

DCR1674SA

FDS5647-2.1 January 2004

Phase Control Thyristor

Replaces issue August 2002 version, FDS5647-1.0

FEATURES

- Double Side Cooling
- High Surge Capability
- High Mean Current
- Fatigue Free

APPLICATIONS

- High Power Drives
- High Voltage Power Supplies
- DC Motor Control

VOLTAGE RATINGS

Type Number	Repetitive Peak Voltages V _{DRM} V _{RRM} V	Conditions
DCR1674SA42	4200	$T_{vi} = 0^{\circ} \text{ to } 125^{\circ}\text{C},$
DCR1674SA41	4100	$I_{\text{DRM}}^{\text{v}} = I_{\text{RRM}} = 500 \text{mA},$
DCR1674SA40	4000	V_{DRM} , V_{RBM} t_{p} = 10ms,
DCR1674SA39	3900	$V_{\text{DSM}}^{\text{DIM}} \& V_{\text{RSM}}^{\text{HIM}} =$
DCR1674SA38	3800	$V_{\text{DRM}}^{\text{NOM}} \& V_{\text{RRM}}^{\text{NOM}} + 100V$
		respectively

Lower voltage grades available.

ORDERING INFORMATION

When ordering, select the required part number shown in the Voltage Ratings selection table.

For example:

DCR1674SA42

Note: Please use the complete part number when ordering and quote this number in any future correspondance relating to your order. **KEY PARAMETERS**

\mathbf{V}_{DRM}	4200V
I _{t(AV)}	3940A
I _{tsm}	67000A
dVdt*	1000V/μs
dl/dt	200Α/ μs

*Higher dV/dt selections available

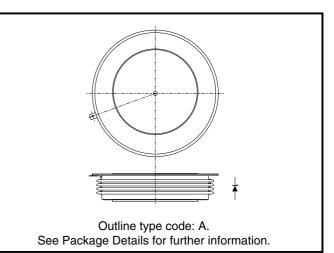


Fig. 1 Package outline

CURRENT RATINGS

 $T_{case} = 60^{\circ}C$ unless stated otherwise.

Symbol	Parameter	Conditions	Max.	Units			
Double Sid	Double Side Cooled						
I _{T(AV)}	Mean on-state current	Half wave resistive load	3940	А			
I _{T(RMS)}	RMS value	-	6190	А			
Ι _τ	Continuous (direct) on-state current	-	5740	Α			
Single Side	Single Side Cooled (Anode side)						
I _{T(AV)}	Mean on-state current	Half wave resistive load	2590	Α			
I _{T(RMS)}	RMS value	-	4070	Α			
Ι _τ	Continuous (direct) on-state current	-	3490	А			

CURRENT RATINGS

T_{case} = 80°C unless stated otherwise.

Symbol	Parameter	Conditions	Max.	Units			
Double Sid	Double Side Cooled						
I _{T(AV)}	Mean on-state current	Half wave resistive load	3110	А			
I _{T(RMS)}	RMS value	-	4880	А			
Ι _τ	Continuous (direct) on-state current	-	4430	Α			
Single Side	Single Side Cooled (Anode side)						
I _{T(AV)}	Mean on-state current	Half wave resistive load	2010	А			
I _{T(RMS)}	RMS value	-	3150	Α			
Ι _τ	Continuous (direct) on-state current	-	2630	Α			

SURGE RATINGS

Symbol	Parameter	Conditions		Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; $T_{case} = 125^{\circ}C$		kA
l²t	I ² t for fusing	$V_{_{ m R}} = 50\% V_{_{ m RRM}} - 1/4 \text{ sine}$	14.0 x 10 ⁶	A ² s
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	67.0	kA
l²t	I ² t for fusing	V _R = 0	22.4 x 10 ⁶	A ² s

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - junction to case	Double side cooled	dc	-	0.0065	°C/W
		Single side cooled	Anode dc	-	0.013	°C/W
			Cathode dc	-	0.013	°C/W
	Thermal resistance - case to heatsink	Clamping force 83.0kN with mounting compound	Double side	-	0.001	°C/W
R _{th(c-h)}			Single side	-	0.002	°C/W
	Virtual junction temperature	On-state (conducting)		-	135	°C
T _{vj}		Reverse (blocking)		-	125	°C
T _{stg}	Storage temperature range			-55	125	°C
-	Clamping force			74.0	91.0	kN

