Panasonic

AC Servo Motor Driver
 MINAS A-series
 Operating Manual

- Thank you very much for your buying Panasonic AC Servo Motor Driver,A-series.
- Before use, read through this manual to ensure proper use. Keep this manual at an easily accessible place so as to be referred anytime as necessary.

Table of Contents

Before Use

Safety Precautions 4 Parts Description 12
Introduction 12

- After Opening the Package Motor 13
- Check the Model of Driver Installation 14
- Check the Model of MotorDriver14
- Check the Combination of Driver and Motor c.................... 10 Motor 16
Preparations and Adjustments
System Configuration and Wiring 18 Trial Operation 50
- System Configuration and Wiring 18
Inspections before Trial Operation 50- General Wiring Diagram
List of Available Components 20
- Main Circuits 22
- CN SIG Connector
peration Without
Motor Load (JOG) 51
Operation With
CN I/F Connected 52
(For Encoder) 24
- CN SER and
CN NET Connectors
(For PC or Controller) 27
- CN I/F Connector
(For Controller) 28
(Circuits Available for Typical Control Modes) 29
(Input and Output Signals, and their Functions) 32
(Interface circuit) 38
Parameter Setting 42
Overview 42
Parameter Groups and Listing 42
Setting the Parameters 47
MODEs Structure 48

Important Information

Protective Functions• 64 Troubleshooting
 Maintenance and Inspections •••••••••••••••• 71 After-Sale Service

Appendixes

Conformance to EC Directives and UL Standards •••......... App. 2 Overview of a Communication ControlList of Connectable Motors $\cdot \cdots \cdot \bullet \cdot \cdots \cdot \cdots$ App. 7 Software PANATERM App. 67
How to UseApp \cdot ••••••••••••••••••••• App. 9 Optional Parts App. 69
"Absolute" Driver App. 20 Recommended Parts App. 84
"Full Close" Driver App. 28 Outer Views and Dimensions App. 86
Details of Parameters App. 30 Properties App. 106
Details of Operation App. 57 Specifications App. 107

Safety Precautions

Observe the following precautions in order to avoid injuries of operators and other persons, and mechanical damages.

The following DANGER and CAUTION symbols are used according to the level of dangers possibly occurring if you fail to observe the instructions or precautions indicated.

DANGER	Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury.
I CAUTION	Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury and physical damage.

The following symbols indicate what you are not allowed to do, or what you must observe.

	This symbol indicates that the operation is prohibited.
This symbol indicates that the operation must be per-	

© $)$ DANGER

An over-current protection, earth leakage breaker, over-temperature protection and emergency stop should be installed.

Failure to observe this instruction could result in electric shocks, injuries and/or fire.

Don't insert your hands in the driver.

Failure to observe this instruction could result in burns and/or electric shocks.

(1) DANGER

Don't touch the rotating part of the motor in motion.

Rotating part
Failure to observe this instruction could result in injuries.

Do not expose the cables to sharp edges, excessive pressing forces, heavy loads or pinching forces.

Failure to observe this
 instruction could result in electric shocks, malfunction and/or damages.

Ground the earth terminal of the driver.

0
Failure to observe this instruction could result in electric shocks.

Don't subject the product to water splash, corrosive gases, flammable gases and combustible things.

Failure to observe this instruction could result in fire.

Perform the transportation, wiring and inspection at least 10 minutes after the power off.

(0)Failure to observe this instruction could result in electric shocks. Install an external emergency stop device so that you can shut off the power in any emergency cases.

Failure to observe this instruction could result in injuries, electric shocks, fire, malfunction and/or mechanical damages.

\triangle Caution

Use the motor and driver in the specified combination.

(1)
Failure to observe this instruction could result in fire.

Execute the trialoperations with the motor fixed but without motor load connected. Connecting a load to the motor is possible only after successful trial operation.

Failure to observe this instruction could result in injuries.

Don't touch the motor, driver or its regenerative discharge resistor, since they become hot.

θFailure to observe this instruction could result in burns.

Don't modify, dismantle or repair the driver.

Failure to observe this instruction could result in electric shocks and/or injuries.

© Caution

Don't hold the cables or motor shaft when transpoting the motor.

Failure to observe this instruction could result in injuries.

Don't block the heat dissipation hole or insert foreign matters in it.

Failure to observe this

$\$$instruction could result in electric shocks, injuries and/or fire.

After recovery from the power failure, the equipment may restart suddenly. Don't approach to the equipment

during power failure.
*Provide appropriate settings as a preparedness against the accidental restart of the machine in order to ensure the safety of personnel.

Observe the voltage specified.

Failure to observe this instruction could result in electric shocks, injuries and/or fire.

This equipment should be treated as an industrial waste when it is disposed of.

When discarding batteries, insulate them with tapes or other similar means and obey the local rules.

Introduction

After Opening the Package

- After Opening the Package
- Make sure that the product is what you have ordered.

Check whether the product has been damaged or not during transportation.
If the product is not correct, or it has been damaged, contact dealer or sales agent.

Check the Model of Driver

Model Designation

Custom specification 2
($\mathrm{A}, \mathrm{B}, \mathrm{C} . .$.
Custom specification 1 (1, 2, 3...)

Rotary encoder (see Table 1-b)

Power supply
1: Single-phase, 100 V
3: Three-phase, 200 V

Rated motor output (see
Table 1-a)

Check the Model of Motor

Name plate

Model Designation

Table 1-a Rated Motor Output

Symbol	Rated output	Symbol	Rated output
3 A	30 W	10	1 kW
5 A	50 W	12	1.2 kW
01	100 W	15	1.5 kW
02	200 W	20	2 kW
03	300 W	25	2.5 kW
04	400 W	30	3 kW
05	500 W	35	3.5 kW
06	600 W	40	4 kW
08	750 W	45	4.5 kW
09	900 W	50	5 kW

Introduction

Table 1-c Motor Structure

Oil seal	Brake	Shaft		
		Straight	Key way	D-cut
None	None	A	E	N
	Yes	B	F	P
None	None	C	G	Q
	Yes	D		R

"D-cut" shafts are available for MSMA30W to 750W and MQMA100W to 400W.

Check the Combination of Driver and Motor

The driver has been designed for use in combination with the specified motors only. Check the specifications (Series symbol, output rating, voltage rating and encoder type) of the motor you want to use.

With the incremental type encoder: 2500P/r

Amplifier	Amplifier type	Motor					
		Series symbol	Motor type	Voltage	Output rating	Revolution rating	Encoder type
MSDA3A1A1A	Type1	$\begin{aligned} & \text { MSMA } \\ & \text { (Small) } \end{aligned}$	MSMA3AZA**	100 V	30W	3000rmin	Incremental 2500P/r, 11 wires
MSDA5A1A1A			MSMA5AZA**		50W		
MSDA011A1A			MSMA011A**		100W		
MSDA021A1A	Type2		MSMA021***		200W		
MSDA041A1A	Type2	Low inertia	MSMA041***		400W		
MSDA3A3A1A	Type1		MSMA3AZA**	200 V	30W		
MSDA5A3A1A			MSMA5AZA**		50W		
MSDA013A1A			MSMA012A**		100W		
MSDA023A1A			MSMA022A**		200W		
MSDA043A1A	Type2		MSMA042A**		400W		
MSDA083A1A	Type2		MSMA082A**		750W		
MSDA103A1A	Type4-2	MSMA (Large)	MSMA102A**	200 V	1.0kW	3000rmin	Incremental 2500P/r, 11 wires
MSDA153A1A			MSMA152A**		1.5kW		
MSDA203A1A	Type4-3		MSMA202A**		2.0kW		
MSDA253A1A			MSMA252A**		2.5 kW		
MSDA303A1A	Type5	Low inertia	MSMA302A**		3.0kW		
MSDA353A1A			MSMA352A**		3.5 kW		
MSDA403A1A			MSMA402A**		4.0 kW		
MSDA453A1A			MSMA452A**		4.5 kW		
MSDA503A1A			MSMA502A**		5.0kW		

With the absolute/incremental type encoder, 17 bits

Amplifier	Amplifier type	Motor					
		Series symbol	Motor type	Voltage	Output rating	Revolution rating	Encoder type
MSDA3A1D1A	Type1	$\begin{aligned} & \hline \text { MSMA } \\ & \text { (Small) } \end{aligned}$	MSMA3AZC**	100V	30W	3000rmin	With the absolute/ incremental type encoder, 17 bits
MSDA5A1D1A			MSMA5AZC**		50W		
MSDA011D1A		Low inertia	MSMA011C**		100W		
MSDA021D1A	Type2		MSMA021C**		200W		
MSDA041D1A	Type2		MSMA041C**		400W		
MSDA3A3D1A	Type1		MSMA3AZC**	200 V	30W		
MSDA5A3D1A			MSMA5AZC**		50W		
MSDA013D1A			MSMA012C**		100W		
MSDA023D1A			MSMA022C**		200W		
MSDA043D1A	Type2		MSMA042C**		400W		
MSDA083D1A	Type2		MSMA082C**		750W		Absolute/ incremental type, 17 bits, 7 wires See Note 2)
MSDA103D1A	Type4-2	$\begin{aligned} & \text { MSMA } \\ & \text { (Large) } \end{aligned}$	MSMA102D**	200V	1.0kW	3000rmin	
MSDA153D1A			MSMA152D**		1.5 kW		
MSDA203D1A	Type4-3		MSMA202D**		2.0 kW		
MSDA253D1A			MSMA252D**		2.5 kW		
MSDA303D1A	Type5	Low inertia	MSMA302D**		3.0 kW		
MSDA353D1A			MSMA352D**		3.5 kW		
MSDA403D1A			MSMA402D**		4.0 kW		
MSDA453D1A			MSMA452D**		4.5 kW		
MSDA503D1A			MSMA502D**		5.0 kW		

< Notes >

1. The above table shows the possible combinations between the driver (MSDA) and lowinertia type motors (MSMA). For middle-inertia (MDMA), high-inertia (MHMA), flat (MFMA), flat \& small (MQMA) and middle-inertia (MGMA)
motors, see the Appendix.
2. The default is for "incremental" spec.

When you use the driver with the "absolute" spec, you need to;

1) Change the value of the parameter "Absolute encoder set-up (PrOB)" from 1 (factory set default) to 0 .
2) Install the battery (see Appendix "Optional Parts" for the batteries).
3. The absolute/incremental spec driver can be used as "Full Closed Driver".

Parts Description

Driver

ÂmTerminal block cover openedÅn ÂmTerminal block cover closedÂn

Example: MSDA023A1A (200V 200W: Type 1)

< Notes >

For detailed information for each of driver types, see the drawings in the Appendix.
Safe separation are provided between power board and control circuit.

Motor

Example: Small Low-Inertia Motor (MSMA Series, 750W and below)
< Notes >
For detailed information for each of motor types, see the drawings in the Appendix.

Installation

The driver and motor should be properly installed to avoid failures, mechanical damages and injuries.

Amplifier

Location

A Indoors, where the driver is not subjected to rain water and direct sun beams. Note that the driver is not a waterproof structure.
B A void the place where the driver is subjected to corrosive gases, flammable gases, grinding liquids, oil mists, iron powders and cutting particles.
C Place in a well-ventilated, and humid- and dust-free space.
D Place in a vibration-free space.

Environmental Conditions

Item	Conditions
Ambient temperature	0 to 55Ãã (free from freezing)
Ambient humidity	Not greater than 90% RH (free from condensation)
Storage temperature	-20 to $80 \AA$ ÃC (free from condensation)
Storage humidity	Not greater than 90% RH (free from condensation)
Vibration	Not greater than $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{G})$ at 10 to 60 Hz
Altitude	Not greater than 1000 m

How to Install

A his is a rack-mount type.
Place the driver vertically. Allow enough space surrounding for ventilation.
Type 3 and smaller (up to 750W): Back panel mount type (projected, use BracketA)
Type 4 and larger (1 kW and larger): Front panel mount type (recessed, use Bracket B)
(Types 1 to 3)

MSDA 750W and smaller

(Types 4-2-4-3,Type 5)

MSDA 1kW
and larger

B If you want to change the mounting configuration, use the optional bracket (see Appendix "Optional Parts").
C Fit to noncombustibles such as metal.

Mounting Direction and Space Requirements

- Allow enough space to ensure enough cooling.
- Install fans to provide a uniform distribution of temperature in the control box.
- Observe the environmental requirements for the control box, mentioned in the previous page.

< Notes >

Conformance to UL Standard

Observing the following instruction makes this driver a UL508C standard authorized and EN50178 approved product.
1 Instructions in wiring
1)Use copper conductor wire with the rated temperature of $60 \AA \AA$ é or higher for wiring to terminal blocks or grounding terminals.
2) Be sure to connect the protective grounding of the control panel(PE) to a protective grounding terminal (Θ)) of the driver to prevent electric shock. Do not double-connect to the protective grounding terminals (Θ).Two protective grounding terminals are provided.
2 Overload protection level
The overload protective function of the driver is activated when the effective current of the driver is 115% or more of the rated current. Make sure that the effective current of the driver dose not exceed the rated current. The maximum allowable instantaneous current of the driver is the current set by the torque limit setting(Pr06).
3 Installation environment
Use the driver in environment with the pollution level 2 higher provided in IEC60664-1.For example, installing in a control panel of IP54 makes the pollution level of the environment 2. To achieve IP54,the structure shall not allow water,oil,carbon or dust to enter.

Installation

Motor

Location

A Indoors, where the driver is not subjected to rain water and direct sun beams.
B Avoid the place where the driver is subjected to corrosive gases, flammable gases, grinding liquids, oil mists, iron powders and cutting particles.
C Place in a well-ventilated, and humid- and dust-free space.
D Easy maintenance, inspections and cleaning is also important.

Environmental Conditions

Item	Conditions
Ambient temperature	0 to $40^{\circ} \mathrm{C}$ (free from freezing)
Ambient humidity	Not greater than 90% RH (free from condensation)
Storage temperature	-20 to $80^{\circ} \mathrm{C}$ (free from condensation)
Storage humidity	Not greater than 90% RH (free from condensation)
Vibration	Not greater than 49m/s2 (5G) in operation; not greater than 24.5m/s2 (2.5G) at rest

How to Install

The motor can be installed either vertically or horizontally. Observe the following notes.

A Horizontal mounting

- Place the motor with the cable outlet facing down to prevent the entry of oil and water.

B Vertical mounting

- If the motor is coupled with a reduction gear, make sure that the oil in the reduction gear does not enter into the motor.

Oil and Water Protections

A This motor(IP65 rating) can be used where it is subjected to water and/or oil drops, but is not water or oilproof. Therefore, the motors should not be placed or used in such environment.
B If the motor is coupled with a reduction gear, use the motor should with oil seals to prevent the reduction gear oil from entering into the motor.

C Don't use the motor with the cables being immersed in oil or water.

Cable: Stress Relieving

A Make sure that the cables are not subjected to moments or vertical loads due to external bending forces or self-weight at the cable outlets or connections.
B In case the motor is movable, secure the cable (proper one supplied together with the motor) to a stationery part (e.g. floor), and it should be extended with an additional cable which should be housed in a cable bearer so that bending stresses can be minimized.
C Make the bending radius of cables as large as possible.

Permissible Shaft Load

A Make sure that both of radial and thrust load to be applied to the motor shaft during installation and running, becomes within the specified value of each model.
B Pay extra attention at installing a rigid coupling(especially an excess bending load which may cause the damages and/or wear of the shaft and bearings.
C Flexible coupling is recommended in order to keep the radial load smaller than the permissible value, which is designed exclusively for servo motors with high mechanical stiffness.

D For the permissible shaft load, see "Allowable Shaft Loads Listing" in Appendix.

Installation Notes

A Don't hit the shaft with a hammer directly while attaching/detaching the coupling to the motor shaft.(otherwise the encoder at the opposite end of the shaft will be damaged).

B Try perfect alignment between shafts (misalignment may cause vibration, and damages of the bearings).

System Configuration and Wiring

General Wiring Diagram

Main Circuits

Non-Fuse Breaker (NFB)
Used to protect the power lines: overcurrent will shutoff the circuit.

Noise Filter (NF)
Prevents the external noise from the power line, and reduces the effect of the noises generated by the servo motor.

Magnetic Contactor (MC)
Turns on/off the main power of the servo motor.

Used together with a surge absorber.

Reactor (L)

Reduces the harmonic in the main power.

Motor cable:

- Without a brake
- With a brake

Terminals P, B1 and B2

- Normally keep B1 and B2 shorted.
- If the capacity of the internal regenerative discharge resistor is not enough, disconnect between B1 and B2, and connect an external regenerative discharge resistor to P and B 2 terminals.
\qquad

System Configuration and Wiring

List of Available Components

- When these wires are used, wire lenght between circuit breaker and driver should be less than 3 m .
- Chose suitable wire size for Earthing Cnductor which has some dimension as wire for power input and output.

