STK10C68 CMOS nvSRAM High Performance 8K x 8 Nonvolatile Static RAM ### **FEATURES** - 25, 30, 35 and 45ns Access Times - 12, 15, 20 and 25ns Output Enable Access - Unlimited Read and Write to SRAM - · Hardware STORE Initiation - Automatic STORE Timing - 10⁴ or 10⁵ STORE cycles to EEPROM - 10 year data retention in EEPROM - Automatic RECALL on Power Up - Hardware RECALL Initiation - Unlimited RECALL cycles from EEPROM - Single 5V±10% Operation - Commercial and Industrial Temperatures - Available in multiple standard packages ### DESCRIPTION The Simtek STK10C68 is a fast static RAM (25, 30, 35, and 45ns), with a nonvolatile electrically-erasable PROM (EEPROM) element incorporated in each static memory cell. The SRAM can be read and written an unlimited number of times, while independent nonvolatile data resides in EEPROM. Data may easily be transferred from the SRAM to the EEPROM (STORE), or from the EEPROM to the SRAM (RECALL) using the NE pin. It combines the high performance and ease of use of a fast SRAM with nonvolatile data integrity. The STK10C68 features industry standard pinout for nonvolatile RAMs in a 28-pin 300 mil ceramic or plastic DIP, a 28-pin 600 mil plastic DIP, a 28-pin SOIC and 28-pad LCC packages. MIL-STD-883 and Standard Military Drawing (SMD #5962-93056) devices are also available. ### LOGIC BLOCK DIAGRAM ### PIN CONFIGURATIONS 28 - 300 C-DIP 28 - 600 P-DIP 28 - 300 P-DIP 28 - 350 SOIC ### **PIN NAMES** | A ₀ - A ₁₂ | Address Inputs | |-----------------------------------|--------------------| | W | Write Enable | | DQ ₀ - DQ ₇ | Data In/Out | | Ē | Chip Enable | | ত্র | Output Enable | | NE | Nonvolatile Enable | | V _{cc} | Power (+5V) | | V _{ss} | Ground | | | | ### **ABSOLUTE MAXIMUM RATINGS^a** | Voltage on typical input relative to V _{SS} | 0.6V to 7.0V | |--|---------------------------------| | Voltage on DQ ₀₋₇ and G | 0.5V to (V _{CC} +0.5V) | | Temperature under bias | 55°C to 125°C | | Storage temperature | 65°C to 150°C | | Power dissipation | | | DC output current | | | (One output at a time, one second duration |) | Note a: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ### **DC CHARACTERISTICS** $(V_{CC} = 5.0V \pm 10\%)$ | | | СОММ | ERCIAL | INDUS | TRIAL | | | |--------------------|-------------------------------------|-------------------|---------------------|-------------------|---------------------|------------|---| | SYMBOL | PARAMETER | MIN | MAX | MIN | MAX | UNITS | NOTES | | lcc ₁ b | Average V _{CC} Current | | 85 | | 95 | mA | t _{AVAV} = 25ns | | | | | 80 | | 85 | m A | t _{AVAV} = 30ns | | | | | 75 | | 80 | mA | t _{AVAV} = 35ns | | | | | 65 | | 75 | mA | t _{AVAV} = 45ns | | lcc ₂ d | Average V _{CC} Current | | 50 | | 50 | mA | E ≥ (V _{CC} - 0.2V) | | | during STORE cycle | | | | | | all others $V_{IN} \le 0.2V$ or $\ge (V_{CC} - 0.2V)$ | | l _{SB1} ° | Average V _{CC} Current | | 30 | | 34 | mA . | t _{AVAV} = 25ns | | | (Standby, Cycling TTL Input Levels) | | 27 | | 30 | mA | t _{AVAV} = 30ns | | | | | 23 | | 27 | mA | t _{AVAV} = 35ns | | | | | 20 | | 23 | mA | t _{AVAV} = 45ns | | | | | | • | | | E ≥ V _{IH} ; all others cycling | | I _{SB2} c | Average V _{CC} Current | | 1 | | 1 | mA | E ≥ (V _{CC} - 0.2V) | | • | (Standby, Stable CMOS Input Levels) | | | | | | all others $V_{IN} \le 0.2V$ or $\ge (V_{CC} - 0.2V)$ | | lilk | Input Leakage Current (Any Input) | | ±1 | | ±1 | μА | V _{CC} = max | | | | | | | | | $V_{IN} = V_{SS}$ to V_{CC} | | lolk | Off State Output Leakage Current | | ±5 | | ±5 | μА | V _{CC} = max | | | | | | | | | V _{IN} = V _{SS} to V _{CC} | | V _{IH} | Input Logic "1" Voltage | 2.2 | V _{CC} +.5 | 2.2 | V _{CC} +.5 | ٧ | All Inputs | | V _{IL} | Input Logic "0" Voltage | V _{SS} 5 | 0.8 | V _{SS} 5 | 0.8 | ٧ | All Inputs | | V _{OH} | Output Logic "1" Voltage | 2.4 | | 2.4 | | ٧ | I _{OUT} = -4mA | | Vol | Output Logic "0" Voltage | | 0.4 | | 0.4 | ٧ | I _{OUT} = 8mA | | TA | Operating Temperature | 0 | 70 | -40 | 85 | တ္ | | Note b: I_{CC_1} is dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded. Note c: Bringing $\vec{E} \ge V_{IH}$ will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION table. Note d: ICC2 is the average current required for the duration of the store cycle (ISTORE) after the sequence (IWC) that initiates the cycle. ### **AC TEST CONDITIONS** | Input Pulse Levels | . V _{ss} to 3V | |--|-------------------------| | Input and Output Timing Reference Levels | 1.5V | # CAPACITANCE (T_A=25°C, f=1.0MHz)^e | SYMBOL | PARAMETER | MAX | UNITS | CONDITIONS | |------------------|--------------------|-----|-------|--------------| | C _{IN} | Input Capacitance | 5 | pF | ΔV = 0 to 3V | | C _{OUT} | Output Capacitance | 7 | pF | ΔV = 0 to 3V | Note e: These parameters are guaranteed but not tested. Figure 1: AC Output Loading ### READ CYCLES #1 & #2 $(V_{CC} = 5.0V \pm 10\%)$ | | SYMBO | .s | | STK10 | C68-25 | STK10 | C68-30 | STK10 | C68-35 | STK10 | 45 45 25 20 20 | | |-----|------------------------------------|-----------------|-----------------------------------|-------|--------|-------|--------|-------|--------|-------|----------------|-------| | NO. | #1, #2 | Alt | PARAMETER | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | 1 | t _{ELQV} | tacs | Chip Enable Access Time | | 25 | | 30 | | 35 | | 45 | ns | | 2 | tavaveg | t _{RC} | Read Cycle Time | 25 | | 30 | | 35 | | 45 | | ns | | 3 | t _{AVQV} h | t _{AA} | Address Access time | | 25 | | 30 | | 35 | | 45 | ns | | 4 | t _{GLQV} | t _{OE} | Output Enable to Data Valid | | 12 | | 15 | | 20 | | 25 | ns | | 5 | †AXQX | t _{он} | Output Hold After Address Change | 5 | | 5 | | 5 | | 5 | | ns | | 6 | † _{ELQX} | t _{LZ} | Chip Enable to Output Active | 5 | | 5 | | 5 | | 5 | | ns | | 7 | t _{EHQZ} i | t _{HZ} | Chip Disable to Output Inactive | | 13 | | 15 | | 17 | | 20 | ns | | 8 | t _{GLQX} | toLZ | Output Enable to Output Active | 0 | | 0 | | 0 | | 0 | | ns | | 9 | t _{GHQZ} i | tonz | Output Disable to Output Inactive | | 13 | | 15 | | 17 | | 20 | ns | | 10 | †ELICCH® | t _{PA} | Chip Enable to Power Active | 0 | | 0 | | 0 | | 0 | | ns | | 11 | [†] EHICCL ^{C,●} | t _{PS} | Chip Disable to Power Standby | | 25 | | 25 | | 25 | | 25 | ns | | 11A | twhQv | twR | Write Recovery Time | | 30 | | 35 | | 45 | | 55 | ns | Note c: Bringing E high will not produce standby currents until any nonvolatile cycle in progress has timed out. See MODE SELECTION table. Note e: Parameter guaranteed but not tested Note f: NE must be high during entire cycle. Note g: For READ CYCLE #1 and #2, \overline{W} and \overline{NE} must be high for entire cycle. Note h: Device is continuously selected with \overline{E} low and \overline{G} low. Note i: Measured \pm 200mV from steady state output voltage. # **READ CYCLE #1** f,g,h # **READ CYCLE #2** f,g | | SY | MBOLS | | | STK10C68-25 STK10 | | STK10 | 0C68-30 STK10 | | C68-35 | STK10 | STK10C68-45 | | |-----|-----------------------|----------------------|-----------------|----------------------------------|-------------------|-----|-------|---------------|-----|--------|-------|-------------|-------| | NO. | #1 | #2 | Alt | PARAMETER | MEN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | 12 | tavavwi | t _{AVAVW} I | twc | Write Cycle Time | 25 | | 30 | _ | 35 | | 45 | | ns | | 13 | tw.w.h | ¹ WLEH | twp | Write Pulse Width | 20 | | 25 | | 30 | | 35 | | ns | | 14 | t _{ELWH} ! | t _{ELEH} ! | tcw | Chip Enable to End of Write | 20 | | 25 | | 30 | | 35 | | ns | | 15 | t _{DVWH} I | t _{DVEH} I | t _{DW} | Data Set-up to End of Write | 12 | | 15 | | 15 | | 20 | | ns | | 16 | t _{whDx} | t _{EHDX} | t _{DH} | Data Hold After End of Write | 0 | | 0 | | 0 | | 0 | | ns | | 17 | t _{AVWH} ! | t _{AVEH} 1 | t _{AW} | Address Set-up to End of Write | 20 | | 25 | | 30 | | 35 | | ns | | 18 | t _{AVWL} | tavel | 1 _{AS} | Address Set-up to Start of Write | 0 | | 0 | | 0 | | 0 | | ns | | 19 | twhax | t _{EHAX} | ¹wn | Address Hold After End of Write | 0 | | 0 | | 0 | | 0 | | ns | | 20 | tavavw | tavavw | twc | Write Cycle Time | 45 | | 45 | | 45 | | 45 | | ns | | 21 | ^t wlwH | twleh | ¹₩P | Write Pulse Width | 35 | | 35 | | 35 | | 35 | | กร | | 22 | tw.coz ^{i,m} | | ¹wz | Write Enable to Output Disable | | 35 | | 35 | | 35 | | 35 | ns | | 23 | t _w Hox | | tow | Output Active After End of Write | 5 | | 5 | | 5 | | 5 | | ns | Note f: NE must be high during entire cycle. Note k: E or W must be high during address transitions. Note m: If $\overline{\boldsymbol{W}}$ is low when $\overline{\boldsymbol{E}}$ goes low, the outputs remain in the high impedance state. Note i: Measured \pm 200mV from steady state output voltage. Note I: Spec numbers 12 to 15 & 17 apply when G is high during the write cycle. These specifications are changes from previous data sheets and are effective 1/1/94. # WRITE CYCLE #1: W CONTROLLED f,k,l # WRITE CYCLE #2: E CONTROLLED f,k DATA OUT HIGH IMPEDANCE # NONVOLATILE MEMORY OPERATION ### **MODE SELECTION** | Ē | w | Ğ | NE | MODE | POWER | |---|---|---|----|---------------------------------|------------------| | Н | Х | х | X | Not Selected | Standby | | L | н | L | Н | Read RAM | Active | | L | L | Х | н | Write RAM | Active | | L | Н | L | L | Nonvolatile RECALL ⁿ | Active | | L | L | Н | L | Nonvolatile STORE | l _{CC2} | | L | L | L | L | No operation | Active | | L | н | н | X | | | ### STORE CYCLES #1 & #2 $(V_{CC} = 5.0V \pm 10\%)$ | | | SYMBOLS | | | | | | |-----|---------------------|--------------------|--------|----------------------------------|-----|-----|-------| | NO. | #1 | #2 | Alt. | PARAMETER | MIN | MAX | UNITS | | 24 | t _{WLQX} P | t _{ELQXS} | †STORE | STORE Cycle Time | | 10 | ms | | 25 | t _{WLNH} q | t _{ELNHS} | twc | STORE Initiation Cycle Time | 25 | | ns | | 26 | t _{GHNL} | | | Output Disable Set-up to NE Fall | 5 | | ns | | 27 | | t _{GHEL} | | Output Disable Set-up to E Fall | 5 | | ns | | 28 | [†] NLWL | INLEL | | NE Set-up | 5 | | ns | | 29 | telwl | | | Chip Enable Set-up | 5 | | ns | | 30 | | twiel | | Write Enable Set-up | 5 | | ns | Note: n: An automatic RECALL also takes place at power up, starting when V_{CC} exceeds 4.1V, and taking t_{RECALL} from the time at which V_{CC} exceeds 