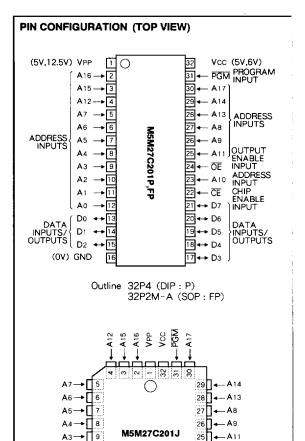
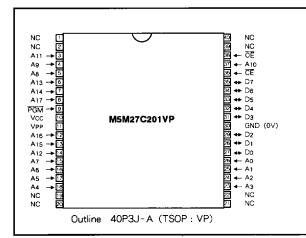
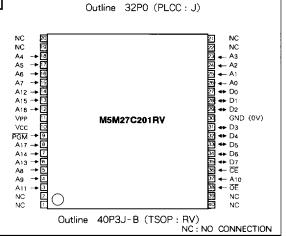
2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

DESCRIPTION

The Mitsubishi M5M27C201P,FP,J,VP,RV are high-speed 2097152-bit one time programmable read only memories. They are suitable for microprocessor programming applications where rapid turn-around is required. The M5M27C201P, FP, J, VP, RV are fabricated by N-channel double polysilicon gate for Memory and CMOS technology for peripheral circuits, and are available in 32 pin plastic packages (DIP, SOP, PLCC) and 40 pin plastic packages (TSOP).

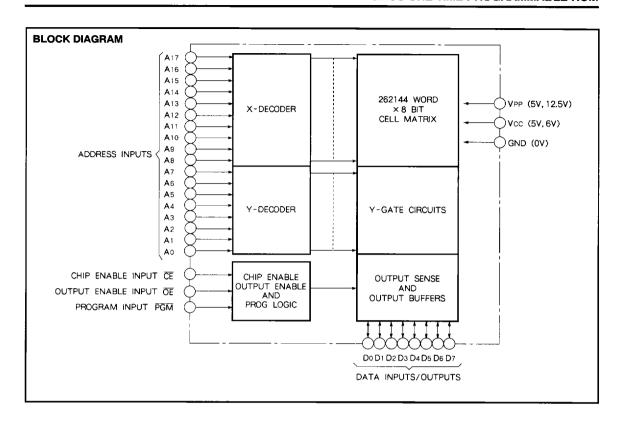

FEATURES


- 262114 word × 8 bit organization


- Two line control OE, CE
- Low power current (Icc): Active30mA (max.) (IsB2): Stand-by.....0.1mA (max.)
- Single 5V power supply (read operation)
- 3 State output buffer
- Input and output TTL-compatible in read and program mode
- Standard 32 pin DIP, PLCC, Pin-compatible with 2Mbit EPROM
- Byte programming algorithm
- Page programming algorithm

APPLICATION

Microcomputer systems and peripheral equipment


A0 → 12

24 **→** OE

23 **→** A10

22] ← CE 21] ← D7

2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

M5M27C201P.FP.J.VP.RV-12.-15

2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

FUNCTION

Read

Set the \overline{CE} and \overline{OE} terminals to the read mode (low level). Low level input to \overline{CE} and \overline{OE} and address signals to the address inputs (A0~A17) make the data contents of the designated address location available at the data input/output (D0~D7). When the \overline{CE} or \overline{OE} signal is high, data input/output are in a floating state.

When the CE signal is high, the device is in the stand by mode or power-down mode.

Programming

(Byte programming algorithm)

The M5M27C201P, FP, J, VP, RV enter the byte programming mode when 12.5V is supplied to the VPP power supply input, $\overline{\text{CE}}$ is at low level and $\overline{\text{OE}}$ is at high level. A location is designated by address signals (A0~A17), and the data to be programmed must be applied at 8-bits in parallel to the data inputs (D0~D7). In this state, byte programming is completed when $\overline{\text{PGM}}$ is at low level.

(Page programming algorithm)

Page programming feature of the M5M27C201P, FP, J, VP, RV allows 4 bytes of data to be simultaneously programmed. The destination addresses for a page programming operation must reside on the same page; that is, A2 through A17 must not change. At first, the M5M27C201P, FP, J, VP,RV enter the page data latch mode when VPP = 12.5V, $\overline{\text{CE}}$ = "H", $\overline{\text{OE}}$ = "L"and $\overline{\text{PGM}}$ = "H". The four locations in same page are designated by address signals (A0, A1 change) and the data to be programmed must be applied to each location at 8-bits in parallel to the data inputs (D0~D7). In this state, the data (4-bytes) latch is completed. Then the M5M27C201P, FP, J, VP, RV enter the page programming mode when $\overline{\text{OE}}$ = "H". In this state, page (4-bytes) programming is completed when $\overline{\text{PGM}}$ = "L".