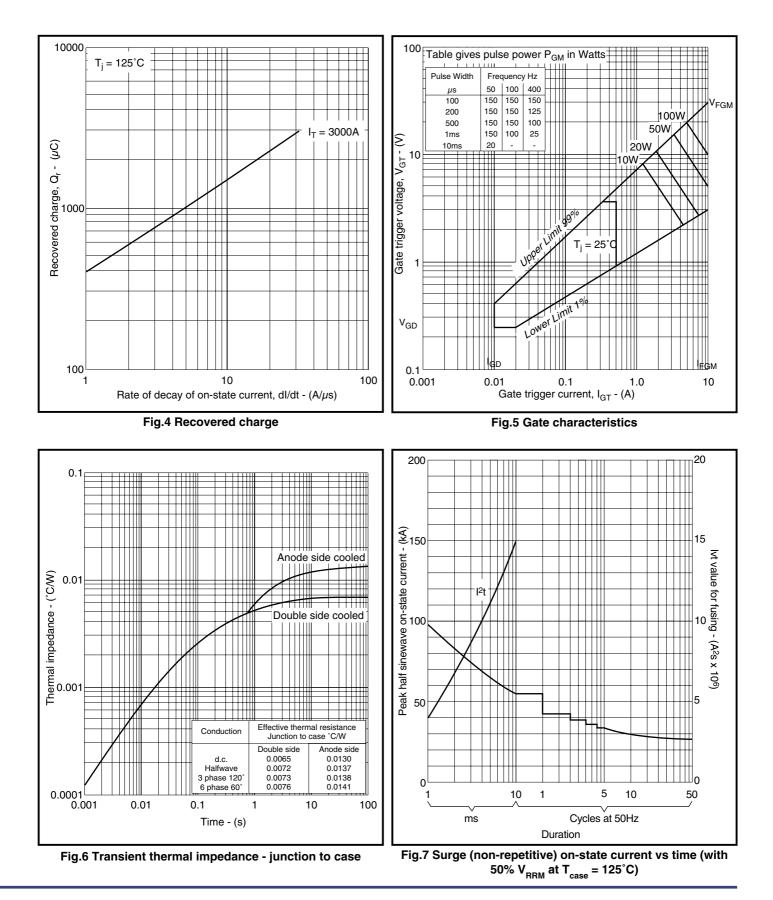
DYNAMIC CHARACTERISTICS

Symbol	Parameter	Conditions		Тур.	Max.	Units
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V _{RRM} /V _{DRM} , T _{case} = 125°C		-	500	mA
dV/dt	Maximum linear rate of rise of off-state voltage	To 67% $V_{DRM} T_j = 125^{\circ}C$, gate	open circuit.	-	1000	V/µs
		Gate source 2A	Repetitive 50Hz	-	200	A/μs
dl/dt	Rate of rise of on-state current		Non-repetitive	-	400	A/μs
V _{T(TO)}	Threshold voltage	At $T_{v_j} = 125^{\circ}C$		-	0.95	v
r _T	On-state slope resistance	At $T_{v_j} = 125^{\circ}C$		-	0.138	mΩ
t _{gd}	Delay time	$V_{_{D}}$ = 67% $V_{_{DRM}}$, Gate source 20V, 10 Ω t _r = 0.5µs, T _j = 25°C		-	2.5	μs
t _q	Turn-off time	$ \begin{array}{l} I_{_{T}} = 5000 \text{A}, t_{_{P}} = 3 \text{ms}, T_{_{I}} = 125 ^{\circ} \text{C}, \\ V_{_{R}} = 200 \text{V}, \text{dI}_{_{RR}} / \text{dt} = -5 \text{A} / \mu \text{s}, \\ V_{_{DR}} = 67 ^{\circ} \text{V}_{_{DRM}}, \text{dV}_{_{DR}} / \text{dt} = 20 \text{V} / \mu \text{s} \text{linear} \end{array} $		-	900	μs
I _L	Latching current	$T_{j} = 25^{\circ}C, V_{D} = 5V$		-	650	mA
I _H	Holding current	$T_j = 25^{\circ}C, R_{g,k} = \infty$		-	220	mA

GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Conditions		Units
V _{GT}	Gate trigger voltage	$V_{\text{DRM}} = 5V, T_{\text{case}} = 25^{\circ}\text{C}$	3.5	V
I _{GT}	Gate trigger current	$V_{\text{DRM}} = 5V, T_{\text{case}} = 25^{\circ}\text{C}$	500	mA
V _{GD}	Gate non-trigger voltage	At $V_{DRM} T_{case} = 125^{\circ}C$	0.25	V
V _{FGM}	Peak forward gate voltage	Anode positive with respect to cathode	30	V
V _{FGN}	Peak forward gate voltage	Anode negative with respect to cathode	0.25	V
V _{RGM}	Peak reverse gate voltage		5	V
I _{FGM}	Peak forward gate current	Anode positive with respect to cathode	30	А
P _{GM}	Peak gate power	See table, gate characteristics curve	150	w
P _{G(AV)}	Mean gate power		10	w

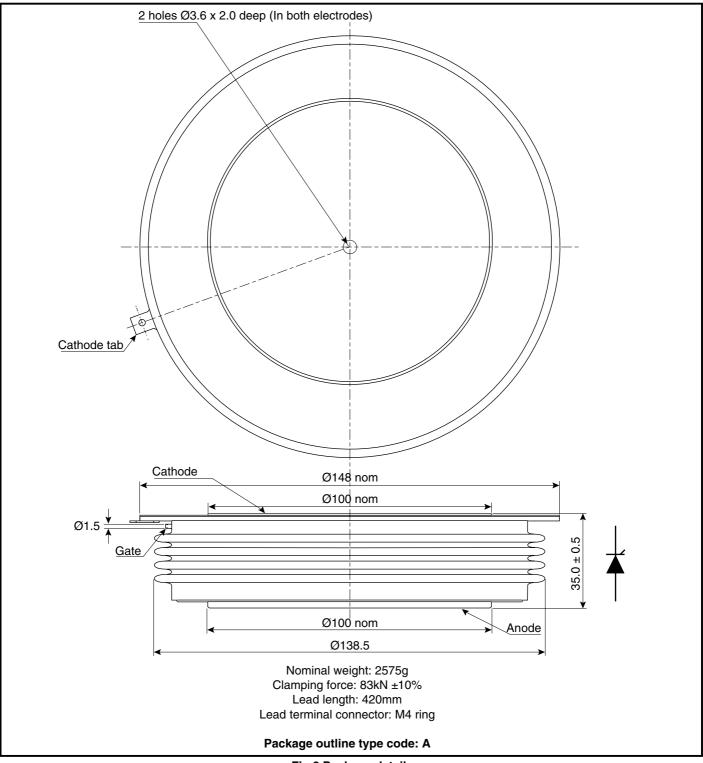
CURVES


Fig.2 Maximum (limit) on-state characteristics

 V_{TM} Equation:-

 $V_{TM} = A + Bln (I_T) + C.I_T + D.\sqrt{I_T}$

Where A = 0.6844942B = -0.0108645C = 7.203702 x 10⁻⁵ D = 0.01015201 these values are valid for $T_i = 125^{\circ}C$ for $I_T 500A$ to 10000A



PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.

http://www.dynexsemi.com

e-mail: power_solutions@dynexsemi.com

HEADQUARTERS OPERATIONS DYNEX SEMICONDUCTOR LTD

Doddington Road, Lincoln. Lincolnshire. LN6 3LF. United Kingdom. Tel: +44-(0)1522-500500 Fax: +44-(0)1522-500550

SALES OFFICES Benelux, Italy & Switzerland: Tel: +33 (0)1 64 66 42 17. Fax: +33 (0)1 64 66 42 19. France: Tel: +33 (0)2 47 55 75 53. Fax: +33 (0)2 47 55 75 59. Germany, Northern Europe, Spain & Rest Of World: Tel: +44 (0)1522 502753 / 502901. Fax: +44 (0)1522 500020

North America: Tel: (440) 259-2060. Fax: (440) 259-2059. Tel: (949) 733-3005. Fax: (949) 733-2986.

These offices are supported by Representatives and Distributors in many countries world-wide. © Dynex Semiconductor 2003 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRODUCED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any product such as that any publication or date used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or date subject to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

Tel: +44 (0)1522 502753 / 502901. Fax: +44 (0)1522 500020

CUSTOMER SERVICE

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.