4.5V. V_{CC} must not drop below 4.1V once it has exceeded it for the RECALL to function properly. Note o: If E is low for any period of time in which W is high white G and NE are low, then a RECALL cycle may be initiated. Note p: Measured with W and NE both returned high, and G returned low. Note that STORE cycles are inhibited/aborted by V_{CC} < 4.1V (STORE inhibit). Note q: Once two has been satisfied by $\overline{\text{NE}}$, $\overline{\overline{G}}$, $\overline{\overline{W}}$ and $\overline{\overline{E}}$, the STORE cycle is completed automatically. Any of $\overline{\text{NE}}$, $\overline{\overline{G}}$, $\overline{\overline{W}}$ or $\overline{\overline{E}}$ may be used to terminate the STORE initiation cycle. # STORE CYCLE #1: W CONTROLLED® # STORE CYCLE #2: E CONTROLLED° # **RECALL CYCLES #1, #2 & #3** $(V_{CC} = 5.0V \pm 10\%)$ | | SYMBOLS | | | | | | HARTE | |-----|--------------------------------|--------------------|--------------------|------------------------------|-----|-----|-------| | NO. | #1 | #2 | #3 | PARAMETER | MIN | MAX | UNITS | | 31 | t _{NLQX} | t _{ELQXR} | t _{GLQXR} | RECALL Cycle Time | | 25 | μs | | 32 | ^t NLNH ⁶ | t _{ELNHR} | † _{GLNH} | RECALL Initiation Cycle Time | 25 | | ns | | 33 | _ | t _{NLEL} | tNLGL | NE Set-up | 0 | | ns | | 34 | ^t GLNL | t _{GLEL} | | Output Enable Set-up | 0 | | ns | | 35 | twhnL | t _{WHEL} | ^t wHGL | Write Enable Set-up | 5 | | ns | | 36 | t _{ELNL} | | †ELGL | Chip Enable Set-up | 0 | | ns | Note r: Measured with W and NE both high, and G and E low. Note s: Once t_{NLNH} has been satisfied by $\overline{\text{NE}}$, $\overline{\text{G}}$, $\overline{\text{W}}$ and $\overline{\text{E}}$, the *RECALL* cycle is completed automatically. Any of $\overline{\text{NE}}$, $\overline{\text{G}}$ or $\overline{\text{E}}$ may be used to terminate the *RECALL* initiation cycle. Note t: If W is low at any point in which both E and NE are low and G is high, then a STORE cycle will be initiated instead of a RECALL. ## **RECALL CYCLE #1: NE CONTROLLEDº** # RECALL CYCLE #2: E CONTROLLED° # RECALL CYCLE #3: G CONTROLLEDO,t # **DEVICE OPERATION** The STK10C68 has two modes of operation: SRAM mode and nonvolatile mode, determined by the state of the NE pin. When in SRAM mode, the memory operates as an ordinary static RAM. While in nonvolatile mode, data is transferred in parallel from SRAM to EEPROM or from EEPROM to SRAM. ### **SRAM READ** The STK10C68 performs a READ cycle whenever \overline{E} and \overline{G} are LOW and \overline{NE} and \overline{W} are HIGH. The address specified on pins A_{0-12} determines which of the 8192 data bytes will be accessed. When the READ is initiated by an address transition, the outputs will be valid after a delay of t_{AVQV} (READ CYCLE #1). If the READ is initiated by \overline{E} or \overline{G} , the outputs will be valid at t_{ELQV} or at t_{GLQV} whichever is later (READ CYCLE #2). The data outputs will repeatedly respond to address changes within the t_{AVQV} access time without the need for transitions on any control input pins, and will remain valid until another address change or until \overline{E} or \overline{G} is brought HIGH or \overline{W} or \overline{NE} is brought LOW. ### **SRAM WRITE** A write cycle is performed whenever \overline{E} and \overline{W} are LOW and \overline{NE} is HIGH. The address inputs must be stable prior to entering the WRITE