Amplifier			Required Power (at the rated load)	Non-fuse breaker (rated current)	Noise filter	Magnetic contactor (contacts)	Main circuit wire dancere(L1, L2, L3, $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and E)	ortol punemiediam- eter (r and $t)$	
Series	Voltage	Output							
MSDA MDDA MFDA	200 V	2.5 kW	approx. 3.8kVA	$\begin{aligned} & \text { BBP3-40 } \\ & (40 A) \end{aligned}$	LF-340	$\begin{aligned} & \mathrm{BM} \text { F } 6352 \mathrm{~N} \\ & (3 \mathrm{P}+2 \mathrm{a} 2 \mathrm{~b}) \end{aligned}$	$2.0 \mathrm{~mm}^{2}$ A.W. G. 14	$0.75 \mathrm{~mm}^{2}$ A. W. G. 18	M5
$\begin{array}{\|l\|} \hline \text { MSDA } \\ \text { MDDA } \\ \text { MHDA } \\ \hline \end{array}$		3kW	approx. 4.5VVA				$\begin{aligned} & \text { 3.5mm² } \\ & \text { A.W. G. } 11 \end{aligned}$		
MGDA			approx. 5.3kVA						
$\begin{aligned} & \text { MSDA } \\ & \text { MDDA } \\ & \text { MFDA } \end{aligned}$		3.5 kW							
$\begin{array}{\|l\|} \hline \text { MSDA } \\ \text { MDDA } \\ \text { MHDA } \\ \hline \end{array}$		4.0kW	approx. 6.0kVA	$\begin{aligned} & \text { BBP3-50 } \\ & (50 \mathrm{~A}) \end{aligned}$	LF-350	$\begin{aligned} & \text { BM F } 6502 N \\ & (3 P+2 a 2 b) \end{aligned}$			
$\begin{aligned} & \text { MSDA } \\ & \text { MDDA } \\ & \text { MFDA } \\ & \hline \end{aligned}$		4.5 kW	approx. 6.8kVA						
MGDA			approx. 7.5kVA		LF-360	BMF6652N			
$\begin{aligned} & \text { MSDA } \\ & \text { MDDA } \\ & \text { MHDA } \end{aligned}$		5kW				(3P+2a2b)			

- The model numbers of non-fuse breakers and magnetic contactors shown in the above list are manufactured by Matsushita Electric Works, Ltd.
- The model numbers of noise filters shown in the above list are manufactured by Tokin Corporation.

<Notes>

- When you use multiple drivers, determine the capacity of non-fuse breaker and noise filter according to the "total" required power capacity (net value determined by the actual loads) of the drivers.
- Terminal block and earth terminals

Wires should be copper conductors of a temperature rating of $60^{\circ} \mathrm{C}$ or above.
Screw tightening torque of larger than the allowable value ($1.2 \mathrm{~N}-\mathrm{m}$ for M 4 and $2.0 \mathrm{~N}-\mathrm{m}$ for M5) may damage the terminal.

- Earth wire diameter should be 2.0 mm 2 (AWG14) or larger for 30 W to 2.5 kW , and 3.5 mm 2 (AWG11) or larger for 3 to 5 kW .

System Configuration and Wiring

Main Circuits

Don't turn on the main power until the wiring is completed, to avoid electric shocks.

Wiring Instructions

A Detach the terminal block by removing the cover securing screw.
B Make necessary connections.
Use clamp terminal connectors with an insulation cover. For wire diameter and connector sizes, see List of Available Components (page 20).
C Attach the terminal block cover and tighten the cover securing screw.

Wiring Diagrams

For 3-phase 200VAC

For 1-phase 100V

- Cannon Plug Type Motor Connectorss

Motor			Cannon plug's pin no.					
Brake	Series symbol	Output rating	U	V	W	E	Brake 1	Brake 2
Not fitted	MSMA	1 ~ 2.5 kW	A	B	C	D	-	-
	MDMA	$0.75 \sim 2.5 \mathrm{~kW}$						
	MGMA	$0.3 \sim 0.9 \mathrm{~kW}$						
	MHMA	$0.5 \sim 1.5 \mathrm{~kW}$						
	MSMA	$3 \sim 5 \mathrm{~kW}$	A	B	C	D	-	-
	MDMA	$3 \sim 5 \mathrm{~kW}$						
	MGMA	$1.2 \sim 4.5 \mathrm{~kW}$						
	MHMA	$2 \sim 5 \mathrm{~kW}$						
	MFMA	$0.75 \sim 1.5 \mathrm{~kW}$	F	I	B	D, E	-	-
	MFMA	$2.5 \sim 4.5 \mathrm{~kW}$	D	E	F	G, H	-	-
Fitted	MSMA	$1 \sim 2.5 \mathrm{~kW}$	F	1	B	DE	G	H
	MDMA	$0.75 \sim 2.5 \mathrm{~kW}$						
	MGMA	$0.3 \sim 0.9 \mathrm{~kW}$						
	MHMA	$0.5 \sim 1.5 \mathrm{~kW}$						
	MFMA	$0.4 \sim 1.5 \mathrm{~kW}$						
	MSMA	3 ~ 5kW	D	E	F	G	A	B
	MDMA	3 $\sim 5 \mathrm{~kW}$						
	MGMA	$1.2 \sim 4.5 \mathrm{~kW}$						
	MHMA	$2 \sim 5 \mathrm{~kW}$						
	MFMA	$2.5 \sim 4.5 \mathrm{~kW}$						

<Note> See "Cannon Plug (Optional)" in Appendix.

System configutration and wiring

CN SIG Connector (For Encoder)

Wiring Instructions

- The cable length between the driver and motor should be max. 20 m . If you use a longer cable, contact the dealer or sales agent.
- Separate these wiring min. 30 cm from the main circuit wires. Don't lay these wires in the same duct of the mains or bundle with them.

Two types of encoder wire exit: One is "Lead wire + connector" and other is Cannon plug type(depending on the motor model).

- When you prepare your own connecting cables see the "Optional Parts" for connectors, and

1) Follow the wiring diagram and use the
2) Wire material: 0.18 mm 2 (AWG24) or above, shielded twist-paired wire with an enough bending durability,

3) Signal/power paired wires should be of a twist-paired type.
4) Shield:

- The shield at the driver side should be connected to Pin 20 (FG) of CN SIG Connector.
- The shield at the motor side should be connected to:
Pin 3 (for AMP connector of 9 pins type)
Pin 15 (for AMP connector of 15 pins type)
J-pin (for canon plug connector)

5) If the cable is longer than 10 m , the encoder power line (+5 V and 0 V) should be dual per the figure shown left.
6) Other terminals should be left unconnected.

Wiring Diagrams (with a 2500P/r incremental type encoder ([A]*1)

- MSMA 750W or smaller, and MQMA

- MSMA 1kW or larger, MDMA, MFMA, MHMA and MGMA

* 1 For encoder symbols, see Table 1-b in page 9.
$\forall)$ shows a pair of twisted wires.

System configutration and wiring

Wiring Diagram
Driver with a 17 bits absolute encoder ([C]*1)
Driver with a 17 bits absolute/incremental encoder ([D]*1)

- MSMA 1 kW or larger, MDMA, MFMA, MHMA, MGMA

*2
If you use an absolute encoder ([C]) or absolute/incremental encoder ([D]) as an incremental encoder, you don't need to connect the back-up battery.
θ shows a pair of twisted wires.

CN SER and CN NET Connectors (For PC or Controller)

- These connectors can be used as either RS232C or RS485. There are three ways for using these connectors as shown below.

For RS232C communication only

Connect the personal computer and the driver 1:1 through RS-232C,The PANATERM using for communication control softwere. The PANATERM using this function the monitor of the personal computre settings wave graphics.

For both RS232C and RS485 communication

You connect the host and the 1st driver with RS232C, and connect the drivers in series with RS485.

For RS485 communication only
Connect all the drivers and a host with RS485.

- Rotary switch (ID): select a position 1 to F.
< NOTE >
- Max. 15 drivers can be connected to a host.
- For detailed information, see Communication Specifications.

List of Available Components

CN I/F Connector (For Controller)

Wiring Instructions

- Displace the peripheral devices such as the controller max. 3 m away from the driver.
- Separate these wiring min. 30 cm from the main circuit wires. Don't lay these wires in the same duct of the mains or bundle with them.

The control power (VDC) between COM+ and COMshould be supplied by the customer (recommended voltage: +12VDC to +24VDC).

Control signal output terminals can accept max. 24 V or 50 mA : Don't apply larger voltage or current exceeding these limits.

If you directly activate a relay using the control signal, install a diode in parallel to the relay as shown in the left figure. Without a diode or with it but placed in the opposite direction, the driver will be damaged.

Use a shielded twist-paired type for the wiring of pulse input, encoder signal output or analog command input.

The Frame Ground (FG) is connected to an earth terminal in the driver.

- CN I/F Connector Specifications

Receptacle on the driver side	Connector to controller side		Manufacturer
	Part description	Part No.	
10250-52A2JL	Solder type plug	$10150-3000 \mathrm{VE}$	by Sumitomo 3M
	Shell	$10350-52 \mathrm{~A} 0-008$	

- The CN I/F pins assignment is shown in "Optional Parts" in Appendix.

Circuits Available for Typical Control Modes

- CN I/F Wiring for Torque Control

System configutration and wiring

CN I/F Connector

Input Signals (Common) and their Functions

Signal	Pin No.	Symbol	Function		I/F circuit
Control signal power (+)	7	COM +	- Connect to (+) of an external power supply(12VDC to 24VDC).		
Control signal power (-)	41	COM -	- Connect to (-) of an external power supply(12VDC to 24VDC). - The required capacity depends on the I/O circuit configuration. 0.5 A or larger is recommended.		
Servo-ON	29 SRV-ON - When this signal is connected to COM-, the dynamic brake will be re<Notes> leased and the driver is enabled. (Servo-ON). 1. This signal becomes effective about two seconds after power on (see the Timing chart). 2. Don't use this Servo-ON or Servo-OFF signal to turn on or off the motor. - Allow at least 50 ms delay after the driver is enabled before any command input is entered. - By opening the connection to COM- , the driver will be disabled(Servo-OFF) and the current flow to the motor will be inhibited. - Operation of the dynamic brake and clearing action of the position error counter can be selected using Pr69 (Sequence under Servo-OFF).				$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
Control mode switching	32	C-MODE	ÅEWhen Pr02 (Control Mode Selection) $=3,4$ or 5 , the control mode is selected per the table below.		$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
	Pr02 value		$\begin{aligned} & \text { COM- open } \\ & (1 \mathrm{st}) \end{aligned}$	COM- closed (2nd)	
	3				
	4		Position control mode	Velocity control mode	
		5	Position control mode	Torque control mode	
			Velocity control mode	Torque control mode	
CW overtravel inhibit	8	CWL	- If COM- is opened when the movable part of the machine has moved to CW exceeding the limit, the motor does not generate torque.		$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
CCW overtravel inhibit	9	CCWL	- If COM- is opened when the movable part of the machine has moved CCW exceeding the limit, the motor does not generate torque. - When Pr04 (Overtravel Limit Input Disabled) $=1, \mathrm{CW}$ and CCW inputs are disabled. - The dynamic brake can be made operable during CW/CCW inputs valid. Use Pr66 (Dynamic Brake Inactivation at Overrtravel Limit) to make the dynamic brake operable.		SI page 38

Signal	Pin No.	Symbol		Function	I/F circuit
Counter clear	30	CL	The function differs depending on the control mode.		$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
	Position control		- Clears the position error counter. Connect to COMto clear the counter. - Use Pr4D to select the clear mode ($0=$ Level, $1=$ Edge)		
	Velocity control		- The internal speed selection 2 (input) is valid. Use this together with the INH signal (input). - For details, see Pr05 (Velocity Set-Up Switching) description.		
	Torque control -		- Invalid		
Command pulse input inhibit	33	INH	The function differs depending on the control mode.		$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
	Position control		- The command pulse input inhibit signal (input) is selected. - This signal can be made disabled using Pr43.		
			Pr43 value	Meaning	
			1	The INH signal (input) is disabled.	
			0	ith COM- closed, the pulse command signal PULSE SIGN) is enabled. ith COM- open, the pulse command signal PULSE SIGN) is inhibited.	
	Velocity control		- he internal command velocity selection 1 (input) is valid. Use this together with the CL signal (input). - For details, see Pr05 (Speed Set-Up Switching) description.		
	Torque control -		- Invalid		
Speed zero clamp	26	ZEROSPD	- With COM- open, the velocity command is considered zero. - This input can be made disabled using Pr06.		$\begin{gathered} \hline \mathrm{SI} \\ \text { page } 38 \end{gathered}$
			Pr43 value	Meaning	
			0	ZEROSPD is disabled.	
				ZEROSPD is enabled	

System configutration and wiring

Signal	Pin No.	Symbol		Function	I/F circuit
Gain switching	27	GAIN	- The function depends on the value of Pr30.		$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
	Pr30 value	Connection to COM-		Function	
	0	Open		Velocity loop: PI operation	
		Close		Velocity loop: P operation	
	1	Open		- 1st gain selected (Pr10, 11, 12, 13 and 14)	
		Close		- 2nd gain selected (Pr18, 19, 1A, 1B, 1C)	
		- No.2 Gain change Funcutions See Protective Adjustments on page 62.			
Alarm clear	31	A-CLR		he COM- connection is kept closed for more than 20 ms , the alarm status will be cleared. details, see Protective Functions on page	$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$

Input Signals (Position Control) and their Functions

Signal	Pin No.	Symbol	Function	$\begin{array}{\|c\|} \hline \text { I/F } \\ \text { circuit } \end{array}$
Command pulse	3	PULS1	- This is the input terminal for command pulses. The driver receives this signal by a high-speed photo coupler. - The input impedance of PULSE and SIGN signals is 220Éd. - Command pulses can be input in three different ways. Use Pr42 to select one of the following. 1) Quadrature (A and B) input 2) CW (PULSE)/CCW (SIGN) pulse input 3) Command pulse (PULS)/Sign (SIGN) input	$\begin{gathered} \mathrm{PI} \\ \text { page } 38 \end{gathered}$
	4	PULS2		
Command sign	5	SIGN1		
	6	SIGN2		
Command pulse scalar switch	28	DIV	- With COM- closed, the numerator of the command scalar is changed from the value stored in Pr46 (Numerator of 1st Command Scalar) to the value stored in Pr47 (Numerator of 2nd Command Scalar). < Note > Don't enter command pulses 10 ms after or before switching.	$\begin{gathered} \mathrm{SI} \\ \text { page } 38 \end{gathered}$
Battery +	44	BATT +	- Connect a backup battery for absolute encoder	-
Battery -	45	BATT -	(pole-sensitive!). - If the battery is connected directly to the driver, it is not necessary to connect a battery to this terminal.	

Input Signals (Velocity and Torque Control) and their Functions

Signal	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Function	$\begin{gathered} 1 / F \\ \text { circuit } \end{gathered}$
Velocity (torque) command	14 (15)	SPR/ TRQR (GND)	<At velocity control > - This becomes velocity command input (analogue) - You can set-up the relationship between the command voltage level and the motor speed, with Pr50 (Velocity Command Input Gain) . - Use Pr51 to inverse the polarity of the command input. < At torque control >* - This becomes torque command input (analogue) - You can set-up the relationship between the command voltage level and the motor torque, with Pr5C (Torque Command Input Gain). - Use Pr5D to inverse the polarity of input signals. - Use Pr56 (4th Speed Set-up) to adjust the speed limit in torque control. < Note > SPR/TRQR are invalid in position control mode.	$\begin{gathered} \hline \mathrm{Al} \\ \text { page } 39 \end{gathered}$
CCW torque limit	16 (17)	CCWTL/ TRQR* (GND)	<At velocity and position control > - You can limit the motor torque in the CCW direction by entering positive voltage (0 to +10 V) to CCWTL. - You can limit the motor torque in the CW direction by entering negative voltage (-10 to 0V) to CWTL. - The torque limit value is proportional to the voltage with a factor of $100 \% / 3 \mathrm{~V}$. - CCWTL and CWTL are valid when Pr03 (Torque Limit Input Inhibit) $=0$. They are invalid when Pr03 $=1$.	$\begin{gathered} \mathrm{AI} \\ \text { page } 39 \end{gathered}$
CW torque limit	18 (17)	CWTL (GND)	<At torque control >* - Both of CCWTL and CWTL are invalid. - Use the 4th. speed set-up(Pr56) to limit the speed.	

[^0]
System configutration and wiring

Output Signals (Common) and their Functions

Signal	Pin No.	Symbol		Function	I/F circuit
Servo alarm	$\begin{aligned} & 37 \\ & 36 \\ & \hline \end{aligned}$	ALM + ALM -		- This output(transistor) turns OFF, when the driver detects and error(trip).	$\begin{aligned} & \text { SO1 } \\ & \text { page } 40 \end{aligned}$
Servo-ready	$\begin{aligned} & 35 \\ & 34 \end{aligned}$	$\begin{array}{l\|} \hline \text { S-RDY + } \\ \text { S-RDY - } \end{array}$		- This output(transistor) turns ON , when the main power is on(for both the driver and the motor) and no alarm is active.	$\begin{aligned} & \mathrm{SO} 1 \\ & \text { page } 40 \end{aligned}$
Mechanical brake release	$\begin{aligned} & 11 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { BRK-OFF + } \\ & \text { BRK-OFF - } \\ & \hline \end{aligned}$		- This output(transistor) turns ON , when the brake is released.	$\begin{aligned} & \text { SO1 } \\ & \text { page } 40 \end{aligned}$
Zero speed detection	12	ZSP		- Signal which is selected at PrOA (ZSP Output Selection) will be turned on.s	$\begin{aligned} & \hline \mathrm{SO2} \\ & \text { page } 40 \end{aligned}$
	Pr0A value		Signal symbol	Function	
	0		TLC	Output(transistor) turns ON during the In-toque limiting.	
	1		ZSP	Output(transistor) turns ON when the motor speed becomes lower than that of the preset speed with Pr61 (Zero speed).	
	2		WARN ALL	Output(transistor) turns ON when either one of over-regeneration, overload or battery warning is activated.	
	3		WARN REG	Output(transistor) turns ON when the over-regeneration (more than 85\% of permissible power of the internal regenerative discharge resistor) warning is activated.	
	4		WARN OL	Output(transistor) turns ON when the overload (the effective torque is more than 85% of the overload trip level) warning is activated.	
		5	WARN BATT	Output(transistor) turns ON when the battery (the voltage of the backup battery becomes lower than approx. 3.2V at the encoder side) warning is activated.	
Torque in-limit	40	TLC		- Signal which is selected by Pr09 (TLC Output Selection) will be turned ON. - See the above ZSP signal for the set-up of Pr09 and functions.	$\begin{aligned} & \mathrm{SO} 2 \\ & \text { page } 40 \end{aligned}$
	$\begin{aligned} & 39 \\ & 38 \end{aligned}$	COIN + COIN -			$\begin{aligned} & \text { SO1 } \\ & \text { page } 40 \end{aligned}$
In-position/Atspeed	Control mode			Function	
	Posi		Output(transistor) turns ON when the position error is below the preset value by Pr60 (In-Position Range).		
	Velocity and torque		Output(transistor) turns ON when the motor speed reaches the preset value by Pr62 (At-Speed).		