Erase

The M5M27C201P, FP, J, VP, RV cannot be erased, because they are packaged in plastic without transparent lid.

MODE SELECTION

Pins	Œ	ŌĒ	PGM	Vpp	Vcc	Data I/O
Read	VIL	VIL	X*	5∨	5V	Data out
Output disable	VIL	ViH	Χ*	5∨	5V	Floating
Stand-by (Power down)	ViH	×*	X*	5∨	5V	Floating
Byte program	VIL	ViH	VIL	12.5V	6V	Data in
Program verify	VIL	VIL	Vін	12.5V	6V	Data out
Page data latch	ViH	VIL	VIH	12.5V	67	Data in
Page program	ViH	Vih	VIL	12.5V	6V	Floating
	VIL	VIL	VIL	12.5V	6V	
December inhihit	VIL	ViH	Viн	12.5V	6V	Floating
Program inhibit	ViH	VIL	VIL	12.5V	6V	ricating
	VIH	Vih	Vін	12.5V	6V	

^{* :} X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Conditions	Ratings	Unit
Vii	All input or output voltage except VPP · As		- 0.6~7	٧
V ₁₂	VPP supply voltage	With respect to Ground	- 0.6~14.0	٧
Vıз	As supply voltage		- 0.6~13.5	V
Topr	Operating temperature		- 10~80	℃
Tsto	Storage temperature		- 65~150	~

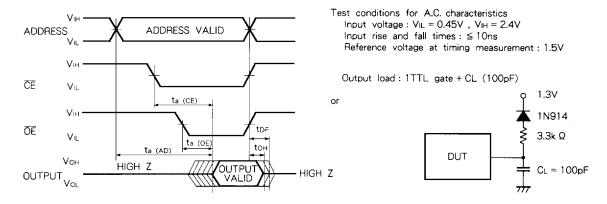
Note 1: Stresses above those listed may cause parmanent damage to the device. This is a stress rating only and functional operation of the device at those or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

READ OPERATION

DC ELECTRICAL CHARACTERISTICS (Ta = 0~70 ℃, Vcc = 5V ± 10 %, Vpp = Vcc, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		11.5	
Symbol	Farameter	rest conditions	Min	Тур	Max	Unit	
Li	Input leakage current	VIN = 0~VCC			10	μА	
lro	Output leakage current	Vout = 0∼Vcc			10	μА	
lpp1	VPP current read/stand-by	VPP = Vcc = 5.5V		1	100	μА	
Is _B 1	Vcc current stand-by	CE = ViH			1	mA	
IsB2	vcc current stand-by	CE = Vcc		1	100	μА	
lcc1	Vcc current active	CE = OE = VIL, DC, lout = 0mA			30	mA	
lcc2	vec current active	\overline{CE} = Vie, f = 8.3MHz, lout = 0mA			30	mA	
VIL	Input low voltage		- 0.1		0.8		
Vін	Input high voltage		2.2		Vcc + 1	٧	
Vol	Output low voltage	lo _L = 2.1mA			0.45	٧	
Voн	Output high voltage	Ioн = - 400 μ A	2.4	•		٧	


Note 2: Typical values are at Ta = 25 °C and normal supply voltages

AC ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70 \, \text{°C}$, $V_{CC} = 5V \pm 10 \, \text{%}$, $V_{PP} = V_{CC}$, unless otherwise noted)

				Limits					
Symbol	Parameter	Test conditions	M5M27C	201P-12	M5M27C	Unit			
			Min	Max	Min	Max			
ta (AD)	Address to output delay	CE = OE = VIL		120		150	ns		
ta (CE)	CE to output delay	OE = V _{1L}		120		150	ns		
ta (OE)	Output enable to output delay	CE = VIL		60		60	ns		
tDF	Output enable high to output float	ČE = VIL	0	50	0	50	ns		
tон	Output hold from CE, OE or address		0		0		ns		

Note 3:VCC must be applied simultaneously VPP and removed simultaneously VPP.

AC WAVEFORMS

CAPACITANCE

Symbol	Parameter	Test conditions		l lada		
			Min	Тур	Max	Unit
Cin	Input capacitance (Address, CE, OE, PGM)	Ta = 25°C, f = 1MHz,V₁ = Vo = 0V			15	pF
Соит	Output capacitance	1a - 25 C, 1 - 110Hz, 1 - 10 - 00			15	pF

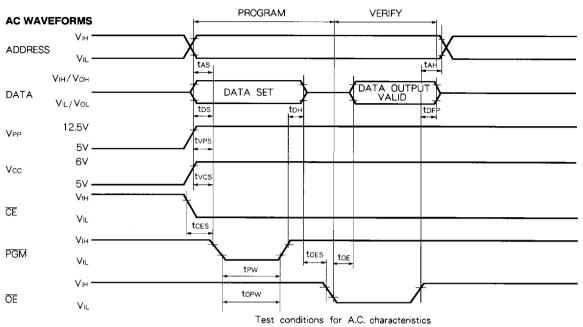
2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