cycle and must remain stable until either \overline{E} or \overline{W} go HIGH at the end of the cycle. The data on pins DQ_{0-7} will be written into the memory if it is valid t_{DVWH} before the end of a \overline{W} controlled WRITE or t_{DVEH} before the end of an \overline{E} controlled WRITE It is recommended that G be kept HIGH during the entire WRITE cycle to avoid data bus contention on common I/O lines. If \overline{G} is left LOW, internal circuitry will turn off the output buffers t_{WLQZ} after \overline{W} goes LOW. Keeping \overline{G} high during write cycles also enables use of the faster write specifications. ### **NONVOLATILE STORE** A STORE cycle is performed when \overline{NE} , \overline{E} and \overline{W} are LOW and \overline{G} is HIGH. While any sequence to achieve this state will initiate a STORE, only \overline{W} initiation (STORE CYCLE #1) and \overline{E} initiation (STORE CYCLE #2) are practical without risking an unintentional SRAM WRITE that would disturb SRAM data. During a STORE cycle, previous nonvolatile data is erased and the SRAM contents are then programmed into nonvolatile elements. Once a *STORE* cycle is initiated, further input if \overline{E} and \overline{G} are LOW and \overline{W} and \overline{NE} are HIGH at the end and output is disabled and the DQ₀₋₇ pins are tri-stated until the cycle is completed of the cycle, a READ will be performed and the outputs will go active, signaling the end of the *STORE*. ### **HARDWARE PROTECT** The STK10C68 offers two levels of protection to suppress inadvertent STORE cycles. If the control signals $(\bar{E},\bar{G},\bar{W},$ and $N\bar{E})$ remain in the STORE condition at the end of a STORE cycle, a second STORE cycle will not be started. The STORE (or RECALL) will be initiated only after a transition on any one of these signals to the required state. In addition to multi-trigger protection, the STK10C68 offers hardware protection through V_{CC} Sense. A STORE cycle will not be initiated, and one in progress will discontinue if V_{CC} goes below 4.1V. 4.1V is a typical, characterized value. ### **NONVOLATILE RECALL** A RECALL cycle is performed when \overline{E} , \overline{G} , and \overline{NE} are LOW and \overline{W} is HIGH. Like the STORE cycle, RECALL is initiated when the last of the four clock signals goes to the RECALL state. Once initiated, the RECALL cycle will take t_{NLQX} to complete, during which all inputs are ignored. When the RECALL completes, any READ or WRITE state on the input pins will take effect. Internally, RECALL is a two step procedure. First, the SRAM data is cleared and second, the nonvolatile information is transferred into the SRAM cells. The RECALL operation in no way alters the data in the nonvolatile cells. The nonvolatile data can be recalled an unlimited number of times. Like the STORE cycle, a transition must occur on some control pin to cause a recall, preventing inadvertent multi-triggering. On power-up, once $V_{\rm CC}$ exceeds the $V_{\rm CC}$ sense voltage of 4.1V, a RECALL cycle is automatically initiated. The voltage on the $V_{\rm CC}$ pin must not drop below 4.1V once it has risen above it in order for the RECALL to operate properly. Due to this automatic RECALL, SRAM operation cannot commence until $t_{\rm NLQX}$ after $V_{\rm CC}$ exceeds 4.1V. 4.1V is a typical, characterized value. # **ORDERING INFORMATION**