Signal	Pin No.	Symbol	Function	I/F circuit
A-phase output	21	OA +	- Provides differential outputs of the encoder signals (A, B and Z phases) that come from the divider (equivalent to RS422 signals). - The logical relation between A and B phases can be selected by Pr45 (Output Pulse Logic Inversion). - Not insulated	$\begin{aligned} & \hline \text { PO1 } \\ & \text { page } 40 \end{aligned}$
	22	OA -		
B-phase output	48	OB +		
	49	OB -		
Z-phase output	23	OZ +		
	24	OZ -		
Z-phase output	19	CZ	- Z-phase signal output in an open collector (not insulated)	$\begin{aligned} & \mathrm{PO} 2 \\ & \text { page } 41 \end{aligned}$
Velocity monitor output	43 (17)	SP (GND)	- Outputs the motor speed, or voltage in proportion to the commanded speed with polarity. + : CCW rotation - : CW rotation - Use Pr07 (Velocity Monitor Selection) to switch between actual and commanded speed, and to define the relation between speed and output voltage.	AO page 41
Torque monitor output	42 (17)	IM (GND)	- Outputs the output torque, or voltage in proportion to the position error with polarity. + : Fgenerating CCW-torque - : Fgenerating CW-torque - Use Pr08 (Torque Monitor Selection) to switch between torque and positional error, and to define the relation between torque/ positional error and output voltage.	$\begin{gathered} \text { AO } \\ \text { page } 41 \end{gathered}$

Output Signals (Others) and their Functions

Signal	Pin No.	Symbol	Function	I/F circuit
Signal ground	13	GND	- Signal ground in the driver	-
	15		- Internally isolated from the control power (COM -).	
	17			
	25		- Internally connected to the earth terminal.	
Frame ground	50	FG	- No connections should be made.	-
(Not in use)	1	-		
	2			-
	20			
	46			
	47			

System configutration and wiring

CN I/F Connector

Interface Circuit (Input Circuit)

SI SI Connecting to

 se quence input signals- Connect to a contact of switch and relay, or a transistor of an open collector output.
- Use a switch or relay for micro current so that insufficient contact can be avoided.
- Lower limit of the power supply (12 to 24 V) should not be less than 11.4 V in order to secure the appropriate level of primary current of the photo cou-
 pler.

PI PI Command pulse input circuit

1) Line Driver I/F

- This is a good signal transmission method that is less sensitive to noises. We recommend you to use this to maintain the reliability of signals.

2) Open Collector I/F

- This uses an external control power supply(VDC).
- This requires a current-limiting resistor corresponding to the capacity of the VDC value.

VDC	R value
12 V	$1 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$
24 V	$2 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$

$\frac{\mathrm{VDC}-1.5}{\mathrm{R}+220}=10 \mathrm{~mA}$
ϑ
shows a pair of twisted wires.

AI AI Analogue Commend Input

- There are three analogue command inputs of SPR/RTQR (14 pins), CCWTL (16 pins) and CWTL (18 pins).
- The maximum permissible input voltage is $\pm 0 \mathrm{~V}$. For the input impedance of these inputs, see the right figure.
- If you make a simplified circuit comprising a variable resistor (VR) and resistor (R), refer to the right figure.

When the variable range of each input is -10 V to +10 V , the VR should be a B type resistor of $2 \mathrm{k} \Omega$ (min. $1 / 2 \mathrm{~W}$). The R should be 200 (min.1/2W).

- The A/D converters for these inputs should have the following resolution.

1) ADC 1 (SPR and TRQR) : 16 bits (including one bit for sign)
2) ADC2 (CCWTL and CWTL) : 10 bits (including one bit for sign

System Confguration and Wiring

Interface Circuit (Output Circuit)

SO1 SO2 Sequence output circuit

- This comprises a Darlington amplifier with an open collector. This is connected to a relay or photo coupler.
- here exists a collector-to-emitter oltage VCE(SAT) of approx. 1V at transistor ON, because of Darlington connection of the out put transistor. Note that normal TTLIC can't be directly connected since this does not meet VIL re quirement.
- This circuit has an independent emitter connection, or a emitter connection that is commonly used as the minus (-) terminal (COM-) of the control power.
- The maximum rating is $30 \mathrm{~V}, 50 \mathrm{~mA}$.

Calculate the value of R using the formula below so as the primary current of the photo coupler become approx. 10 mA .

$$
R=\frac{V D C-2.5}{1} \quad[K \Omega]
$$

PO Line Driver (Differential Output) Output

- Provides differential outputs of encoder signals (A, B and Z phases) that come from the scalar.
- Receive these signals with a line receivers. In this case, install a resistor of approx. 330Ω between the inputs.
- These outputs are non-insulated signals. ϑ shows a pair of twisted wires.

PO2 Open Collector Output

- Outputs Z-phase signals among those from the encoder. The outputs are noninsulated.
- Receive these signal with high-speed photo coupler at controller side, since these Z-phase signal width is normally narrow.
$母$ shows a pair of twisted wires.

AO Analogue Monitor Output

- This output is the velocity monitor signal (SP) or torque monitor signal (IM).
- The signal range is approx. 0 to $\pm 9 \mathrm{~V}$.
- The output impedance is $1 \mathrm{k} \Omega$. Pay attention to the input impedance of your measuring instruments and external circuits connected.
<Resolution>

1) Velocity monitor signal (SP): $8 \mathrm{r} / \mathrm{min} . /$ LSB calculated from 6V/3000r/min
 (Pr07 = 3)
2) Torque monitor signal (IM): $0.4 \% / \mathrm{LSB}$ calculated from $3 \mathrm{~V} /$ rated value (100\%)

Parameter Setting

Overview

This driver has various parameters that are used for adjusting or setting the features or functions of the driver. This
section describes the purpose and functions of these parameters. Understanding these parameters is essential for obtaining the best, application-specific operation of the driver. You can view, set and adjust these parameters using either:

1) the front touch panel or
2) your personal computer with the communication software PANATERM .

Parameter Groups and Listing

Group	ParameterNo. Pr \square	Brief explanation
Function selection	$00 \sim 0 \mathrm{~F}$	You can select the control mode, allocate I/O signals, and set the baud rate and etc.
Adjustment	$10 \sim 1 \mathrm{~F}$	You can set various factors and constants such as the servo gains (1st and 2nd) for position, velocity and integration, and time constants of filters.
	$20 \sim 2 F$	Real time auto-tuning parameters You can set the real time auto-tuning mode, select the machine stiffness, etc.
Position control	30 ~ 3F	You can set the parameters relating to the switching between 1 st and 2nd gains.
	$40 \sim 4 \mathrm{~F}$	You can set the input format of command pulses, logical selection, encoder pulse rate and pulse scalar.
Velocity and torque control	$50 \sim 5 B$	You can set the input gain, polarity inversion and offset adjustment of velocity command. You can set the internal speed (1st to 4th and jog speed), and it's acceleration and deceleration time.
	5C ~ 5F	You can set the input gain, polarity inversion and offset adjustment of torque command and set the torque limit.
Sequence	$60 \sim 6 \mathrm{~F}$	You can set the conditions for detecting of the output such as in-position and zero-speed, and set the processing conditions at excess position error, etc. You can also set the conditions for stopping at the main power-off, in-alarm and servo-off, or conditions for the error counter clearance, etc.
Full-close version	$70 \sim 7 \mathrm{~F}$	"Full close" parameters. For details, see "Full-Close Specifications".

For details, see "Details of Parameters" in Appendix.

Parameters for Selecting Function
P:Position, S:Velocity, T:Torque

$\begin{array}{\|l} \hline \text { ParameterNO. } \\ (\operatorname{Pr} \square \square) \\ \hline \end{array}$	Parameter description	Range	Default	Default	Reatied control moded
${ }^{*} 00$	Axis address	$0 \sim 15$	1	-	P.S.T
* 01	Initial LED status	0~2	1	-	P.S.T
* 02	Control mode set-up	0~10	1	-	P.S.T
03	Analogue torque limit inhibit	$0 \sim 1$	1	-	P.S
04	Overtravel Input inhibit	$0 \sim 1$	1	-	P.S.T
05	Internal speed switching	$0 \sim 2$	0	-	S
* 06	ZEROSPD input selection	0~1	0	-	S
07	Speed monitor(SP) selection	0~9	3	-	P.S.T
08	Torque monitor (IM) selection	$0 \sim 10$	0	-	P.S.T
09	TLC output selection	0~5	0	-	P.S.T
	ZSP output selection	0~5	1	-	P.S.T
* 0 B	Absolute encoder set-up	0~2	1	-	P.S.T
* 0 C	Baud rate set-up of RS232C	0 ~ 2	2	-	P.S.T
* 0 D	Baud rate set-up of RS485	0 ~ 2	2	-	$P \cdot S \cdot T$
$0 \mathrm{E}, 0 \mathrm{~F}$	Internal use	-	-	-	-

Parameters for Adjusting Time Constants of Gain Filters, etc.

ParameterNO. $(\operatorname{Pr} \square \square)$	Parameter description	Range	Default	Unit	Related control mode
10	1st position loop gain	10~2000	50	1/s	P
11	1st velocity loop gain	1 ~ 3500	<<100>>	Hz	P.S.T
12	1st velocity loop integration time constant	1 ~ 1000	50	ms	$P \cdot S \cdot T$
13	1st speed detection filter	0 ~ 5	4	-	$P \cdot S \cdot T$
14	1st torque filter time constant	$0 \sim 2500$	<<50>>	0.01 ms	$P \cdot S \cdot T$
15	Velocity feed forward	$0 \sim 100$	0	\%	P
16	Feed forward filter time constant	$0 \sim 6400$	0	0.01 ms	P
17	(Internal use)	-	-	-	-
18	2nd position loop gain	$10 \sim 2000$	50	1/s	P
19	2nd velocity loop gain	1 ~ 3500	<<100>>	Hz	$P \cdot S \cdot T$
1 A	2nd velocity loop integration time constant	1 ~ 1000	50	ms	$P \cdot S \cdot T$
1 B	2nd speed detection filter	0 ~ 5	4	-	$P \cdot S \cdot T$
1 C	2nd torque filter time constant	$0 \sim 2500$	<<50>>	0.01 ms	$P \cdot S \cdot T$
1 D	Notch frequency	$100 \sim 1500$	1500	Hz	$P \cdot S \cdot T$
1 E	Notch width selection	$0 \sim 4$	2	-	$P \cdot S \cdot T$
1 F	Disturbance torque obserber	0~8	8	-	$P \cdot S \cdot T$

For values marked with <<>>, see <Note> in page 44. For values marked with *, see page 46.

Parameter Setting

Parameters for Defining the Real Time Auto Gain Tuning

Parameter No. $(\operatorname{Pr} \square \square)$	Parameter description	Range	Default	Unit	Reated control mode
2	0	Inertia ratio	$0 \sim 10000$	$\ll 100 \gg$	$\%$
2	1	Real time auto tuning set-Up	$0 \sim 3$	0	-
2	2	Machine stiffness at auto tuning	$0 \sim 9$	2	-
$2 \quad 3$	(Not available)		$\mathrm{S} \cdot \mathrm{T}$		
$24 \sim 2 \mathrm{~F}$	(Internal use)				

Parameters for Adjustments (for 2nd Gain)

Parameter №. $(\operatorname{Pr} \square \square)$	Parameter description	Range	Default	Unit	Realed control mode
30	2nd gain action set-up	0~1	0	-	P. S. T
31	Position control switching mode	0 ~ 8	0	-	P
32	Position control switching delay time	$0 \sim 10000$	0	$166 \mu \mathrm{~s}$	P
$3 \quad 3$	Position control switching level	$0 \sim 10000$	0		P
34	Position control swiching hysteresis	$0 \sim 10000$	0		P
35	Position loop gain switching time	$0 \sim 10000$	0	$\begin{gathered} (1+\text { Setingy valu) } \\ \times 166 \mu \mathrm{~s} \\ \hline \end{gathered}$	P
36	Velocity control switching mode	0~5	0	-	S
37	Velocity control switching delay time	$0 \sim 10000$	0	$166 \mu \mathrm{~s}$	S
38	Velocity control switching level	$0 \sim 10000$	0	-	S
39	Velocity control switching hysteresis	$0 \sim 10000$	0	-	S
3 A	Torque control switching mode	0 ~ 3	0	-	T
3 B	Torque control switching delay time	$0 \sim 10000$	0	166 μ	T
3 C	Torque control switching level	$0 \sim 10000$	0	-	T
3 D	Torque control switching hysteresis	$0 \sim 10000$	0	-	T
3E~3F	(Internal use)	-	-	-	-

For values marked with << >>, see <Note> in page 44.

<Note>

The following parameters have different default values depending on the Series of the Driver.

Parameter $N 0$.	Default	
	Series MSDA and MQDA	Series MDDA, MFDA, MHDA and MGDA
1	1	100
50		
1	4	50
1	9	100
1	C	50
2	0	100

Parameters for Position Control
P: Position, S:Velocity, T:Torque

Parameter No. $(\mathrm{Pr} \square \square)$	Parameter description	Range	Default	Unit	Related control mode	
${ }^{*} 4$	0	Command pulse multiplier set-up	$1 \sim 4$	4	-	P
${ }^{*} 4$	1	Command pulse logic inversion	$0 \sim 3$	0	-	P
${ }^{*} 4$	2	Command pulse input mode set-up	$0 \sim 3$	1	-	P
4	3	Command pulse inhibit input invalidation	$0 \sim 1$	1	-	P
${ }^{*} 4$	4	Output pulses per single turn	$1 \sim 16384$	2500	P / r	$\mathrm{P} \cdot \mathrm{S} \cdot \mathrm{T}$
${ }^{*} 4$	5	Pulse output logic Inversion	$0 \sim 1$	0	-	$\mathrm{P} \cdot \mathrm{S} \cdot \mathrm{T}$
4	6	Numerator of 1st command pulse ratio	$1 \sim 10000$	<10000	-	P
4	7	Numerator of 2nd command pulse ratio	$1 \sim 10000$	<10000	-	P
4	8	Numerator of 3rd command pulse ratio	$1 \sim 10000$	<10000	-	P
4	9	Numerator of 4th command pulse ratio	$1 \sim 10000$	<10000	-	P
4	A	Multiplier of numerator of command pulse ratio	$0 \sim 17$	$<0>$	$2{ }^{\wedge} \mathrm{n}$	P
4	B	Denominator of command pulse ratio	$1 \sim 10000$	10000		P
4	C	Smoothing filter set-up	$0 \sim 7$	1	-	P
4	D	Counter clear input	$0 \sim 1$	0	-	P
$4 \mathrm{E}, 4 \mathrm{~F}$	(Internal use)					

Parameters for Velocity and Torque Control

Parameter №. (Pr $\square \square$)	Parameter description	Range	Default	Unit	Related control mode
50	Velocity command input gain	$10 \sim 2000$	500	(r/min) / V	S $\cdot \mathrm{T}$
51	Velocity command input logic inversion	$0 \sim 1$	1	-	S $\cdot T$
$5 \quad 2$	Velocity command offset	- 2047 ~ 2047	0	0.3 mV	S $\cdot T$
53	1st internal speed	- 10000~10000	0	$\mathrm{r} / \mathrm{min}$	S.T
54	2nd internal speed	- 10000 ~ 10000	0	$\mathrm{r} / \mathrm{min}$	S • T
$5 \quad 5$	3rd internal speed	- 10000~10000	0	$\mathrm{r} / \mathrm{min}$	S $\cdot T$
56	4th internal speed	- 10000 ~ 10000	0	$\mathrm{r} / \mathrm{min}$	S $\cdot \mathrm{T}$
57	JOG speed set-up	0 ~ 500	300	$\mathrm{r} / \mathrm{min}$	P.S.T
58	Acceleration time set-up	0~5000	0	$2 \mathrm{~ms} / \mathrm{kr} / \mathrm{min}$	S $\cdot \mathrm{T}$
	Deceleration time set-up	$0 \sim 5000$	0	$2 \mathrm{~ms} / \mathrm{kr} / \mathrm{min}$	S $\cdot T$
5 A	S-shaped Accel./Decel. time set-up	0 ~ 500	0	2 ms	S. T
5 B	(Internal use)	-	-	-	
5 C	Torque command input gain	10 ~ 100	30	0.1V/100\%	T
5 D	Torque command input inversion	$0 \sim 1$	0	-	T
5 E	Torque limit set-up	0~500	300	\%	P.S.T
5 F	(Internal use)	-	-	-	-

For values marked with < > or *, see <Note> in page 46.

