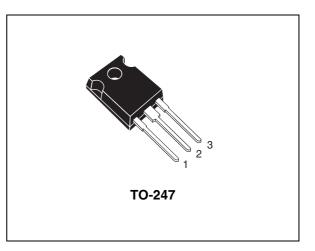


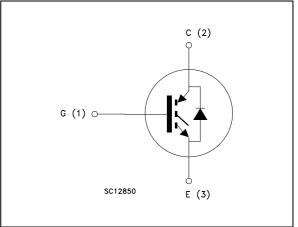
STGW30N120KD

30 A - 1200 V - short circuit rugged IGBT

Features


- Low on-losses
- High current capability
- Low gate charge
- Short circuit withstand time 10 µs
- IGBT co-packaged with ultra fast free-wheeling diode

Application


Motor control

Description

This IGBT utilizes the advanced PowerMESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STGW30N120KD	GW30N120KD	TO-247	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	9
4	Package mechanical data 1	0
5	Revision history1	2

1 Electrical ratings

Table 2. Absolute maximum rating	Absolute maximum ratings
----------------------------------	--------------------------

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage ($V_{GE} = 0$)	1200	V
I _C ⁽¹⁾	Collector current (continuous) at 25 °C	60	Α
I _C ⁽¹⁾	Collector current (continuous) at 100 °C	30	Α
I _{CL} ⁽²⁾	Turn-off latching current	100	А
I _{CP} ⁽³⁾	Pulsed collector current	100	А
V _{GE}	Gate-emitter voltage	±25	V
t _{SCW}	Short circuit withstand time, $V_{CE} = 0.5 V_{(BR)CES}$ T _j = 125 °C, R _G = 10 Ω, V _{GE} = 12 V	10	μs
P _{TOT}	Total dissipation at $T_{C} = 25 \ ^{\circ}C$	220	W
١ _F	Diode RMS forward current at $T_C = 25 \text{ °C}$	30	А
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms}$ sinusoidal	100	А
Тj	Operating junction temperature	– 55 to 125	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Vclamp = 80% of V_{CES}, T_j =125 °C, R_G=10 $\Omega,$ V_GE=15 V
- 3. Pulse width limited by max. junction temperature allowed

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case IGBT max.	0.45	°C/W
R _{thj-case}	Thermal resistance junction-case diode max.	1.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient IGBT max.	50	°C/W

Table 3. Thermal resistance

2 Electrical characteristics

(T_{CASE}=25 °C unless otherwise specified)

Table 4.	Static					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	1200			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 20 A V _{GE} = 15 V, I _C = 20 A, Tc =125 °C		2.8 2.7	3.85	V V
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 1mA	4.5		6.5	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} =1200 V V _{CE} =1200 V, Tc=125 °C			500 10	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} =± 20 V			± 100	nA
9 _{fs}	Forward transconductance	V _{CE} = 25 V _, I _C = 20 A		20		S

Table 4. Static

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} =0		2520 170 33		pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V _{CE} = 960 V, I _C = 20 A,V _{GE} =15 V		105 21 56		nC nC nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 960 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>(see Figure 17)</i>		36 22 840		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 960 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C} (see Figure 17)$		35 22 760		ns ns A/µs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 960 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>(see Figure 17)</i>		70 251 260		ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 960 \text{ V}, \text{ I}_{C} = 20 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{C} = 125 \text{ °C} (see Figure 17)$		140 324 432		ns ns ns

 Table 6.
 Switching on/off (inductive load)

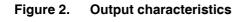
Table 7. Switching energy (inductive load	Table 7.	Switching energy	(inductive le	oad)
---	----------	------------------	---------------	------

