  | $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\begin{aligned} & t_{\text {PLH }}, \\ & t_{\text {PHL }} \end{aligned}$ | Maximum Propagation Delay, Input A or B to Y | $\mathrm{V}_{\mathrm{Cc}}=3.3 \pm 0.3 \mathrm{~V} \quad \mathrm{C}_{L}=15 \mathrm{pF}$ |  | 4.0 | 10.0 |  | 11.0 |  | 13.0 | ns |
|  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 5.8 | 13.5 |  | 15.0 |  | 17.5 |  |
|  |  | $\mathrm{V}_{\text {cc }}=5.0 \pm 0.5 \mathrm{~V} \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 3.0 | 6.7 |  | 7.5 |  | 8.5 |  |
|  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | 3.8 | 7.7 |  | 8.5 |  | 9.5 |  |
| $\mathrm{C}_{\text {IN }}$ | Maximum Input Capacitance |  |  | 5.5 | 10 |  | 10 |  | 10 | pF |
|  |  |  | Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$ |  |  |  |  |  |  |  |
| $\mathrm{C}_{\text {PD }}$ | Power Dissipation Capacitance (Note 6) |  | 11 |  |  |  |  |  | pF |  |

6. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \cdot V_{C C} \cdot f_{\text {in }}+I_{C C} . C_{P D}$ is used to determine the noload dynamic power consumption; $P_{D}=C_{P D} \cdot V_{C C}^{2} \bullet f_{\text {in }}+I_{C C} \cdot V_{c c}$.

## MC74VHC1GT02



Figure 4. Switching Waveforms

*Includes all probe and jig capacitance
Figure 5. Test Circuit

DEVICE ORDERING INFORMATION

| Device Order Number | Device Nomenclature |  |  |  |  |  | Package Type <br> (Name/SOT\#/ <br> Common Name) | Tape and Reel Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Circuit Indicator | Temp Range Identifier | Technology | Device Function | Package Suffix |  <br> Reel <br> Suffix |  |  |
| MC74VHC1GT02DFT1 | MC | 74 | VHC1G | T02 | DF | T1 | SC-70/SC-88A/ | 178 mm (7 in) |
|  |  |  |  |  |  |  | SOT-353 | 3000 Unit |
| MC74VHC1GT02DFT2 | MC | 74 | VHC1G | T02 | DF | T2 | SC-70/SC-88A/ | 178 mm (7 in) |
|  |  |  |  |  |  |  | SOT-353 | 3000 Unit |
| MC74VHC1GT02DFT4 | MC | 74 | VHC1G | T02 | DF | T4 | SC-70/SC-88A/ | 330 mm (13 in) |
|  |  |  |  |  |  |  | SOT-353 | 10,000 Unit |
| MC74VHC1GT02DTT1 | MC | 74 | VHC1G | T02 | DT | T1 | SOT-23/TSOPS/ | 178 mm (7 in) |
|  |  |  |  |  |  |  | SC-59 | 3000 Unit |
| MC74VHC1GT02DTT3 | MC | 74 | VHC1G | T02 | DT | T3 | SOT-23/TSOPS/ | 330 mm (13 in) |
|  |  |  |  |  |  |  | SC-59 | 10,000 Unit |