Parameter Setting

Parameters for Sequence

P: Position, S:Velocity, T:Torque

Parameter No. (Pr $\square \square)$	Parameter description	Range	Default	Unit	Reated control mode
6	0	In-position range	$0 \sim 32767$	$<10>$	Pulse
6	1	Zero speed	$0 \sim 10000$	50	$\mathrm{r} / \mathrm{min}$
6	2	At-speed	$\mathrm{P} \cdot \mathrm{S} \cdot \mathrm{T}$		
6	3	Position error set-up	$1 \sim 10000$	1000	$\mathrm{r} / \mathrm{min}$
6	4	Position error invalidation	$0 \sim 1$	0	-
6	5	Undervoltage trip selection at main power-off	$0 \sim 1$	1	-
6	6	Dynamic Brake inhibition at overtravel limit	$0 \sim 1$	0	-
6	7	Sequence at main power-off	$0 \sim 7$	0	-
6	8	Sequence at alarm	$0 \sim 3$	0	-
6	9	Sequence at Servo-OFF	$0 \sim 7$	0	$-\mathrm{P} \cdot \mathrm{P} \cdot \mathrm{T}$
6	A	Mech. break action set-up at motor stadstill	$0 \sim 100$	0	2 ms
6	B	Mech. break action set-up at motor in motion	$0 \sim 100$	0	2 Ps
* 6	C	External regenerative discharge resistor selection	$0 \sim 2$	$\mathrm{P} \cdot \mathrm{T}$	
$6 \mathrm{D} \sim 6 \mathrm{~F}$	(Internal use)	0	-	$\mathrm{P} \cdot \mathrm{S} \cdot \mathrm{T}$	

<Note>
The following parameters have different default values depending on the type of the encoder incorporated.

Parameter No. $(\operatorname{Pr} \square \square)$	With the 2500P/r incremental encoder ([A])	Wefault or absolute/incremental encoder ([C] or [D])
	6	10000
4	7	10000
4	8	10000
4	9	10000
4	A	0
6	0	10
6	3	1875

- To validate the parameters having a parameter number marked with *, set the parameters, then download them nto EEPROM, then turn off the control power and then turn it on again.

Parameters (Pr70 to Pr7F) for "Full-Close" drivers
 Pr70~Pr7F

Refer to "Full-Close Specifications".

Setting the Parameters

- You can set the Parameters with;

1) the front touch panel or
2) Ayour personal computer with the A-series communication software PANATERM.
<Note>
For the use of PANATERM for parameter handling, see the instruction manual of the software.

- Using the front panel

Switches between the mode (selected with mode switching button) and the execution display.

MODE switching button
You can select five MODE options.
O Monitor Mode
O Parameter Set-up Mode
O EEPROM Writing Mode
O Auto Gain Tuning Mode
O Auxiliary Mode

To set a parameter, select the Parameter Setting Mode.

MODE's Structure
You can select a desired MODE by using the front panel button.

For details, see page 57 of the Appendix part of this manual.

See the next page.

For details, see page 58 of the main body of this manual.

For details, see page 64 of the main body of this manual.

Using the front touch panel

1) Turn the driver (power) $O N$.

2) \bigcirc Press SET button.

3) Keep pressing MODE button.
4)

Parameter No. by using UP and DOWN button.

5) (O) Press SET button.

6)
 using LEFT ARROW, UP and DOWN buttons.
7)
 Press SET button.

Select EPROM Writing Mode.
8)

EE-5EE
9)

SET
 Press SET button.
10)
 (approx. 3 seconds). Bars in the display increases as shown in the right figure.

Start writing (momentary message will be displayed as shown in the right figure).

- If you set a parameter that will become valid after a reset operation, " ${ }^{\prime \prime} \varepsilon \varsigma \varepsilon \varepsilon^{\prime \prime}$ will appear at writing complete. Turn off the power and then turn it on again to make the change valid.
- You can re-write the parameter by keeping the UP buttondepressed at the parameter writing complete. <Notes>

1. If a writing error occurs, return to the first step of the writing procedure, and repeat it.
2. Do not turn off the power during EEPROM writing. Otherwise a false data may be entered. If this happens, set all parameters again, make sure that all the parameter values are correct, and then write them down to EEPROM.

Trial Run

Inspections before Trial Run

1) Inspecting the wiring

- Make sure that all wire connections (especially main power and motor output) are correct.
- Make sure that there are no improper grounding connections, and earth wires are properly connected.

2) Inspecting the
power specifications

- Make sure that the
voltage is correct.

3) Securing the servo motor

- Make sure that the servo motor is firmly secured.

4) Disconnecting the motor load
5) Releasing the brake

Trial Run without Motor Load (JOG)

Use the JOG function (run with the motor and driver alone) for trial run.
If the motor runs with this JOG, it means the motor and the driver are in good condition and so is the connection between them.
<Notes>

1. Disconnect the load from the motor and $\mathrm{CN} I / \mathrm{F}$, before executing the trial run.
2. Set the user parameters to the defaults (especially Pr10 (Position Gain) and Pr11 (Velocity Gain)) to avoid oscillation and other unfavorable behaviors.

Procedure

1) Turn ON the power (driver).

Motor speed will be displayed (initial display)
2) Switch the parameter set-up(basis mode).

3) Press SET button.

Keep pressing UP button (approx. 3 seconds).
Bars increased as the rightfig. shows

The trial run preparation is now complete.

(®) Decimal point shifts from right to left by keep pressing LEFT ARROW button (approx. 3 seconds) as the right fig. shows.

The secondary preparation is now complete.

5) The motor runs CCW by pressing \square UP button, and runs CW by pressing (0) DOWN button, at the speed set by Pr57 (JOG speed set-up).

Trial Run

Operation With CN I/F Connected

1) Connect CN I/F.
2) Connect the control signal (COM+/-) to the power supply (12 to 24 VDC) .
3) Turn the main power (driver) ON.
4) Check the defaults of the parameters.
5) Connect between SRV-ON (CN I/F pin 29) and COM- (CN I/F pin 41) to make Servo-On active.

The motor will be kept excited.

Run at Position Control Mode

1) Set Pr42 (Command Pulse Input Mode Set-Up) according to the output form of the controller.

Then write it down to EEPROM. Then turn the power OFF and then ON again.
2) Send a low-frequency pulse signal from the controller to the driver to run the motor at low speed.
3) Check the motor speed at monitor mode.

- Make sure that the speed is per the set-up.
- Check if the motor stops when the command(pulse) is stopped.

Set-up of motor speed and input pulse frequency

Input pulse frequency (PPS)	Motor speed (r/min)	Pr 46×2	
		Pr 4B	
		17 bits	2500P/r
500K	3000	$\begin{gathered} 1+102^{17} \\ \hline 10000 \end{gathered}$	$\frac{10000 \times 20}{10000}$
250K	3000	$\frac{1 \times 2^{\text {囯 }}}{5000}$	$\frac{10000 \times 2 \square}{5000}$
100K	3000	$\begin{gathered} 1 \times 2^{\boxed{17}} \\ \hline 2000 \end{gathered}$	$\frac{10000 \times 20}{2000}$
500K	1500	$\begin{aligned} & 1+1 \times 2{ }^{16} \\ & \hline 10000 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5000 \times 20 \\ \hline 10000 \end{gathered}$

* You can set any value by setting any value for the numerator and denominator. However, the motor action will not follow the extreme setting of the ratio. It is recommended to set within a range from $1 / 50$ to 20 .

Pulley ratio: 18/60
Gear ratio: 12/73
Overall reduction: 18/365
Encoder pulse

	Encoder pulse	
	17 bits	2500P/r
Pr46 $\times 2$ Pr4A	$\begin{array}{\|l\|l\|} \hline 365 & \times 10 \\ \hline \end{array}$	365×20
Pr48	6912	108
Theory	From the controller to the driver, enter a command with which the motor turns one revolution with $8192(213)$ pulses.	From the controller to the driver, enter a command with which the motor turns one revolution with 10000 pulses.
Determining the parameter	$\begin{aligned} & \frac{365}{18} \times \frac{1 \AA \sim 2^{17}}{2^{13}} \times \frac{60^{\circ}}{360^{\circ}} \\ = & \frac{365 \times 217}{884736} \end{aligned}$ The numerator 47841280 is greater than 2621440, and the denominato r is greater than 10,000 . Thus, $\begin{aligned} & \frac{365}{18} \times \frac{1 \times 2^{10}}{2^{6}} \times \frac{60^{\circ}}{360^{\circ}} \\ = & \frac{365 \times 217}{6912} \end{aligned}$	$\begin{aligned} & \frac{365}{18} \times \frac{10000}{10000} \times \frac{60^{\circ}}{360^{\circ}} \\ = & \frac{365 \times 2}{108} \end{aligned}$

2^{n}	10 Decimal
2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	16
2^{5}	32
2^{6}	64
2^{7}	128
2^{8}	256
2^{9}	512
2^{10}	1024
2^{11}	2048
2^{12}	4096
2^{13}	8192
2^{14}	16384
2^{15}	32768
2^{16}	65536
2^{17}	131072

Trial Run

Run at Velocity Control Mode

1) Apply a DC voltage between the velocity command input SPR (CN I/F pin 14) and GND (CN I/F pin 15). Increase the voltage gradually from 0 , and make sure that the motor runs and the speed change accordingly.
2) Select the Monitor Mode to monitor the motor speed.

- Make sure that the motor speed is as per the commanded speed.
- Set the command to 0 to see if the motor stops.

3) If the motor still runs at very low speed, even the command voltage is set to 0 , use the Auxiliary Mode to correct the voltage of command input (see Automatic Offset Adjustment function in Appendix).
4) To change the speed or direction, adjust the following parameters.

Pr50 (Velocity Command Input Gain)
Pr51 (Velocity Command Input Inversion)
See "Details of Parameters" in Appendix

Parameters

Wiring Diagram

PrNo.	Parameter description	Value	Default
PrO2	Control mode set-up	1	1
Pr04	Overtravel input inhibit	1	1
Pr06	ZEROSPD input selection	1	0
Pr50	Velocity command input gain	Set as required	500r/min/N
Pr58	Acceleration time set-up		0
Pr59	Deceleration time set-up		0
Pr5A	S-shaped acceldecel lime set-up		0

ZEROSPD switch
Close: Run
Open: Stop
Input Signal Status

No.	Input signal	Monitor display	
0	Servo-ON	+A	
2	CW overtravel inhibit	-	
3	CCW overtravel inhibit	-	
5	Speed zero clamp	-	Stop with +A

Adjustments

Purposes of Gain Adjustment

In case of the servo motor, the motor is required to act per any command without any time delay, or without missing
any commands. To ensure this, gain adjustment is necessary.
<Example: ball screw>

Types of Gain Adjustment

Type	Description	
Automatic adjustment	Normal mode auto gain tuning	Accelerate and decelerate the motor per the preset (internally fixed) patterns to calculate the load inertia from the required torque. Then automatically define appropriate gains according to the inertia.
	Real time auto gain tuning	During an actual operation, calculate the load inertia in real time. Then automatically define appropriate gains according to the inertia.The gains will be automatically adjusted against the fluctuation of load inertia during operation.
Manual	Manual gain tuning	You can manually adjust the necessary gains to obtain the most appropriate action by monitoring command to the driver, motor speed, torque and position error as the monitor signals(SP, IM), or using the optional communication software, PANATERM(especially with is graphic functi

Adjustments

Applicability of Automatic Adjustment

Item	Conditions
Load inertia	Must be at least three times as large as the motor inertia, but not greater than 20 times.
Load	- The machine (motor load) and its coupling must have a higher mechanical stifness. - The backlash of the gears and other equipment must be small. - Eccentric load must be smaller than one-fourth of the rated torque. - The viscous load torque must be smaller than one-fourth of the rated torque. - Any oscillation must not cause any mechanical damages of the machine (motor load). - Two CCW turns and subsequent two CW turns must in no case cause any troubles.

The auto gain tuning affects the values of the following six parameters.

Pr10	1st Position Loop Gain	Pr13	1st Speed Detection Filter
$\operatorname{Pr} 11$	1st Velocity Loop Gain	$\operatorname{Pr} 14$	1st Torque Filter Time Constant
$\operatorname{Pr} 12$	1st Velocity Loop Integration Time Constant	$\operatorname{Pr} 20$	Inertia Ratio

- Pr15 (Velocity Feed Forward) will be automatically changed to 0%, if the auto gain tuning is executed.

<Notes>

The auto gain tuning will be disabled when you select a control mode using an external scale, i.e. Pr02 is set to $6,7,8,9$ or 10 .
The real time auto gain tuning will be disabled in the following cases:

1) Running pattern at a constant speed
2) Running pattern with a small acceleration/deceleration

Relationship between Gain Adjustment and Mechanical Stiffness

To increase the mechanical stiffness,

1) The machine (motor load) should be firmly secured to a rigid foundation.
2) The coupling between the motor and machine should be a high-stiffness special one designed for servo motors.
3) The timing belt should have a larger width. The tension of the timing belt should be adjusted according to the allowable axial load of the motor.
4) The gears should have a smaller backlash characteristic.

- The inherent frequency (resonance) of the machine significantly affects the gain adjustment of the servo motor. If the machine has a lower resonance frequency (i.e. lower stiffness), you can't set the high response of the servo system.

How to Adjust Gain

<Note>

- Pay extra attention to the safety.
- If the machine enter to oscillation (abnormal sound and vibration) , shut off the power immediately, or change to Servo-OFF.

Adjustments

How to Use "Normal Auto Gain Tuning

1) Select the Normal Auto Gain Tuning Mode.
Press SET button once and press
MODE switching button three times.
See page 48.

2) Press UP
(O) orDOWN
 button to select the stiffness of the machine.

Driving method	Mechanical stiffness
Ball screw + direct coupling	$4 \sim 8$
Ball screw + timing belt	$3 \sim 6$
Timing belt	$2 \sim 5$
Gear, or rack \& pinion	$1 \sim 3$
Others: lower stiffness	$1 \sim 3$

3)

Press SET button to turn to the monitor/execution mode.
4) Operation at the monitor/execution mode:

-CN I/F pin 29: Servo-ON

- Pr10 (Notch Frequency) $=1500$
(D) Keep pressing UP button (approx. three seconds).
The horizontal bar increases as shown in the right figure.

The motor starts to run.
For approx. 15 seconds, the motor repeats the cycle 5 times(at most), which consists of two CCW revolutions
and two CW revolutions. Note that this process doesn't necessarily repeat 5 cycles and this is not abnormal.
5) Download the obtained gain values to EEPROM. Note that if you turn off the power before downloading, the gain values will be lost.

<Notes>

Symptom	Cause	Remedy
Error message displayed	Either one of Alarm, Servo-Off or Po- sition Error Counter Clear activated.	- Avoid operation near the limit switch or home position sensor. - Turn to Servo-ON.
Values of gain affecting parameters (e.g. Pr10)doesn't change		Execute the manual adjustment.

How to Use "Real Time Auto-Gain" Tuning

1) Select the Parameter Set-up Mode.
2) Set Pr1F (Disturbance torque observer) to 8 (invalid).
3) Set Pr22 (Real time auto tuning machine stiffness).

First, set the parameter to the smallest value and then gradually increase it up to a

Driving method	Mechanical sifiness
Ball screw + direct coupling	$4 \sim 8$
Ball screw + timing belt	$3 \sim 6$
Timing belt	$2 \sim 5$
Gear, or rack \& pinion	$1 \sim 3$
Others: lower stiffness	$1 \sim 3$

4) Set Pr21 (Real time auto tuning mode set-up) to 1 or 2 .

- The operation may not be stable depending the operation pattern. In this case, set the parameter to 0 (to disable the auto tuning function).

Pr21 value	Real time auto tuning set-up	Fluctuation of load inertia during operation
0	Disabled	
1		Almost no change
2	Enabled	Small change
3		Quick change

- With a larger value, the response to the change in load inertia (acceleration) is quicker.

5) Start the motor.
6) If the fluctuation in load inertia is small, stop the motor (machine), and set $\operatorname{Pr} 21$ to 0 to fix the gain (in order to raise the safety).
7) Download the obtained gain values to EEPROM. Note that if you turn off the power before downloading, the gain values will be lost.

<Notes>

- Before changing Pr21 or Pr22, stop (servo-lock) the motor.
- Don't modify Pr10 through Pr15.
- Otherwise it may give a shock to the machine.

Adjustment

How to Adjust Gain Manually

Before Adjustment

You may adjust the gains by viewing or hearing the motions and sound of the machine during operation. But, to adjust the gains more quickly and precisely, you can obtain quicker and secure adjustment by analog wave form monitoring.

1. Using the analogue monitor output You can measure the actual motor speed, commanded speed, torque, position error in analog voltage level with an oscilloscope.
To do this, it is necessary to specify the types of output signals and output voltage level by using Pr07 (Velocity monitor selection), Pr08 (Torque monitor selection). For details, see "CN I/F Connector" in the main part of this manual, and "Details of Parameters" in Appendix.
2. Wave form graphic function of PANATERM You can view the graphic information of the command to the motor, actual motor action (speed, torque and position error) on the computer display screen.
For details, see the instructions of PANATERM.

Guidance Values of Gains, and How to Adjust

See the table below for the guidance values of gains, if the inertia ratio has been set correctly.

Machine	Position loop gain Pr10	Velocity loop gain Pr11	Velocity loop integraition time consiant Pr12
Ball screw	$100 \sim 150$	$200 \sim 300$	$100 \sim 150$
Timing belt	50	$100 \sim 200$	50
Rack \& pinion	70	100	70

How to adjust

1) Adjust the gain Pr11 and Pr12 which relate to the velocity loop.
2) Adjust the position loop gain, Pr10.
3) Pr10 (Position loop gain) should be smaller than Pr11 (Velocity loop gain).

<Note>

You cannot adjust the current loop gain, since these are fixed per the model.

How to Adjust the Gain at Position Control Mode

1) Start the motor (machine).
2) Set Pr10 (1st Position Loop Gain) to 50.
3) Increase the value of Pr11 (1st Velocity Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
4) CIncrease the value of $\operatorname{Pr} 10$ (1st Position Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
5) Decrease the value of Pr12 (1st Velocity Loop Integration Time Constant) accord ing to the Inposition time.

- With a larger value, positional errors may not be converged.

6) If you want to improve the response further, adjust Pr15 (Velocity Feed Forward) within the extent that the motor (machine) does not generate abnormal sound or vibration.