PROGRAM OPERATION BYTE PROGRAMMING ALGORITHM

First set Vcc = 6V, Vpp = 12.5V and then set an address to first address to be programmed. After applying 0.2ms program pulse (\overline{PGM}) to the address, verify is performed. If the output data of that address is not verified correctly, apply one more 0.2ms program pulse. The programmer continues 0.2ms pulse-then-verify routines until the device verify correctly or twenty five of these pulse-then-verify routines have been completed. The programmer also maintains its total

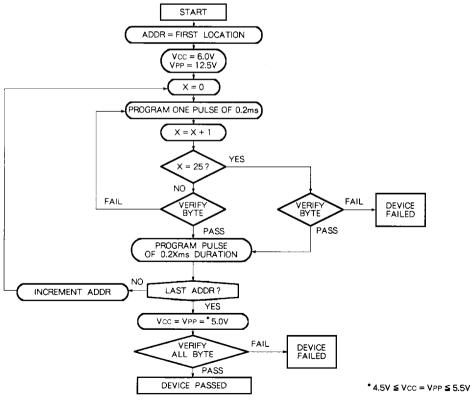
number of 0.2ms pulse applied to that address in register X. And then applied a program pulse X times of 0.2ms width as an overprogram pulse. When the programming procedure above is finished, step to the next address and repeat this procedure till last address to be programmed. When the entire addresses have been programmed completely, all addresses should be verified with Vcc = VPP = 5V.

DC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, Vcc = 6V ± 0.25V, VPP = 12.5V ± 0.3V, unless otherwise noted)


Symbol Parameter	Baramatar	Test conditions		Limits			
	Farameter	l est conditions	Min	Тур	Max	Unit	
lu	Input leakage current	VIN = 0~VCC			10	μΑ	
Vol	Output low voltage (verify)	lot = 2.1mA			0.45		
Vон	Output high voltage (verify)	Ioн = - 400 µ A	2.4			V	
VIL	Input low voltage		- 0.1		0.8	V	
ViH	Input high voltage		2.2		Vcc	V	
Icc	Vcc supply current				30	mΑ	
I PP	VPP supply current	PGM = VIL			30	mA	

AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 ℃, Vcc = 6V ± 0.25V, VPP = 12.5V ± 0.3V, unless otherwise noted)

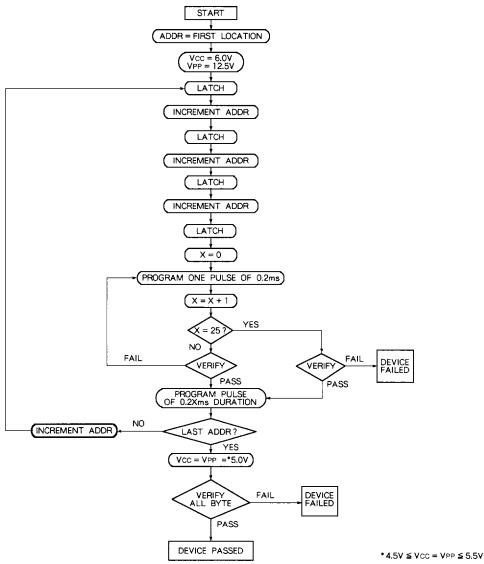
Symbol	Parameter	Test conditions		Limits			
Symbol	Farameter	Test conditions	Min	Тур	Max	Unit	
tas	Address setup time		2			μs	
toes	OE setup time		2			μs	
tos	Data setup time		2			μs	
tah	Address hold time		0			μs	
tDн	Data hold time		2			μs	
tDFP	Chip enable to output float delay		0		130	ns	
tvcs	Vcc setup time		2			μs	
tvps	VPP setup time		2			μs	
tpw	PGM initial program pulse width		0.19	0.2	0.21	ms	
topw	PGM over program pulse width		0.19	, i	5.25	ms	
tces	CE setup time		2			μs	
toE	Data valid from OE				150	ns	


Note 4: VCC must be applied simultaneously VPP and removed simultaneously VPP.