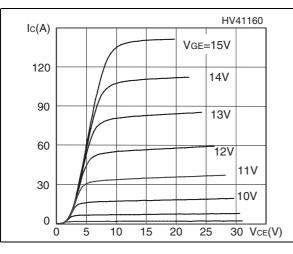
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon ⁽¹⁾	Turn-on switching losses	$V_{CC} = 960 \text{ V}, \text{ I}_{C} = 20 \text{ A}$		2.4		mJ
E _{off} ⁽²⁾	Turn-off switching losses	R _G = 10 Ω, V _{GE} = 15 V,		4.3		mJ
E _{ts}	Total switching losses	(see Figure 17)		6.7		mJ
Eon ⁽¹⁾	Turn-on switching losses	V _{CC} = 960 V, I _C = 20 A		3.9		mJ
E _{off} ⁽²⁾	Turn-off switching losses	R _G = 10 Ω, V _{GE} = 15 V,		5.8		mJ
E _{ts}	Total switching losses	Tc= 125 °C <i>(see Figure 17)</i>		9.7		mJ

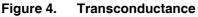
 Eon is the turn-on losses when a typical diode is used in the test circuit in *Figure 17*. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25°C and 125°C)

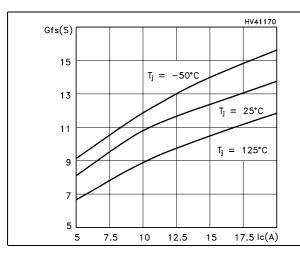
2. Turn-off losses include also the tail of the collector current

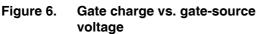
 Table 8.
 Collector-emitter diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 20 A I _F = 20 A, T _C = 125 °C		1.9 1.7		V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 20 \text{ A}, V_R = 45 \text{ V},$ di/dt = 100 A/µs (see Figure 20)		84 235 5.6		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 20 \text{ A}, V_R = 45 \text{ V},$ Tc = 125 °C, di/dt = 100 A/µs (see Figure 20)		152 722 9		ns nC A


HV41165


VGE (V)


12


Electrical characteristics (curves) 2.1

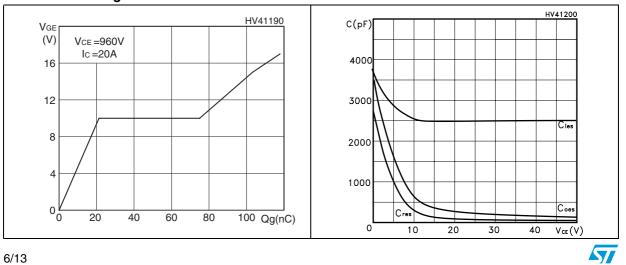
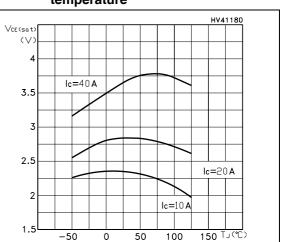


Figure 5. Collector-emitter on voltage vs. temperature

6

9

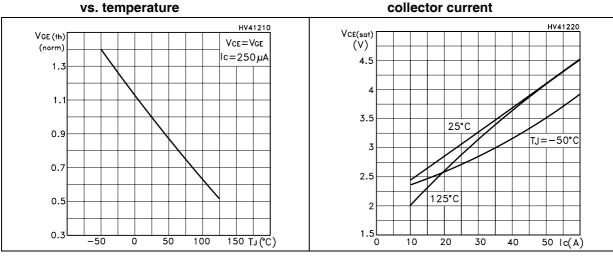
Transfer characteristics

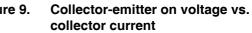

Figure 3.

Ic(A)

120

90


60


30 0**└**

3

 $V_{CE} = 25V$

Figure 8. Normalized gate threshold voltage Figure 9. C

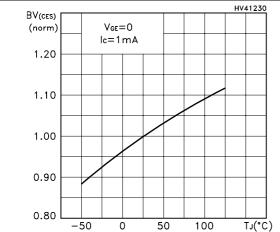
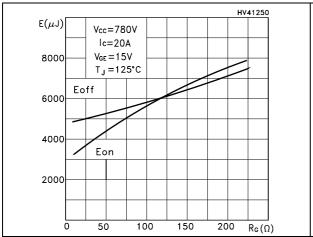