- With a larger value, overshoot and/or chattering of in-position signals may occur, which results in a longer in-position time. Note that this may be improved by adjusting the value of Pr16 (Feed Forward Filter).

How to Adjust the Gains for Velocity Control

1.If the controller does not have a position loop gain

Adjust Pr11 (1st Velocity Loop Gain) and Pr12 (1st Velocity Loop Integration Time Constant). Note that Pr15 (Velocity Feed Forward) is not effective.

1) Increase the value of Pr11 (1st Velocity Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
2) Decrease the value of $\operatorname{Pr} 12$ (1st Velocity Loop Integration Time Constant) gradually until the overshoot/undershoot is reduced to an acceptable level.
2. If the controller has a position loop gain
1) Set Pr58 (Acceleration Time Set-Up), Pr59 (Deceleration Time Set-Up) and Pr5A (S-Curve Accel/ Decel Time Set-Up) to 0 .
2) Increase the value of Pr11 (1st Velocity Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
3) Decrease the value of Pr12 (1st Velocity Loop Integration Time Constant) gradually until the overshoot/undershoot is reduced to an acceptable level.
4) Adjust the position loop gain on the controller.

<Notes>

Position loop gain changes when you change the value of Pr50 (Velocity Command Input Gain).

	Pr50 value	Relationship between command voltage and velocity	Position loop gain set in the controller
	Default $=500$	6 V at 3000r/min	Assuming this is 1
	250	6 V at 1500r/min	1/2
	750	6 V at 4500r/min	1.5 times

Adjustment

How to improve the response further

You can manually adjust the 2nd gain.
With the 2nd gain adjustment, you can expect quicker response.

1st Gain		2nd Gain	
$\operatorname{Pr} 10$	1st Position Loop Gain	$\operatorname{Pr} 18$	2nd Position Loop Gain
$\operatorname{Pr} 11$	1st Velocity Loop Gain	$\operatorname{Pr} 19$	2nd Velocity Loop Gain
$\operatorname{Pr} 12$	1st Velocity Integration Time Constant	$\operatorname{Pr} 1 A$	2nd Velocity Integration Time Constant
$\operatorname{Pr} 13$	1st Speed Detection Filter	$\operatorname{Pr} 1 B$	2nd Speed Detection Filter
$\operatorname{Pr14}$	1st Torque Filter Time Constant	$\operatorname{Pr1C}$	2nd Torque Filter Time Constant

<Example>

When you want to reduce the noise produced during the stopping (servo-locking), you set the lower gain after the motor stops.

Parameters to be set-up		Stuppale	Description
Pr30	2nd gain action set-Up	1	Switches to 2nd gains
Pr31	Position control switching mode	7	Switches to 2nd gains, if a position command is entered
Pr32	Position control switching delay time	12	Returns to 1st gains if "no command" status (no command pulse is entered for $166 \mu \mathrm{~s}$) lasts 2 ms .
Pr35	Position loop gain switching time	5	Shift from lower gain to higher gain at position control in a step of $((5+1) \times 166 \mu \mathrm{~s}=1 \mathrm{~ms})$. The set-up value should be smaller than the difference between Pr10 and Pr18.
Pr10	1st position loop gain		
Pr11	1st velocity loop gain		You can set the gains at the motor standstill.
Pr12	1st velocity integration time constant	-	
Pr13	1 st speed detection filter		
Pr14	1st torque filter time constant		
Pr18	2nd position loop gain		
Pr19	2nd velocity loop gain		You can set the gains during run.
Pr1A	2nd velocity integration time constant	-	
Pr1B	2nd speed detection filter		
Pr1C	2nd torque filter time constant		

<Notes> For setting parameters for other control modes, see Appendix.

To reduce the mechanical resonance

If the machine is not stiff, vibration and noise may be generated due to the resonance by shaft torsion, and you mey not be able to set-up the higher gains. You can suppress the resonance by 2 types of the filters.

1. Torque command filter (Pr14 and Pr1C)

Set the filter's time constant so that the frequency components around the resonance region can be attenuated. You can obtain the cutoff frequency
(fc) by the following formula;
Cutoff frequency, fc (Hz) $=$
1/(2ÉOE x Parameter value x 0.00001)
2. Notch filter (Pr1D and Pr1E)

Adjust the notch frequency of the filter to the resonance frequency.

Pr1D	Notch frequency	Set this about 10\% lower than the resonance frequency measured by the frequency characteristics analysis function of PANATERM.
Pr1E	Notch width selection	Use the default value of 2.

Resonance characteristics

How to measure the resonance frequency of a machine system

1) Log-on PANATERM and open the frequency characteristics screen.
2) Set the following parameters and measuring conditions. Note that the values shown below are only guidance.

- Decrease the value of Pr11 (1st Velocity Loop Gain) to 25 (to make the resonance frequency more distinguishable).
- Set the amplitude to $50 \mathrm{r} / \mathrm{min}$ (so that the torque may not saturate).
- Set the offset to $100 \mathrm{r} / \mathrm{min}$. (to increase the amount of velocity detection information, and run the motor in one-way rotation).
- Polarities: (+) for CCW and (-) for CW.
- Set the sampling rate to 1 (from a range between 0 and 7).

3) Start the frequency characteristics analysis function.
<Notes>

- Before starting the measurement, make sure that the machine does not move beyond the limit.

Approximate speed $=$ Offset ($\mathrm{r} / \mathrm{min}$.) $\times 0.017 \times($ Sampling rate +1)
With a larger offset value, good results can be obtained, though the speed becomes higher.

- Set-up Pr22 (Real time auto tuning mode set-up) to 0.
<Notes>
- Set-up the offset larger than the amplitude setting, and with one-way rotation so that you can obtain better results.

Protective Functions

What are the Protective Functions?

The MINAS driver has various protective functions. When one of the protections is activated, the motor trips according to the timing chart shown in "Error Handling" in Appendix, and the Servo Alarm Output (ALM) is turned off.

Actions to be taken after trip events

- After a trip event, the LED touch panel displays an alarm code no., and no Servo-ON occurs.
- Any trip status is cleared by keeping A-CLR (Alarm Clear Input) on for at least 120 ms after A-CLR off.
-The overload protection can be cleared by A-CLR at least 10 seconds after the occurrence of the event. If the control power connection between r and t is opened, the time limiting operation is cleared.
- The alarms mentioned above can also be cleared with the LED touch panel. See Alarm Clear Modes in Appendix.
- The alarms mentioned above can also be cleared by using PANATERM.

<Notes>

Protections marked with * cannot be cleared with A-CLR (Alarm Clear Input). They should be cleared by turning the power off, removing the causes, and then turning the power on again.

Protective Functions: Causes and Corrections

Protection	Alarm Code No.	Cause	Countermeasures
Undervoltage, control power	11	The P-N voltage of the control power con- verter is lower than the specified value. Or the control voltage is too low due to an instantaneous outage or short- age of power capacity.	Measure the P-N voltage to check whether the voltage is correct or not. Modify the control voltage to an acceptable value, and/or increase the power capacity.
Overvoltage			
error	12	The line voltage is larger than the specified acceptable range, so that the P-N voltage of the converter is larger than the specified value, or the line voltage was raised by a condensive load or UPS (Uninterruptible Power Supply).	Measure the terminal-to-terminal voltages (between L1, L2 and L3). Remove the causes. Feed a power of correct voltage.

Protection	Alarm Code No.	Cause	Countermeasures
Overvoltage error (continued)	12	1) The internal regenerative discharge resistor is disconnected. 2) The external regenerative discharge resistor is not suitable so that regenerative energy cannot be absorbed. 3) The driver (circuit) failed.	1) Measure the P-B1 resistance of the driver using a circuit tester. If it read Åá, the connection is broken. Replac the driver. Insert an external regenerative discharge resistor between the P and B2 terminals. 2) Use a resistor having the specified resistance for specified Watt. 3) Replace with a new driver (that is working correctly for another axis).
Undervoltage, main power	13	The P-N voltage of the main power converter is lower than the specified value during Servo-ON. 2) The main power line voltage is too low, an instantaneous outage occurred, the power source is too small, the main power is turned off, or the main power is not fed. 3) Too small power source: the line voltage dropped due to the inrush current at power on.	Measure the terminal-to-terminal voltages (between L1, L2 and L3). 1) Increase the capacity of the main power or replace it with a larger one. Or remove the causes of the failure of the magnetic contact, and then restart the power source. 2) Alncrease the capacity of the main power. For the required capacity, see "List of Applicable Components". 3) Correct the phase (L1, L2 and L3) connections of the main power. If the main power is signle-phase 100 V . use L 1 and L 3 . 4) Check the timing of power-on (for both the main power and control power).

Protective Functions

Protection	Alarm Code №.	Cause	Countermeasures
*Overcurrent error	14	The current flowing in the converter is larger than the specified value. 1) The driver failed (due to defective circuits or IGBT parts). 2) Motor wires (U, V and W) are shorted. 3) Motor wires (U, V and W) are grounded. 4) Motor burned 5) Poor connection of Motor wires 6) The relay for the dynamic brake is melted and stuck due to the fre quent Servo-ON/ OFF. 7) The motor is not compatible with the driver.	1) Disconnect the motor wires, and enter Servo-ON. If this trouble hap-pens immediately, replace the driver with a new one (that is working correctly). 2) Check if the $U . V$ and W wires are shorted at the connections. Recon nect them, if necessary. 3) Measure the insulation resistance between U/V/W and earth wire. If the resistance is not correct, replace the motor with a new one. 4) Measure the resistance between U, V and W. If they are unbalanced, replace the motor with a new one. 5) Check if the U/V/W connector pins are firmly secured with screws. Loosened pins should be fixed firmly. 6) Replace the driver with a new one. Do not start or stop the motor by entering Servo-ON or OFF. 7) Check the capacity of the motor and driver on the nameplate. If the motor is not compatible with the driver, replace it with a correct one.
* Overheat error	15	The radiator is heated up to exceed the limit temperature. The power elements of the driver is overheated. Overload.	Check the ambient temperature and cooling conditions. Check the load rate. Make the environment under which the driver operates. Reduce the load.

Protection	Alarm Code No	Cause	Countermeasures
Overload error	16	Overload protection is activated via the specified time limiting operation when the integration of a torque command exceeds the specified overload level. Caused by a long operation with a torque that exceeds the specified torque limit. 1) Long operation with more load and torque than the rating. 2) Vibration or hunting due to incorrect gains. Cause vibration and/or abnormal sound. 3) Motor wires connected wrong or broken 4) The machine is hit against a heavy hing, or suddenly becomes heavy in operation. The machine is en tangled. 5) The electromagnetic brake is ON . 6) In a system of multiple drivers, some motors are wired incorrectly to other axis.	Monitor the torque (current wave) using an oscilloscope to check whether the torque is surging or not. Check the load factor and overload alarm messages. 1) Increase the capacity of the driver and motor. Lengthen the ramp time of acceleration/deceleration. Reduce the motor load. 2) Readjust the gains. 3) Correct the motor wiring per the wiring diagrams. Replace cables. 4) Free the machine of any tangle . Reduce the motor load. 5) Measure the voltage at the brake wiring connections. Turn off the brake. 6) Correct the motor and encoder wiring to eliminate the mismatching between the mo
Regenerative discharge	18	The regenerative energy is larger than the capacity of the regenerative discharge resistor. 1) When the load inertia is too large,the converter voltage increases due to the large energy regener ated during deceleration, and in creases more due to the shortage of energy consumption by the regenerative discharge resistor. 2) When the velocity of the motor is too high, the regenerative energy cannot be consumed within the	Check the load rate of the regenerative resistor in the Monitor mode. The driver should not be used with continuous regenerative braking. 1) Check the operation pattern (using the velocity monitor). Check the load rate of the regenerative resistor and the over-regeneration alarm on display. Increase the capacity of the driver and motor. Increase the deceleration time. Use an external regenerative resistor. Check the connection wire between B1 and B2 terminals. 2) Check the operation pattern (using the velocity monitor). Check the load rate of the regenerative resistor and

Protective Functions

Protection	Alarm Code No.	Cause	Countermeasures
* Encoder A/Bphase error	20	No A- and B-phase pulse is detected. The 11wire encoder failed.	Correct the encoder wiring per the wiring diagram. Correct the connection of the pins.
* Encoder communication error	21	Due to no communication between the encoder and driver, the detective function for broken encoder wires is activated.	
* Encoder connection error	22	The connection between the 11 -wire encoder and driver is broken. The encoder rotates higher than the specified rate when control power is on	Make sure that the power of the encoder is 5VDC ? 5\% (4.75 to 5.25 V). Especially when the wire length is long, it is important to meet this requirement. You should not bundle the encoder wires
* Encoder communication data error	23	The encoder sends an erroneous data mainly due to noises. The encoder is connected correctly, though the data is not correct.	FG. See the encoder wiring diagram.
Position error	24	The position error pulse is larger than Pr63 (position error limit). The motor operation does not respond to the commands.	Check whether the motor operates per the position command pulse or not. See the torque monitor to check if the output torque is saturated. Readjust the gains. Maximize the value of Pr5E (torque limit set-up). Correct the encoder wiring per the wiring diagram. Increase the acceleration and deceleration time. Reduce the load and velocity.
Hybrid error	25	When the driver of the full-closed version is under the full-closed and hybrid control with an external encoder, the load position detected by the external encoder and the motor position detected by the motor encoder are beyond the limit specified by Pr73 (hybrid error limit).	Check the connection between the motor and load. Check the connection between the external encoder and driver. Correct the values of the external scale numerator and denominator regarding parameters $\operatorname{Pr} 74, \operatorname{Pr} 75, \operatorname{Pr} 76$ and $\operatorname{Pr} 77$. Increase the value of $\operatorname{Pr} 73$. Increase the value of Pr71 (hybrid switching time).
Over-speed	26	The motor velocity exceeds the specified limit.	Decrease the target speed (command values). Decrease the value of Pr50 (velocity command input gain). Adjust the scale ratio so that the frequency of the command pulse is 500 kpps or less. If an overshoot occurs, readjust the gains. Correct the encoder wiring per the wiring diagram.ÅB

Protection	Alarm Code №.	Cause	Countermeasures
Command pulse sealer error	27	The command pulse is larger than 500 kpps at the entrance of the position error counter. The scale ratios set by Pr46 through Pr4B (numerator of 1st to 4th command scale) are not correct.	Reduce the multiplication factor by adjusting the values of Pr46 through Pr4B, and then adjust the scale ratios so that the command pulse frequency is 500 kpps or less.
External scale error	28	When Pr76 (scale error invalidation) $=0$, and the driver is operated under the full-closed and hybrid control with an external encoder, the scale error input is OFF.	Check the reason why the CN I/F Pin 33 is OFF.
Error counter over flow	29	The value of the position error counter is over 227 (134217728).	Check that the motor operates per the position command pulse. See the torque monitor to check that the output torque does not get saturated. Readjust the gains. Maximize the value of Pr5E (torque limit set-up). Correct the encoder wiring per the wiring diagram.
* External scale disconnection error	35	The external scale is disconnected, or the scale fails.	Check the power supply for the external scale. Correct the wiring and SIG connections per the wiring diagram.
* EEPROM parameter error	36	The data contained in the parameter storage area of the EEPROM is broken, so erroneous data is retrieved.	Set all the parameters again. If this error occurs frequently, the driver may have been broken. Replace the driver with a new one. Return the old driver to the sales agent for repair.
* EEPROM check code error	37	The check code of the EEPROM is broken, so erroneous data is retrieved.	The driver may have been broken. Replace the driver with a new one. Return the old driver to the sales agent for repair.
Overttravel inhibit	38	Both the CW and CCW over-travel limits are not active.	Check the switches, wires and power supply that constitute the circuits. Check that the control power (12 to 24VDC) can be established without delay. Check the value of Pr04. Correct the wiring, if necessary.

Protective Functions

Protection	Alarm Code No	Cause	Countermeasures
Absolute system down error	40	The power of the encoder is out.	Check the voltage of the battery. Connect to the battery, and then clear the encoder using the absolute encoder clear mode contained in the auxiliary function (see Details of Operation in Appendix).
Absolvte encoder counter overflow	41	The data of the multi-turn counter of the encoder exceeds the specified limit.	Limit the movable range to ? 32767 revolutions (15 bits) from the initial position. Adjust the value of ProB.
Absolute encoder overspeed error	42	The encoder rotates faster than the specified rate when it is battery-powered.	Connect the power to the encoder and then make sure that the encoder voltage is 5 V ? 5%. Correct the SIG connections, if necessary.
* Absolute encoder singleturn counter error	44	The encoder detects an error of the single-turn counter.	The motor may be broken. Replace the mo-
*Absolute encoder multi- turn counter error	45	The encoder detects an error of the multiturn counter.	tor with a new one. Return the old motor to the sales agent for repair.
	47	The encoder detects an internal status error. After the control power on, the encoder rotates faster than the specified rate.	Take measures to keep the motor away from rotating until the driver outputs S-RDY.Take measures to keep the motor away from rotating until the driver outputs S-RDY.
	97	When an 11-wire encoder is used, Pr02 (control mode selection) is set to 7,8 or 9 ("fullclose" control).	Set the value of Pr02 to 0, 1, 2, 3, 4 or 5 .
* Other error	$\begin{aligned} & E E E E E E \\ & 33333= \\ & F F F F F F \\ & 37373 \end{aligned}$	The control circuit operates incorrectly due to large noises or any other reasons.	Turn off the power and turn it on again. If the error cannot be eliminated, the motor and/or driver may be broken. Disconnect the power supply of these equipment, and replace them with new ones. Return the old equipment to
* Other error	$\begin{aligned} & \text { Numbers } \\ & \text { other than } \\ & \text { the above } \end{aligned}$	The driver's self-diagnosing function is activated, because an error happens in the driver.	the sales agent for repair.