2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

Input voltage: VIL = 0.45V, VIH = 2.4VInput rise and fall time: $(10 \% \sim 90 \%)$: ≤ 20 ns Reference voltage at timing measurement: Input, Output "L" = 0.8V, "H" = 2V

BYTE PROGRAMMING ALGORITHM FLOW CHART


2097152-BIT(262144-WORD BY 8-BIT)
CMOS ONE TIME PROGRAMMABLE ROM

PAGE PROGRAMMING ALGORITHM

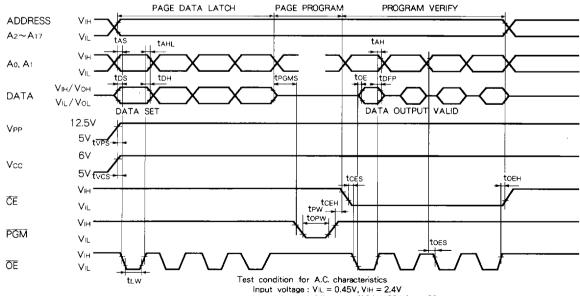
First set Vcc = 6V, Vpp = 12.5V and then set an address to first page address to be programmed. After data of 4 bytes are latched, these latch data are programmed simultaneously by applying 0.2ms program pulse. Then a verify is performed. If each output data is not verified correctly, apply one more 0.2ms program pulse. The programmer continues 0.2ms pulse - then - verify routines until each output data is verified correctly or twenty five of these pulse-then-verify routines have been completed. The programmer also maintains its total

number of 0.2ms pulse applied to that page addresses in register X. And then applied a program pulse X times of 0.2 ms width as an overprogram pulse. When the programming procedure above is finished, step to the next page address and repeat this procedure till last page address to be programmed. When the entire page addresses have been programmed completely, all addresses should be verified with $V_{CC} = V_{PP} = 5V$.

PAGE PROGRAMMING ALGORITHM FLOW CHART

2097152-BIT(262144-WORD BY 8-BIT) CMOS ONE TIME PROGRAMMABLE ROM

DC ELECTRICAL CHARACTERISTICS (Ta = $25 \pm 5 \, ^{\circ}$ C, Vcc = $6V \pm 0.25V$, Vpp = $12.5V \pm 0.3V$, unless otherwise noted)


Symbol	Parameter	Test conditions		Limits			
Symbol	i arameter	Test conditions	Min	Тур	Max	Unit	
lLi	Input leakage current	VIN = OV~VCC			10	μА	
VoL	Output low voltage (verify)	loL = 2.1mA	_		0.45	٧	
Voн	Output high voltage (verify)	lон = − 400 µ A	2.4			V	
VIL	Input low voltage		- 0.1		0.8	V	
ViH	Input high voltage		2.2		Vcc	V	
lcc	Vcc supply current				30	mA	
lpp	VPP supply current	PGM = VIL			100	mA	

AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, Vcc = 6V ± 0.25V, Vpp = 12.5V ± 0.3V, unless otherwise noted)

symbol	Parameter	Tank and distance		Limits			
symbol	r arameter	Test conditions	Min	Тур	Max	Unit	
tas	Address setup time		2			μs	
toes	OE setup time		2			μs	
tos	Data setup time		2		· ·	μs	
tah	Address hold time		0			μs	
tahl	Address floid time		2			μs	
tрн	Data hold time		2			μs	
tDFP	OE to output float delay		0		130	ns	
tvcs	Vcc setup time		2			μs	
t∨PS	VPP setup time		2			μs	
tpw	PGM initial program pulse width		0.19	0.2	0.21	ms	
topw	PGM over program pulse width		0.19		5.25	ms	
tces	CE setup time		2	•		μs	
toe	Data valid from OE				150	ns	
tLW	Data latch time		. 1			μs	
tpgms	PGM setup time		2			μs	
tceh	CE hold time		2			μs	
toen	OE hold time		2			μs	

Note 5: VCC must be applied simultaneously Vpp and removed simultaneously VPP.

AC WAVEFORMS

Input rise and fall tame : (10% \sim 90%) : \leq 20ns Reference voltage at timing measurement : Input, Output "L" = 0.8V, "H" = 2V

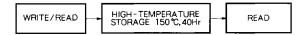
2097152-BIT(262144-WORD BY 8-BIT) CMOS ONE TIME PROGRAMMABLE ROM

DEVICE IDENTIFIER MODE

The Device Identifier Mode allows the reading of a binary code from the OTP ROM that identifies the manufacturer and device type

The PROM Programmer reads the manufacturer code and the device code and automatically selects the corresponding programming algorithm.

M5M27C201P, FP, J, VP, RV DEVICE IDENTIFIER CODE


Code	Ao	D7	D6	D ₅	D4	Dз	D2	D1	Do	Hex Data
Manufacturer code	VIL	0	0	0	1	1	1	0	0	1C
Device code	ViH	1	0	0	0	1	0	1	0	8A

Note $6: A9 = 12.0 \pm 0.5V$

A1~A8, A10~A17, \overline{CE} , \overline{OE} = VIL, \overline{PGM} = VIH VCC = VPP = 5V ± 10%.

RECOMMENDED SCREENING CONDITION

The following screening test is recommended before using.

