

## Absolute Maximum Ratings(Note 1)

Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
DC Switch Voltage ( $\mathrm{V}_{\mathrm{S}}$ )
DC Input Voltage (VIN) (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Input Diode Current

$$
@\left(I_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}
$$

DC Switch Output Current (IOUT)
DC $V_{C C}$ or Ground Current ( $I_{C C} / I_{G N D}$ )
Storage Temperature Range ( $\mathrm{T}_{\mathrm{STG}}$ )
Junction Lead Temperature under Bias ( $\mathrm{T}_{\mathrm{J}}$ )
Junction Lead Temperature ( $\mathrm{T}_{\mathrm{L}}$ )
(Soldering, 10 Seconds)
Power Dissipation ( $\mathrm{P}_{\mathrm{D}}$ ) @ $+85^{\circ} \mathrm{C}$
SC70-6
250 mW

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

$-50 \mathrm{~mA}$
$\pm 128 \mathrm{~mA}$
$\pm 100 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$+260^{\circ} \mathrm{C}$

## Recommended Operating

 Conditions (Note 3)Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
2 V to 5.5 V
Control Input Voltage ( $\mathrm{V}_{\text {IN }}$ )
Switch Input Voltage ( $\mathrm{V}_{\text {IN }}$ )
0 V to 5.5 V OV to $\mathrm{V}_{\mathrm{CC}}$ 0 V to $\mathrm{V}_{\mathrm{CC}}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

## DC Electrical Characteristics



Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 5: Guaranteed by design.
Note 6: Flatness is defined as the difference between the minimum and maximum value of On Resistance over the specified range of conditions. Note 7: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$ measured at identical $\mathrm{V}_{\mathrm{CC}}$, temperature and voltage levels.

## AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  | Units | Conditions | Figure <br> Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min |  | Typ | Max |  |  |  |
| $\overline{\text { tpzL, }{ }^{\text {tpzH }}}$ | Output Enable Time Turn on Time | 4.5-5.5 | 75 |  |  |  | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \text { for tpzH } \\ & \mathrm{V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=\mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \hline \end{aligned}$ | Figures 2, 1 |
|  |  | 3.0-3.6 | 25 |  |  |  |  |  |  |
|  | Output Disable Time <br> Turn Off Time | 4.5-5.5 | 7 |  |  |  | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } t_{P H Z} \\ & \mathrm{~V}_{\mathrm{I}}=2 \times \mathrm{V}_{C C} \text { for } t_{P L Z} \\ & C_{L}=50 \mathrm{pF}, R_{U}=R_{D}=500 \Omega \end{aligned}$ | Figures 2, 1 |
|  |  | 3.0-3.6 |  |  |  | 12 |  |  |  |
| Q | Charge Injection (Note 8) | 2-5.5 | 10 |  |  |  | pC | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | Figure 3 |
| OIRR | Off Isolation (Note 9) | 2-5.5 | -43 |  |  |  | dB | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$ | Figure 4 |
| Xtalk | Crosstalk | 2-5.5 | -43 |  |  |  | dB | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$ | Figure 5 |
| BW | -3dB Bandwidth | 2-5.5 | >326 |  |  |  | MHz | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ | Figure 8 |
| THD | Total Harmonic Distortion (Note 8) | 5 | 0.02 |  |  |  | \% | $\begin{aligned} & R_{L}=600 \Omega \\ & 0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$ |  |
| Note 8: Guaranteed by design. <br> Note 9: Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right]$ <br> Capacitance |  |  |  |  |  |  |  |  |  |
| Symbol | Parameter |  |  | Typ |  | Max | Units | Conditions | Figures |
| $\mathrm{C}_{\text {IN }}$ | Control Pin Input Capacitance |  |  | 2.5 |  |  | pF | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | Figure 6 |
| $\mathrm{C}_{\text {IV }}$ (OFF) | Switch Port Off Capacitance |  |  | 5.5 |  |  | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |  |
| $\mathrm{C}_{\text {I/O }}$ (ON) | Switch Port Capacitance when Switch is Enabled |  |  | 13 |  |  | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | Figure 6 <br> Figure 7 |





REEL DIMENSIONS inches (millimeters)


Physical Dimensions inches (millimeters) unless otherwise noted


LAND PATTERN RECOMMENDATION


NOTES:
A. DIMENSIONS ARE IN MILLIMETERS.
B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
C. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


DETAIL A
D. JEDEC REGISTRATION PLANNED, PACKAGE DESCRIPTION MAY CHANGE ACCORDINGLY

MAB08ARev1

## 8 -Lead US8, $0.7 \mathrm{~mm} \times 3.1 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ <br> Package Number MA08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