Maintenance and Inspections

- Routine maintenance and inspections are essential for proper and satisfactory operation of the driver and motor.

Notes to Maintenance/Inspections Personnel

1)Power-on/off operations should be done by the operators themselves.
2)For a while after power off, the internal circuits is kept charged at higher voltage. Inspections should be done a while (about 10 minutes), after the power is turned off and the LED lamp on the panel is extinguished.
3)Do not take insulation resistance measures because the driver gets damaged.

Inspection Items and cycles

Normal (correct) operating conditions:

Ambient temperature: $30^{\circ} \mathrm{C}$ (annual average) Load factor : max. 80%
Operating hours : max. 20 hours per day

Daily and periodical inspections should be done per the following instructions.

Type	Cycles	nspection items
Daily inspection	Daily	- Ambient temperature, humidity, dust, particles, foreign matters, etc. - Abnormal sound and vibration - Main circuit voltage - Odor - Lint or other foreign matters in the ventilation openings - Cleanliness of the operation board - Damaged circuits - Loosened connections and improper pin positions - Foreign matters caught in the machine (motor load)
Periodical inspection	Every year	- Loosened screws - Signs of overheat - Burned terminals

<Notes>

If the actual operating conditions differ from things mentioned above, the inspection cycles may change accordingly.

Maintenance and Inspections

Replacement Guidance

Parts replacement cycles depend on the actual operating conditions and how the equipment has been used. Defective parts should be replaced or repaired immediately.

Prohibited	Dismantling for inspections or repairs should be done by our company (or our sales agents).

Equipment	Part	Standard replacement cycles (hour)	Remarks
Driver	Smoothing condenser	about 5 years	The replacement cycles shown here are just only for reference. If any part is found defective regardless of the standard replacement cycles, immediately replace it with a new one.
	Cooling fan	2 to 3 years (10 to 30 thousand hours)	
	Aluminum electrolytic capacitor on the print board	about 5 years	
Motor	Bearing	3 to 5 years (20 to 30 thousand hours)	
	Oil seal	5000 hours	
	Encoder	3 to 5 years (20 to 30 thousand hours)	
	Battery (Absolute encoder)	1 year from the first use	

Troubleshooting

The motor does not rotate.
[Check Points]

Troubleshooting

The motor does not rotate.

Category	Causes	Countermeasures
Parameters	The control mode selected is not correct.	Check the value of Pr02 (control mode set-up). 0 : position control, 1: velocity control, 2: torque control
	The internal velocity command (switching between internal and external commands) does not work. The torque limit inhibition setting is not	Check the value of Pr05 (Internal speed swiching). 0 : At analogue velocity command set-up, Change the value to 1 or 2.
	correct. The torque limit has been set to 0 .	Check the value of Pr03 (Analog torque limit inhibit). 0 : torque cannot be produced, so the motor does not rotate. Change the value to 1 . Check the value of Pr5E (torque limit set-up).
	The zero speed clamp is ON, so the	Change the value to 300 (default). Check the value of Pr06 (ZERPSPD input selection).
	motor does not operate. The circuit for CW/CCW overt-ravel	Change the value to 0 . If the value is 1 , the zero clamp function is valid. If you desire to set the parameter to 1 , enable the zero speed clamp input, and adjust the wiring so that the zero speed clamp input can be turned on correctly. Check the value of Pr04. If the value is 0 , connect between CN I/F pins 9 and 41 , and 8 and 41.
Wiring	inhibit is open. CN I/F Servo-ON signal is not re-	Connect (short circuit) between CN I/F pins 29 and 41. Disconnect between CN I/F pins 30 and 41.
	ceived. CN I/F Counter clear is ON (shorted).	Check the value of Pr43. If the value is 0, connect between
	CN I/F command pulse input inhibit is active, so the motor does not	CN I/F pins 33 and 41 . If the value is 1 , the command pulse input inhibition is disregarded, so the motor will rotate ac-
	operate. Bearing lock	cording to command pulses. Turn off the power. Disconnect the motor. Rotate the motor shaft by hand to make sure that the motor rotates freely. If the motor is fitted with an electromagnetic brake, rotate the shaft by hand while applying a voltage
Installation		(24VDC) to the brake. If the motor does not rotate, consult the sales agent to repair it.

The rotation is not smooth.

The motor rotates slowly even if the target speed is zero in the speed control mode.

Category	Causes	Countermeasures
Parameters	The control mode selection is not correct.	With the position control mode selected, if Pr02 is set to other than 0 , the motor will rotate slowly because Pr52 (velocity command offset) governs the operation of the motor. Change the value of PrO 2 to 0 .
Adjustment	The gains are not appropriate.	Increase the value of Pr11 (1st velocity loop gain). Insert a torque filter (Pr14) and then further increase the value of Pr11.
	Velocity and position commands are not stable.	Check the behavior of the motor using the check pin on the LED touch panel and the wave form graphics function of PANATERM. Check the wiring and its connections. Check the controller.
Wiring	CN I/F signals are chattering. 1) Servo-ON signal	1) Check the wiring and connections between $\mathrm{CN} I / \mathrm{F}$ pins 29 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Servo-ON signals can be made active correctly. Check the controller.
	2) $C W / C C W$ torque limit input signal	2) Check the wiring and connections between CN I/F pins 17 and 18 , and 16 and 17 using a circuit tester and/or oscilloscope. Modify the wiring so that CW/CCW torque limit input can be made active correctly. Check thecontroller.
	3) Counter clear input signal	3) Check the wiring and connections between CN I/ F pins 30 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Position Error Counter input can be made active correctly. Check the controller.
	4) Speed zero clamp signal	4) Check the wiring and connections between CN I/F pins 26 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Zero Speed Clamp input can be made active correctly. Check the controller.
	5) Command pulse input inhibit signal	5) Check the wiring and connections between CN I/F pins 33 and 41 by monitoring the display of input and output signals status. Modify the wir-ing so that Command Pulse Input Inhibit can be made active correctly. Check the ontroller.

Troubleshooting

Category	Causes	Countermeasures
Wiring	Velocity commands contain noises. Improper offset	Use shielded cables for connection to CN I/F. Power and signal cables should be separated by at least 30 cm and put in duct.
	Velocity commands contain noises.	Measure the voltage between CN I/F pins 14 and 15 (velocity command inputs) using a circuit tester and/or oscilloscope. Adjust the value of Pr52 so that the motor can stop. Use shielded cables for connection to CN I/F. Power and sig-
		nal cables should be separated by at least 30 cm and put in duct.

Positioning accuracy is bad.

Category	Causes	Countermeasures
System	Position commands (amount of command pulses) are not correct.	Count the number of feedback pulses while repeating to travel back and forth within a fixed distance. If the number of feedback pulses varies, adjust the controller. Take measures to reduce the noise on the command pulse.
	Reading of in-position signals occurs at the edge.	Use the check pin (IM), to monitor the position error when the in-position signals are received. Read the in-position signals at a mid point on the time span, not at the edge. If the command pulses are deformed or narrowed, adjust the
	The form and width of the command pulses deviate from the specified values.	pulse generation circuit. Take measures to reduce the noise on the command pulse.
Adjustment	The position loop gain is too small.	Check the amount of position error in the monitor mode. Increase the value of $\operatorname{Pr} 10$ to the extent that no oscillation occurs.
Parameter	The setting of in-position detection range (Pr 60) is too large.	Decease the value of Pr60 (in-position range) to the extent that the in-position signals do not chatter.
	The command pulse frequency exceeds 500 kpps .	Decrease the command pulse frequency. Change the values of Pr46 through Pr4B (numerator of 1st to 4th command scale).
	The scale is not appropriate.	Check the repetition accuracy. If repeated without fluctuation, increase the capacity of the motor and driver.

Category	Causes	Countermeasures
Wiring	CN I/F signals are chattering: 1) Servo-ON signals 2) Counter clear input signal 3) CW/CCW torque limit input signal 4) Command pulse input inhibit signal	1) Check the wiring and connections between CN / F pins 29 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Servo-ON signals can be made active correctly. Check the controller. 2) Check the wiring and connections between CN I/F pins 30 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Position Error Counter input can be made active correctly. Check the controller. 3) Check the wiring and connections between CN I/F pins 17 and 18 , and 16 and 17 using a circuit tester and/or oscilloscope. Modify the wiring so that CW/CCW torque limit input can be made active correctly. Check the controller. 4) Check the wiring and connections between CN I/F pins 33 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Command Pulse Input Inhibit can be made active correctly. Check the controller.
Installation	Load inertia is large.	Check the overshoot at stop using the wave form graphics function of PANATERM. Adjust the gains. If this is not effective, increase the capacity of the driver and motor.

The initial (home) position varies.

Category	Causes	Countermeasures
System	When calculating the initial (home) position, the Z-phase output is not detected.	Check that the Z-phase accords to the center of the proxim- ity dog. Perform initialization correctly according to the con- troller.
	Creep speed to initial position is too high.	Decrease the return speed near the initial (home) position, or lengthen the initialization sensor.
Wiring	The output of the initial (home) posi- tion proximity sensor (dog sensor) is chattering.	Check the input to the sensor using an oscilloscope. Modify the wiring around the sensor. Take measures to reduce the noise.
	Noise on encoder wires	Take measures to reduce the noise (noise filters, ferrite cores, etc.). Properly connect the shield wires of I/F cables. Use twist-paired wires. Separate the signal and power wires.

Troubleshooting

Category	Causes	Countermeasures
Wiring	Z-phase signal is not output.	Monitor the Z-phase signal using an oscilloscope. Check that CN I/F Pin 13 is connected to the ground terminal of the con- troller. Connect the open collector to the ground of the driver. Replace the driver and controller, or repair them. Check that the line driver is connected at the both sides. If
	The circuit for Z-phase signal is not correct. the controller does not have a differential input, use CZ out- put (open collector).	

The motor produces an abnormal sound and/or vibration.

Category	Causes	Countermeasures
Wiring	Velocity commands contain noises.	Check the wiring between CN I/F Pins 14 and 15 (velocity command inputs) using an oscilloscope. Take measures to reduce the noise (noise filters, ferrite cores, etc.). Properly connect the shield wires of I/F cables. Use twist-paired wires. Separate the signal and power wires.
Adjustment	The gains are too large.	Decrease the values of Pr10 (velocity loop gain) and Pr11 (position loop gain).
	The velocity detection filter is not correct.	Increase the value of Pr13 (speed detection filter) until the sound decreases to an acceptable level, or return the value to 4 (default).
Installation	Resonance between the machine and motor occurs.	Adjust the value of Pr14 (torque filter). Check the mechanical resonance using the frequency characteristics analysis program in PANATERM. If a resonance occurs, set Pr10(notch frequency).
	Motor bearing	Operate the motor without load in order to check the sound and vibration near the bearing. Replace the motor and operate it to do the same checks. Repair the motor, if necessary. Operate the motor without load or use a new motor in order
	Electromagnetic sound, gear sound, braking sound, hub sound, rubbing sound from the encoder, etc.	to locate the source of sounds. Repair the motor, if necessary.

Overshoot or undershoot

The motor overheats (burnt)

Category	Causes	Countermeasures
Adjustment	Gains are not correct.	Check the gains using the wave form graphics monitoring function of PANATERM, speed monitor (SP) and/or torque monitor (IM). Adjust the gains. See "Adjustments" chapter.
Installation	Load inertia is too large.	Check the load inertia using the wave form graphics monitoring function of PANATERM, velocity monitor Check the coupling between the motor and machine.
	Rattling or slip of the machine	If the ambient temperature is higher than the specified value, install a cooling fan.
	Environment (ambient temperature, etc.)	Check the cooling fans of the driver and machine. The cool-
	The cooling fan does not work. The air intake is dirty.	ing fan of the driver should be replaced at regular cycles. This replacement should be done by a service engineer of the sales agent.
	Mismatch between the driver and motor	Check the nameplates of the driver and motor. For available combinations between driver and motor, see the instruction manuals or catalogues.
	Motor bearings fail.	Turn off the power. Rotate the motor shaft by hand to check whether abnormal sound (rumbling) occurs or not. If it rumbles, replace it with a new one, or repair it.
	The electromagnetic brake is ON (failure to release the brake).	Check the voltage at the brake terminal. Apply 24VDC to release the brake.
	The motor fails (due to oil, water, etc.). The motor is operated by external	Avoid high temperature/humidity, oil, dust and iron powders.
	forces while the dynamic brake is activated.	Check the operation pattern, use and working status. This kind of operation should be avoided.

Troubleshooting

The motor speed does not increase up to the specified value.
The speed (movement) is too large or small.

Category	Causes	Countermeasures
Parameter	The velocity command input gain is not correct.	Check that the value of Pr50 (velocity command input gain) is 500 (i.e. 3000 rpm/6V).
Adjustment	The position loop gain is too small. The scale is not appropriate.	Adjust the value of Pr10 (position loop gain) to approximately 100.
		Correct the values of Pr46 (numerator of 1st command pulse ratio), Pr4A (Multiplier of numerator of command pulse radio) and Pr4B (denominator of pulse command scale). See "Details of Parameters" chapter.

Parameter values change to the former value.

Category	Causes	Countermeasures
Parameter	Parameter values are not downloaded into EEPROM before power off.	See "Parameter Setting" chapter (page 52).

In PANATERM, a message "communication port or driver cannot be detected" appears.

Category	Causes	Countermeasures
Wiring	The communication cable (RS232C) is connected to CN NET.	The communication cable (RS232C) must be connected to CN SER.

Appendixes

Conform to EC Directives and UL Standards App. 2
List of Connectable Motors App. 7
How to Use

- Holding brake App. 9
- Dynamic brake App. 12
- Timing chart App. 14
- Allowable loads on output axes App. 18
- Initialization (Precautions) App. 19
"Absolute" Driver App. 20
Full Close" Driver App. 28
Details of Parameters App. 30
Details of Operation App. 57
Overview of a Communication Control Software PANATERM App. 67
Optional Parts (encoder cables, motor cables, brake cable connector kits, communication cables, communication control software PANATERM, mounting brackets and reactors) App. 69
Recommended Parts
- Surge absorber for motor brake App. 84
- List of peripheral equipment manufacturers App. 85
Outer Views and Dimensions
- Motor App. 86
- Driver App. 100
Properties
Overload protection: time-related characteristics - App. 106
Specifications- Gain switching conditions for each control mode - App. 107- Block diagramsApp. 109
- Specifications of driver App. 113

Conformance to EC Directives and UL Standards

EC Directives

The EC Directives apply to all such electronic products as those having specific functions and directly sold to general consumers in EU countries. These products are required to meet the EU unified standards and to be furnished with CE Marking.
Our product, AC servo, has specific functions, but is not sold directly to general consumers, i.e. this product is regarded as a component that constitutes a machine or equipment. Therefore, the product (AC servo) is not required to be furnished with CE Marking.
However, our AC servos meet the EC Directives for Low Voltage Equipment so that the machine or equipment comprising our AC servos can meet relevant EC Directives.

EMC Directives

Our servo systems can meet EMC Directives and related standards. However, to meet these requirements, the systems must be limited with respect to configuration and other aspects, e.g. the distance between the servo driver and motor is restricted, and some special wiring conditions must be met. This means that in some cases machines and equipment comprising our servo systems may not satisfy the requirements for wiring and grounding conditions specified by the EMC Directives. Therefore, conformance to the EMC Directives (especially the requirements for emission noise and noise terminal voltage) should be examined based on the final products that include our servo drivers and servo motors.

Applicable Standards

Subject	Applicable standard	
Motor	IEC34-1	Standards referenceed b Low-Voliage Directive
Motor and driver	EN50178	
	IEC61800-3 EMC Requirements for Variable Speed Electric Power Driven Systems	Standards referenced by EMC Directives
	EM55011Radio Disturbance Characteristics of Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment	
	IEC61000-4-2 Electrostatic Discharge Immunity Test	
	IEC61000-4-3 Radio Frequency Electromagnetic Field Immunity Test	
	IEC61000-4-4 Electric High-Speed Transition Phenomenon - Burst Immunity Test	
	IEC61000-4-5 Lightning Surge Immunity Test	
	IEC61000-4-6 High Frequency Conduction - Immunity Test	
	IEC61000-4-11 Instantaneous Outage- Immunity Test	

IEC: International Electrical Commission
EN Europaischen Normen
EMC: Electromagnetic Compatibility

Peripheral Equipment

Environment

The servo driver should be used under Contamination Level 2 or 1 specified by IEC60664-1 (housing the driver in an IP54 control box).

Power

100 V system: Single-phase 100 to $115 \mathrm{~V}+10 \% /-15 \%, 50 / 60 \mathrm{~Hz}$ 200V system: Three-phase 200 to $230 \mathrm{~V}+10 \% /-15 \%, 50 / 60 \mathrm{~Hz}$
(1) Use under the environment of Over-voltage Category III specified by IEC60664-1.
(2) The power for interface should be marked CE or EN Standard (EN60950) type, 12VDC to 24VDC, insulated.

Circuit Breaker

Install a circuit breaker between the power supply and noise filter. The circuit breaker should be IEC Standard and UL listed (UL) marked).

Noise Filter

If several drivers are used, and a single noise filter is installed at the power supply, consult the manufacturer of the noise filter.

Surge Absorber

Install a surge absorber at the primary side of the noise filter.
<Notes>
When performing a voltage-resisting test, remove the surge absorber. Otherwise the absorber may be damaged.

Noise Filters for Signal Lines

Install noise filters.

Install noise filters (specially designed for signal wires) for all cables (power, motor, encoder and interface wires).

Grounding

1) Connect between the servo driver's protective earth terminal $\xlongequal{ }$ and control box's protective earth (PE) to prevent electric shocks.
2) Multiple connections to a single protective earth terminal \triangleq should be avoided. There are two protective earth terminals.