Figure 12. Switching losses vs. gate resistance

5

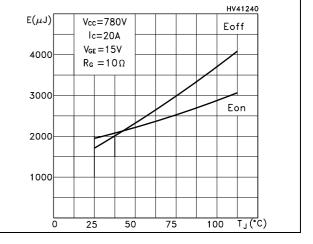
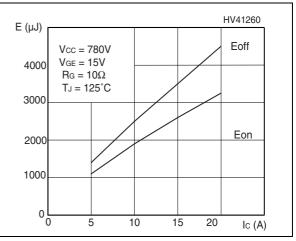



Figure 13. Switching losses vs. collector current

7/13

Figure 14. Thermal impedance

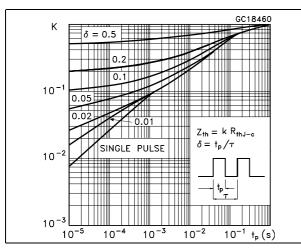


Figure 16. Forward voltage drop vs. forward current

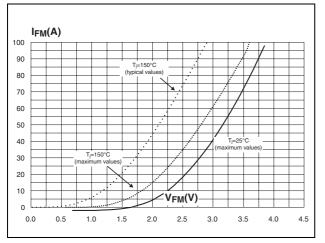
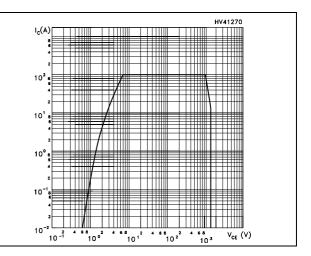



Figure 15. Turn-off SOA

3 Test circuit

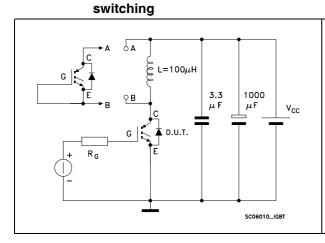
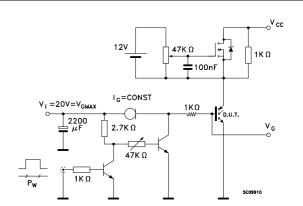
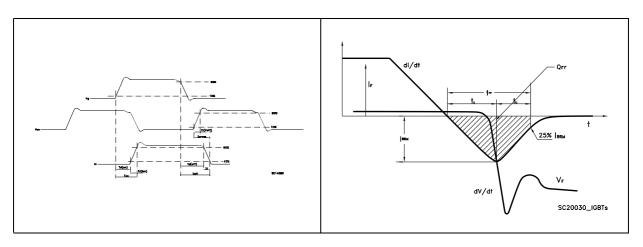
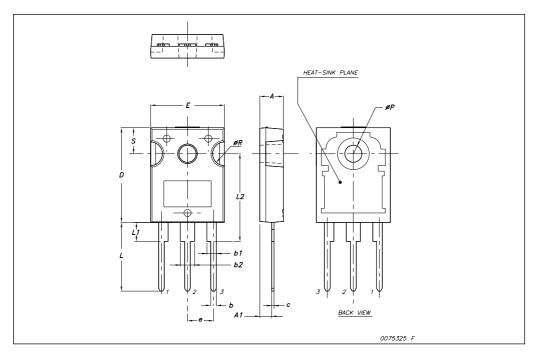




Figure 17. Test circuit for inductive load

Figure 19. Switching waveform


Figure 18. Gate charge test circuit

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

TO-247 Mechanical data				
Dim.		mm.	1	
	Min.	Тур	Max.	
А	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
с	0.40		0.80	
D	19.85		20.15	
E	15.45		15.75	
е		5.45		
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
øР	3.55		3.65	
øR	4.50		5.50	
S		5.50		

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
29-Jan-2008	1	Initial release
18-Jun-2008	2	Update values in <i>Table 2</i>
02-Dec-2008	3	Update P _{TOT} and R _{thj-case} value (see <i>Table 2</i> and <i>Table 3</i>)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