Peripheral Devices Applicable to Drivers (EC Directives)

Driver's Series No.	Voltage	Output rating	Circuit breaker (current rating)	Noise filter	Surge absorber	Noise filter for signal lines
$\begin{aligned} & \text { MSDA } \\ & \text { MQDA } \end{aligned}$	100 V	30W ~ 200W	10 A	DVOP1441	DVOP1450	DVOP1460
		400W	15 A	DVOP1442		
MSDA MQDA	200 V	30W ~ 400W	10 A	DVOP1441		
MGDA		300W				
MSDA		750W, 1kW	15 A	DVOP1442		
MDDA		750W, 1kW				
MFDA		400W, 750W				
MHDA		500W, 1kW				
MGDA		600W, 900W				
MSDA		1.5 kW	20 A			
MDDA		1.5 kW				
MFDA		1.5 kW				
MHDA		1.5 kW				
MGDA		1.2 kW				
MSDA		2kW, 2.5kW	30 A			
MDDA		2kW, 2.5kW				
MFDA		2.5 kW				
MHDA		2kW				
MGDA		2kW				
MSDA		$3 \mathrm{kWA} \times 5 \mathrm{~kW}$	50 A	DVOP1443		
MDDA		3kWÅ 5 kW				
MHDA		3kWÅ 5 kW				
MFDA		$3.5 \mathrm{~kW}, 4.5 \mathrm{~kW}$				
MGDA		$3 \mathrm{~kW}, 4.5 \mathrm{~kW}$				

Surge Absorber

Install noise filfers

Optional Part No.	Manufacturer's Product No.	Manufacturer
DVOP1460	ZCAT3035-1330	TDK Corporation

Weight: 62.8 kg

Noise Filters for Signal Lines

Noise Filter

Optional Part No.	Manufacturer's Product No.	Manufacturer
DVOP1441	3SUP-A10H-ER-4	Okaya Electric
DVOP1442	3SUP-A30H-ER-4	
DVOP1443	SSUP-A50H-ER-4	

Circuit diagram

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
DVOP1443	188	160	145	130	110	95	70	55	25	M5	4.5	$\varnothing 4.5 a 7$	10	M4	17.5
DVOP1442	228	200	185	170	110	95	70	60	30	M6	4.5	$\varnothing 4.5 a 7$	10	M4	17.5
DVOP1441	272	240	220	200	140	110	70	80	40	M6	6.5	$\varnothing 6.5 \mathrm{a} 8$	15	M4	20

Conform to UL Standards

The noise filters conform to UL508C (File No. E164620) to satisfy the following conditions.

1) The servo driver should be used under Contamination Level 2 or 1 specified by IEC60664-1 (housing the driver in an IP54 control box).
2) Install a circuit breaker or fuse between the power supply and noise filter. The circuit breaker or fuse should be a UL listed (4) marked) type. The current rating of the circuit breaker or fuse should be per the table in page 4.

List of Motors applicable to Drivers

Driver with a 2500 P/r incremental encoder

Drivers	Size	Applicable motors					
		Series	Product name	Voltage	Output rating	Velocity rating	Encoder
MDDA083AIA	$\begin{gathered} \text { Size } \\ 4-2 \end{gathered}$	MDMA	MDMA082A**	-750W		2000r/min	Incremental, $2500 \mathrm{P} / \mathrm{r},$ 11-wire
MDDA103AIA		Middle Inertia	MDMA102A**	200 V	1.0 kW		
MDDA153AIA			MDMA152A**		1.5 kW		
MDDA203AIA	$\begin{aligned} & \text { Size } \\ & 4-3 \end{aligned}$		MDMA202A**		2.0 kW		
MDDA253AIA			MDMA252A**		2.5 kW		
MDDA303AIA	$\begin{gathered} \text { Size } \\ 5 \end{gathered}$		MDMA302A**		3.0 kW		
MDDA353AIA			MDMA352A**		3.5 kW		
MDDA403AIA			MDMA402A**		4.0 kW		
MDDA453AIA			MDMA452A**		4.5 kW		
MDDA503AIA			MDMA502A**		5.0 kW		
MHDA053AIA	$\begin{aligned} & \text { Size } \\ & 4-2 \end{aligned}$	MHMA	MHMA052A**	200 V	500 W	2000r/min	Incremental, 2500 P/r, 11-wire
MHDA103AIA			MHMA102A**		1.0 kW		
M HDA 153 AIA			MHMA152A*		1.5 kW		
MHDA203AIA	Size 4-3	High Inertia	MHMA202A** \tilde{n}		2.0 kW		
MHDA303AIA	$\begin{gathered} \text { Size } \\ 5 \end{gathered}$		MHMA302A**		3.0 kW		
MHDA403AIA			MHMA402A**		4.0 kW		
M $\mathrm{HDA503AIA}$			MHMA502A**		5.0 kW		
MFDA043AIA	Size 3	MFMA	MFMA042A**	200 V	400 W	2000r/min	Incremental, 2500 P/r, 11-wire
MFDA083AIA	$\begin{aligned} & \text { Size } \\ & 4-2 \end{aligned}$	Flat	MFMA082A**		750 W		
MFDA153AIA			MFMA152A**		1.5 kW		
MFDA253AIA	Size 4-3		MFMA252A**		2.5 kW		
MFDA353AIA	$\begin{gathered} \text { Size } \\ 5 \end{gathered}$		MFMA352A**		3.5 kW		
MFDA453AIA			MFMA452A**		4.5 kW		
MGDA033AIA	Size 3	MGMA	MGMA032A**	200 V	300 W	1000r/min	Incremental, $2500 \mathrm{P} / \mathrm{r},$ 11-wire
MGDA063AIA	$\begin{aligned} & \hline \text { Size } \\ & 4-2 \end{aligned}$	Middle Inertia	MGMA062A**		600 W		
MGDA093AIA			MGMA092A**		900 W		
MGDA123AIA	Size 4-3		MGMA122A**		1.2 kW		
MGDA203AIA	$\begin{gathered} \text { Size } \\ 5 \end{gathered}$		MGMA202A**		2.0 kW		
MGDA303AIA			MGMA302A**		3.0 kW		
MGDA453AIA			MGMA452A**		4.5 kW		
MQDA011AIA	Size 1	MQMAFlatSmall	MQMA011A**	100 V	100 W	3000r/min	Incremental, 2500 P/r, 11-wire
MQDA021AIA	Size 2		MQMA021A**		200 W		
MQDA041AIA	Size 3		MQMA041A**		400 W		
MQDA013AIA	$\begin{gathered} \text { Size } \\ 1 \end{gathered}$		MQMA012A**	200 V	100 W		
MQDA023AIA			MQMA022A**		200 W		
MQDA043AIA	Size 2		MQMA042A**		400 W		

List of Motors applicable to Drivers

Driver with a 17 bits absolute/incremental encoder

Holding brake

The brake is to hold the work (movable part coupled to a vertical motor axis) to prevent it from falling by gravity in case the servo power is lost.
<Caution>
The holding brake is to hold the work, not stop its motion. Never use the brake for decelerating and stopping the machine.

Wiring (Example)

This circuit shows a function of controlling the brake using the brake release signal (BRK-OFF) from the driver.

<Notes and Cautions>

1. The brake coil has no polarities.
2. The power supply for the brake should by supplied by the customer. Do not use the control power (VDC) for driving the brake.
3. Install a surge absorber per the figure above in order to suppress the surge voltage due to the on/off operation of the relay (RY). If you use a diode for surge absorber, note that the start of the servo motor after releasing the brake is delayed.
4. Use the recommended surge absorber. See Recommended Parts in page 84.

Holding brake

BRK-OFF Signal

- See Timing Chart describing the timing of issuing BRK-OFF signal, e.g. to release the brake after power-on, and activate the brake in case a servo-off/alarm occurs during the operation of the motor.
- The timing (delay) of deactivating BRK-OFF signal (i.e. activating the brake) after the motor is freed into a non-excited status in case of Servo-OFF or alarm event can be adjusted by using Pr6B (brake output delay time set-up at motor in motion). For details, see Details of Parameters.
<Notes>

1. The brake may produce a sound (rattling of brake liner). This is not a problem.
2. When energizing the brake coil (when the brake is off), magnetic flux may leak from the end of the axis. If a magnetic sensor or similar device is used near the motor, make sure that the device is not affected by the magnetic flux.

Holding Brake Specifications

Motor	Capacity	Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	$\begin{aligned} & \text { Inertia } \\ & \times 10^{A 44} \\ & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \end{aligned}$	Absorption time (ms)	Releasing time (ms) *1	Excitation current (DC current (A)) (during cooling)	Releasing voltage	Allowable thermal equivalent of work per braking (J)	$\begin{array}{c\|} \hline \text { Allowable } \\ \text { overall } \\ \text { thermal } \\ \text { equivalent of } \\ \text { work } \times \times 103 \mathrm{~J}) \\ \hline \end{array}$
MSMA	30W ~ 100W	0.29 or more	0.003	25 or less	20 or less	0.26	1VDC or more	39.2	4.9
	200W, 400W	1.27 or more	0.03	50 or less	15 or less	0.36		137	44.1
	750W	2.45 or more	0.09	60 or less		0.43		196	147
MQMA	100W	0.29 or more	0.03	50 or less		0.29		137	44.1
	200W, 400W	1.27 or more	0.09	60 or less		0.41		196	147
MSMA	1 kW	4.9 or more	0.25	50 or less		0.74	$2 \mathrm{VDC}$ or more	392	196
	1.5kW ~ 2.5 kW	7.8 or more	0.33			0.81			490
	$3 \mathrm{~kW}, 3.5 \mathrm{~kW}$	11.8 or more		80 or less					
	4 kW ~ 5kW	16.1 or more	1.35	110 or less	50 or less	0.90		1470	2156
MDMA	750W	7.8 or more	0.33	50 or less	15 or less	0.81		392	490
	1 kW	4.9 or more	1.35	80 or less	70 or less	0.59		588	784
	1.5kW, 2kW	13.7 or more		100 or less	50 or less	0.79		1176	1470
	$2.5 \mathrm{~kW}, 3 \mathrm{~kW}$	16.1 or more		110 or less		0.90		1470	2156
	$3.5 \mathrm{~kW}, 4 \mathrm{~kW}$	21.5 or more	4.25	90 or less	35 or less	1.10		1078	2450
	$4.5 \mathrm{~kW}, 5 \mathrm{~kW}$	24.5 or more	4.7	80 or less	25 or less	1.30		1372	2940
MHMA	$500 \mathrm{~W}, 1 \mathrm{~kW}$	4.9 or more	1.35		70 or less	0.59		588	784
	1.5 kW	13.7 or more		100 or less	50 or less	0.79		1176	1470
	2kW ~ 5kW	24.5 or more	4.7	80 or less	25 or less	1.30		1372	2940
MFMA	400W	4.9 or more	1.35		70 or less	0.59		588	784
	750W, 1.5kW	7.8 or more	4.7		35 or less	0.83		1372	2940
	2.5kW, 3.5kW	21.6 or more	8.75	150 or less	100 or less	0.75		1470	1470
	4.5 kW	31.4 or more							2156
MGMA	300W	4.9 or more	1.35	80 or less	70 or less	0.59		588	784
	600W, 900W	11.8 or more			15 or less	0.81		392	490
	1.2kW, 2kW	24.5 or more	4.7		25 or less	1.3		1372	2940
	$3 \mathrm{~kW}, 4.5 \mathrm{~kW}$	58.8 or more		150 or less	50 or less	1.4			

Excitation voltage should be $24 \mathrm{VDC} \pm 10 \%$

*1) Delay of DC cutoff in case a surge absorber is used.
The values in this table are representative (except the friction torque, releasing voltage and excitation voltage). The backlash of the brake is factory-set to within ± 1 degree.

Dynamic Brake (DB)

The driver has a dynamic brake for emergency use. Observe the following precautions.
<Notes>

1. The dynamic brake should be used for emergency stop only.

Do not start or stop the motor by switching servo-on signal on or off.

Otherwise the dynamic brake circuit may be broken.
2. The dynamic brake should be on for just a short time for emergency. If the dynamic brake is activated during a high-speed operation, leave the motor stopped for at least three minutes.
The dynamic brake can be used in the following cases.
A Main power OFF.
B Servo-OFF
C One of the protective functions is activated.
D Over-travel Inhibit (CWL or CCWL) is activated.
In any of four cases above, the dynamic brake can be activated either during deceleration or after stop, or can be made disabled (i.e. allowing the free running of the motor). These features can be set by using the relevant parameters. However, if the control power is OFF, the dynamic brake is kept ON overriding the parameter settings in case the driver is Type $1,2,3$ or 4 ; if the driver is type 5 , the dynamic brake is not activated overriding the parameter settings.

A Options of the operation through deceleration and stop by turning off the main power (Pr67)

B Options of the operation through deceleration and stop by turning on Servo-OFF (Pr69)

C Options of the operation through deceleration and stop by turning on a protective function (Pr68)

D Options of the operation through deceleration and stop by turning on Over-travel Inhibit (CWL or CCWL) (Pr66)

Operating conditions	
During decaleration	After stop

Timing Chart

After Power ON (receiving Servo-ON signal)

 torque command

<Notes>

*1. The main power should be turned on at the same time or after turning on the control power.
*2. This means that SRV-ON signal is entered mechanically, but not accepted actually.

After an Alarm event (during Servo-ON)

*1. The value of t 1 is the value of $\operatorname{Pr6B}$ or the time needed for decreasing the motor speed to approx. $30 \mathrm{r} / \mathrm{min}$, which is shorter.
*2. For the operation of the dynamic brake following an alarm event, see the explanation of Pr68 in "Details of Parameters".

Timing Chart

*1. The value of t depends on the value of Pr6A.
*2. For the operation of the dynamic brake at Servo-OFF, see the explanation of Pr69 in "Details of Parameters".

Servo-ON/OFF operation when the motor is in operation

With Servo-ON entered
Servo-ON
(SRV-ON)
Dynamic brake
Servo-OFF

Servo-ON

Dynamic brake

Braking		
	Released	
Free (not energized)	approx	50 ms

(BRK-OFF)

Motor speed

With Servo-OFF entered

*1. The value of t 1 is the value of Pr6B or the time needed for decreasing the motor speed to about $30 \mathrm{r} / \mathrm{min}$, which is shorter.
*2. During deceleration, Servo-ON does not become active until the motor stops, even if you attempt to turn on SRV-ON again.
*3. For the operation of the dynamic brake at Servo-OFF, see the explanation of Pr69 in "Details of Parameters".

Acceptable Loads on Output Axes

Acceptable Loads on Output Axes

Radial load (P)

Thrust load (A and B)

Unit: $\mathrm{N}(1 \mathrm{kgf}=9.8 \mathrm{~N})$

Motor series	Motor capacity	Design			Acceptable during operation	
		Radial load	Thrust load		Radial load	Thrust load (A or B direction)
			A direction	B direction		
MSMA	30W	147	88	117.6	49	29.4
	50W, 100W				68.6	58.8
	200W, 400W	392	147	196	245	98
	750W	686	294	392	392	147
MQMA	100W	147	88	117.6	68.6	58.8
	200W, 400W	392	147	196	245	98
MSMA	1 kW	686	392	490	392	147
	$1.5 \mathrm{~kW} \sim 3.5 \mathrm{~kW}$	980	588	686	490	196
	4 kW ~ 5kW				784	343
MDMA	750W	686	392	490	392	147
	1 kW ~ 2 kW	980	588	686	490	196
	$2.5 \mathrm{~kW}, 3 \mathrm{~kW}$				784	343
	$3.5 \mathrm{~kW}, 4 \mathrm{~kW}$	1666	784	980		
	$4.5 \mathrm{~kW}, 5 \mathrm{~kW}$					
M HMA	500W ~ 1.5kW	980	588	686	490	196
	2kW ~ 5kW	1666	784	980	784	343
MFMA	400W	980	588	686	392	147
	750W, 1.5kW				490	196
	2.5kW ~ 4.5kW	1862	686		784	294
M GMA	300W ~ 900W	980	588		490	196
	1.2kW ~ 3kW	1666	784	980	784	343
	4.5 kW	2058	980	1176	1176	490

Initialization (Precautions)

In the operation of initialization (returning to the home position), if the initialization signal (Z-phase signal from the encoder) is entered before the motor is not substantially decelerated (after the proximity sensor is activated), the motor may not stop at the required position. To avoid this, determine the positions with the proximity sensor on and initialization signal on in consideration of the number of pulses required for successful deceleration. The parameters for setting the acceleration/deceleration time also affect the operation of initialization, so that these parameters should be determined in consideration of both the positioning and initializing operations.

The motor will start to decelerate with the proximity sensor ON , and stop with the first initialization signal (Z-phase).

The motor will start to decelerate with the proximity sensor ON, and stop with the first initialization Z-phase signal after the proximity sensor OFF.

"Absolute" Driver

In case of using an absolute encoder, or in case of using an absolute/incremental encoder as an absolute encoder, connect a battery for operating the absolute encoder, and set PrOB (absolute encoder set-up) to 0 . With this setting, the controller can know the current position of the motor, and the absolute system without any operation of initialization will become available.

Initializing the Encoder

Before using the driver-motor system, it is necessary to clear (initialize) the encoder at the home position. With this operation, the value of the multi-turn counter will become 0 . For this operation, use the LED touch panel (auxiliary function: absolute encoder clear mode) or PANATERM (DVOP1950). After this operation, you must turn off the control power and turn it on again to save the data in the encoder.

Absolute Data

The absolute data consist of:Single-turn data that defines the absolute position of the motor, and Multi-turn data that counts the number of turns after the latest clearing operation of the encoder.

Structure of Absolute Data

The single- and multi-turn data consist of 15-character data (hexadecimal binary code) from the RS232C or RS485 communication interface. For the communication procedure, see pages 23 and 25 in Appendix.

Absolute data (15 characters) received

OBh	\longleftarrow Value of RSW(ID) on the LED touch panel
RSW (ID)	
D2h	
03h	
11h	
Encoder status (L)	
Encoder status (H)	
Single-turn data (L)	Single-turn data
Single-turn data (M)	$=$ Single-turn data (H) $\times 10000 \mathrm{~h}+$ Single-turn data (M) $\times 100 \mathrm{~h}+$ Single-turn data (L)
Single-turn data (H)	
Multi-turn data (L)	Multi-turn data
Multi-turn data (H)	$=$ Multi-turn data (H) x 100h + Multi-turn data (L)
00h	
Error code	\longleftarrow After communication is executed,
Checksum	this value is 0 . If not 0 , read again the absolute data from the driver.

Encoder status (1 means the occurrence of an error)

Encoder status (L)								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
			0					
Encoder status (H)								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	0			0	0	0	0	
\qquad Battery error Occurrence of battery alarm, multi-turn counter error, counter over, counter error, full absolute status or over-speed								

For details of the encoder status, see Encoder Specifications.

- For details of the transfer of absolute data, see Communication Specifications.
- When transferring absolute data, enter Servo-OFF and fix the motor using a brake.

Installing the Battery

The backup battery is used for saving the position data of the absolute encoder when the main power of the driver is off. Use one of the following methods for connecting the battery. 1 Install the battery at the controller side.
2 Install the battery in the driver.
3 Install the battery at the motor side.
If the encoder cable must be removed and then reconnected at the installation site, apply the method 3 (Install the battery at the motor side) so that the encoder can be powered continually.

"Absolute" Driver

RS232C Communication Protocol

* For battery connection, see Installing the Battery in the previous page.

Baud rate	$2400,4800,9600 \mathrm{bps}$
Data Iength	8 bits
Parity	Nil
Start bit	1 bit
Stop bit	1 bit

The baud rate is determined by Parameter No.0C (Baud rate set-up of RS232C).

RS232C Communication Protocol

For the transfer of commands, see the instructions of the controller. RS232C communication is possible with Servo Ready output ON.

*1 and *2 data depend on the value of RSW(ID) on the LED touch panel.

RSW(ID)	*1 data	$* 2$ data
0	00 h	2 Eh
1	01 h	2 Dh
2	02 h	2 Ch
3	03 h	2 Bh
4	04 h	2 Ah
5	05 h	29 h
6	06 h	28 h
7	07 h	27 h
8	08 h	26 h
9	09 h	25 h
A	0 Ah	24 h
B	0 Bh	23 h
C	0 Ch	22 h
D	0 Dh	21 h
E	0 Eh	20 h
F	0 Fh	1 Fh

Checksum: OK if the value of the lowest 8 bits of the sum of the received absolute data (15 characters) is 0 .

The host enters the RSW value (*1 data) of the desired driver into the "axis" field of the command block, and sends the command according to the RS232C communication protocol.

"Absolute" Driver

RS485 Connection

Max. 15 axes

* For battery connection, see Installing the Battery in the previous page.

Baud rate	$2400,4800,9600 \mathrm{bps}$
Data length	8 bits
Parity	Nil
Start bit	1 bit
Stop bit	1 bit

The baud rate is determined by Parameter No.0D (Baud rate set-up of RS485).

RS485 Communication Protocol

For the transfer of commands, see the instructions of the controller.
RS485 communication is possible with Servo Ready output ON.
The following flow chart shows the communication when RSW(ID) $=1$.

Checksum: OK if the value of the lowest 8 bits of the sum of the received absolute data (15 characters) is 0 .

The host sends the command to the desired driver according to the RS485 communication protocol.

"Absolute" Driver

How to install the battery

1. Cut away the upper right corner of the terminal block cover for types 1 through 3

Use nippers.

3Replace the cover, and tighten the screw.
2. Insert the battery into the holder.

3. Set the holder to the driver.

Battery
DVOP2060

- App. 26 -

<Notes>
If using two batteries simultaneously, one at the driver and other one at the controller, a loop circuit is made, which may cause troubles.

1. Never use a damaged (liquid leaking) battery.
2. Make sure that the battery cable is firmly connected. Otherwise electric contact may be lost due to aging.

"Full Close" Driver

Combining a certain type of the driver with an external scale (linear type), you can use the full-close driver for precise positioning.
Drivers available for "full-close" use are the 17-bit absolute driver and 17-bit absolute/incremental driver. details, see Full-Close Specifications.

Wiring of main circuit

For wiring, see page 22.

CN SIG Connector

MSMA (750W or less) and MQMA

MSMA (1kW or more), MDMA, MFMA, MHMA and MGMA

<Note>
Please prepare the electrical power for the external scale.

CN I/F Connector

See Full-Close Specifications.
For wiring, see page 28.

Parameter Listing

See Full-Close Specifications.

Connection to an external scale

- Relationship between signal from external scale and rotating direction

Details of Parameters

Parameters for Function Selection
Default setting is shown by []

PrNo.	Parameter	Value		Func	
02	Control mode set-up	$\begin{gathered} \hline 0 \sim \\ 10 \\ {[1]} \end{gathered}$	You can set the control mode to be used.		
			Value	Control mode	
				1st mode	2nd mode *2
			0	Position	-
			1	Velocity	-
			2	Torque	-
			3	Position	Velocity
			4	Position	Torque
			5	Velocity	Torque
			$6 \sim 10$		
	*1 These are special modes intended for "full-close" operation. For detals, see Full-Close Specifications. *2 If a hybrid mode has been selected ($\operatorname{PrO}=3,4,5,9$ or 10), switch the 1 st . and 2 nd . mode with the control mode switching input(C-MODE). ÅÉNotesÅÑ Allow 10 ms or longer before entering any commands, after entering C-MODE.				
03	Analogue torque limit inhibit	$\begin{gathered} 0 \sim 1 \\ {[1]} \end{gathered}$	You can disable the analogue torque limit inpu (CCWTL or CWTL). 1ÅFInput disabled 0ÅFInput enabled		
	If you do not use the torque limit, set Pr03 to 1 . With Pr03 = 0 and torque limit input (CCWTL and CWTL) open, the motor does not run.				

Details of Parameters

PrNo.	Parameter	Value		Function	
05	Internal speed switching	$\begin{gathered} \hline 0 \sim 2 \\ {[0]} \end{gathered}$	- You can eas inputs only.	set-up the interna	speed with contact
	- You can select whether to enable or disable the internal velocity set-up. - There are four options of internal velocity commands: Pr53 (1st speed), Pr54 (2nd speed), Pr55 (3rd speed) and Pr56 (4th speed). - Block diagrams of the internal and external velocity set-up functions - Switching between the four options of internal velocity commands uses two contact inputs. Example: 4 -speed operation using the internal velocity commands To run/stop the motor, you need zero speed clamp input(ZEROSPD) and Servo-ON input(SRV-ON) in addition to CLINH input. A INH (CN I/F Pin 33): Internal velocity command select 1 B CL (CN I/F Pin 30): Internal velocity command select 2				
	$\left.\begin{array}{\|c\|c\|}\hline \text { INH } & \text { CL } \\ (\text { Pin 33) }\end{array}\right)($ (Pin 30) $)$		Value of Pr05		
			0	1	2
	Off	Off	External velocity command	1st Internal speed (Pr53)	\leftarrow
	On	Off	\uparrow	2st Internal speed (Pr54)	\leftarrow
	Off	On	\uparrow	3st Internal speed (Pr55)	\leftarrow
	On	On	\uparrow	4st Internal speed (Pr56)	External velocity command

Details of Parameters

PrNo.	Parameter	Value	Function
05 (continued)	- Example: 4-speed operation using the internal velocity commands To run/stop the motor, you need zero speed clamp input(ZEROSPD) and Servo-ON input(SRV-ON) in addition to CL/INH input. You can set-up the acceleration/deceleration time, and S-curve acceleration/deceleration time individually with parameters. See the following descriptions of the parameters: Pr58 (Acceleration time set-up) Pr59 (Deceleration time set-up) Pr5A (S-shaped accel/decel time set-up)		
06	ZEROSPD input selection	$0 \sim 1$ [0] he ZER e moto he ZER garded	You can switch whether to enable or disable the zero speed clamp input (ZEROSPD, CN I/F Pin 26). Function of ZEROSPD input (Pin 26) OSPD input is disabled, and the driver assumes that is always "not clamped to zero speed". OSPD input is enabled, and the velocity command is as " 0 ", by opening the connection to COM- .

PrNo.	Parameter	Value		Funct	
07	Speed monitor(SP) selection	$\begin{gathered} 0 \sim 9 \\ {[3]} \end{gathered}$	You can select/set-up the relationship between the voltage to be fed-out to the speed monitor signal output (SPM: CN I/F Pin 43) and the actual speed (or command velocity) of the motor.		
	Value	SPM signal	Relationship between output voltage level and velocity		
	0	Actual motor speed	$6 \mathrm{~V} / 47 \mathrm{r} / \mathrm{min}$		
	1		$6 \mathrm{~V} / 187 \mathrm{r} / \mathrm{min}$		
	2		$6 \mathrm{~V} / 750 \mathrm{r} / \mathrm{min}$		
	3		$6 \mathrm{~V} / 3000 \mathrm{r} / \mathrm{min}$		
	4		$1.5 \mathrm{~V} / 3000 \mathrm{r} / \mathrm{min}$		
	5	Commanded veloctly	$6 \mathrm{~V} / 47 \mathrm{r} / \mathrm{min}$		
	6		$6 \mathrm{~V} / 187 \mathrm{r} / \mathrm{min}$		
	7		6V / $750 \mathrm{r} / \mathrm{min}$		
	8		6V / $3000 \mathrm{r} / \mathrm{min}$		
	9		$1.5 \mathrm{~V} / 3000 \mathrm{r} / \mathrm{min}$		
08	Torque monitor (IM)selection	$\begin{gathered} 0 \sim 5 \\ {[0]} \end{gathered}$	You can select/set-up the relationship between the voltage to be fed-out to torque monitor signal output (IM: CN I/F Pin 42) and the actual torque of the motor or position error pulse counts.		
	Value	SPM signal	Relationship between output voltage and torque or position error pulse counts		
	0	Torque	$3 \mathrm{~V} /$ rated torque (100\%)		
	1	Position error pulse counts	3V / 31 Pulse		
	2		3V / 125 Pulse		
	3		3V / 500 Pulse		
	4		3V / 2000 Pulse		
	5		3V / 8000 Pulse		
	6 A` 10		Enabled at full-close control (see Full-Close Specifications)		
09	TLC output selection	$\begin{gathered} 0 \sim 5 \\ {[0]} \end{gathered}$	You can define the functions of the torque limit output (TLC: CN I/F pin 40).		
	Varue	Function		Signal symbol	Remarks
	0	Torque in-limit		TLC	For details of these functions, see the section of CN I/F Connector.
	1	Zero speed detection		ZSP	
	2	Alarm signal		WARN ALL	
	3	Overregeneration alarm		WARN REG	
	4	Overload alarm		WARN OL	
	5	Absolute battery alarm		WARN BATT	

Details of Parameters

PrNo.	Parameter	Value	Function	
0 A	ZSP output selection	$\begin{gathered} \hline 0 \sim 5 \\ {[1]} \end{gathered}$	You can define the functions of the zero speed detection output (ZSP: CN I/F pin 12). The relationship between PrOA value and ZSP output is the same as that of Pr09 (TLC).	
0 B	Absolute encoder set-up	$0 \sim 2$ [1]	Use this when using an absolute encoder.	
			Value	Description
			0	Uses an absolute encoder as an absolute encoder.
			1	Uses an absolute encoder as an incremental encoder.
			2	Uses an absolute encoder as an absolute encoder (but ignoring the "multi-turn counter over").
0 C	Baud rate set-up of RS232C	$\begin{gathered} 0 \sim 2 \\ {[2]} \end{gathered}$		
			0	2400 bps
			1	4800 bps
			2	9600 bps
0 D	Baud rate set-up of RS485	$\begin{gathered} 0 \sim 2 \\ {[2]} \end{gathered}$	Value Baud rate	
			0	2400 bps
			1	4800 bps
			2	9600 bps

<Note>

- For the default values of Pr11 and Pr14, see page 44.

Parameters for Time Constants of Gains and Filters: Related to Real Time Auto Tuning

PrNo.	Parameter	Value	Unit	Function
10	1st position loop gain	$\begin{gathered} 10 \sim \\ 2000 \\ {[50]} \\ \hline \end{gathered}$	1/s	- You can define the response characteristics of position control. Higher the gain you set, quicker the in-position time you can obtain.
11	1st velocity loop gain	$\begin{gathered} 1 \sim \\ 3500 \end{gathered}$	Hz	- To obtain the overall response of the servo system together with the above position gain, set this gain as large as possible.
12	1st velocity loop integration time constant	$\begin{gathered} 1 \sim \\ 1000 \\ {[50\}} \end{gathered}$	ms	- Integration element of the velocity loop. The smaller the setting, the quicker you can reduce the velocity error to 0 , after stopping. - The integration is disabled by setting this to 1,000 .
13	1st speed detection filter	$\begin{gathered} 0 \sim 5 \\ {[4]} \end{gathered}$	\%	- You can set-up the time constant of low-pass filter(LPF) in 6 stages(0 to 5), which is inserted after the block , and which converts the encoder signal to the velocity signal. - The higher the value you set-up, the smaller the noise you can obtain, however, it is usually recommended to use the default value (4).
14	1st torque filter time constant	$\begin{gathered} 0 \sim \\ 2500 \end{gathered}$	0.01 ms	- You can set-up the time constant of the primary delay filter that is inserted to the torque command portion. - Use this function to suppress the oscillation caused by torsion resonance.
15	Velocity feed forward	$\begin{gathered} 0 \sim \\ 100 \\ {[0]} \end{gathered}$	\%	You can set-up the amount of velocity feed forward at position control. Position error becomes almost 0 while the motor runs at a constant speed, by setting this to 100%. The higher the setting you make, the quicker the response you can obtain with smaller position error, however, it may cause overshoot.
16	Feed forward filter time constant	$\begin{gathered} 0 \sim \\ 6400 \\ {[0]} \end{gathered}$	0.01 ms	-You can set-up the time constant of the primary delay filter that is inserted to the velocity feed forward portion. - Use this function to reduce the over and undershoot of the speed, chattering of the in-position signal.
17	(Reserved)			

[^1]
Details of Parameters

PrNo.	Parameter	Value	Unit	Function			
18	2nd position loop gain	$\begin{gathered} \hline 10 \sim \\ 2000 \\ {[50]} \end{gathered}$	1/s	- This driver provides 2(two) sets (1st. and 2nd.) of gain and time constant for position loop, velocity loop, velocity detection filter and torque command filter. - The functions and meanings of these 2nd gains or time constants are the same as those of the 1st ones mentioned in the previous page. - For switching between the 1 st and 2nd gains or constants, see Adjustment. * If Pr20 (inertia ratio) has been set correctly, the unit of the values of $\operatorname{Pr} 11$ and $\operatorname{Pr} 19$ is Hz . - You can set-up the frequency of the resonance suppression notch filter. - You can set-up the resonance frequency of the machine system which you can obtain by the frequency characteristics analysis program contained in PANATERM. - This notch filter function will be disabled by setting this parameter to 1500. - You can set-up the width (five options) of the resonance suppression notch filter in 5 steps. The higher the setting is, the wider the width you can obtain. - In normal cases, the default value should be used. - You can set-up the time constant (eight options) of the primary delay filter inserted in the Distubbance torque observer. tor becomes larger, with a smaller value of Pr1F(better suppresrecommended that you start from the smaller value of Pr1F to e the value. que in the observer, the inertia ratio (Pr20) is necessary. If the inertia ratio and set the value of Pr 20 to the inertia ratio calcuperform the auto gain tuning that automatically enters the value			
9	2nd velocity loop gain	$\begin{gathered} 1 \sim \\ 3500 \end{gathered}$					
1 A	2nd velocity loop integration time constant	$\begin{gathered} 1 \sim \\ 1000 \\ {[50]} \end{gathered}$	ms				
1 B	2nd speed detection filter	$\begin{gathered} 0 \sim 5 \\ {[4]} \\ \hline \end{gathered}$	Å				
1 C	2nd torque filter time constant	$\begin{gathered} 0 \sim \\ 2500 \end{gathered}$	0.01 ms				
1 D	Notch frequency	$\begin{gathered} 100 \sim \\ 500 \\ {[1500]} \end{gathered}$	Hz				
1 E	Notch width selection	$0 \sim 4$ [2]					
1 F	Disturbance torque observer	$\begin{gathered} 0 \sim 8 \\ {[8]} \end{gathered}$	-				
	*1 Note that the running noise of the motor becomes larger, with a smaller value of $\operatorname{Pr} 1 F$ (better suppression of the Disturbance torque). It is recommended that you start from the smaller value of $\operatorname{Pr1F}$ to see the actual response and increase the value. - For the calculation of Disturbance torque in the observer, the inertia ratio $(\operatorname{Pr} 20)$ is necessary. If the load inertia is known, calculate the inertia ratio and set the value of $\operatorname{Pr} 20$ to the inertia ratio calculated. If the load inertia is unknown, perform the auto gain tuning that automatically enters the value of $\operatorname{Pr} 20$.						

<Note>

- For the default values of $\operatorname{Pr} 19, \operatorname{Pr} 1 \mathrm{C}$ and $\operatorname{Pr} 20$, see page 44.

Parameters for real time gain tuning

PrNo.	Parameter	Value	Unit		Function
20	Inertia ratio	$\begin{gathered} 0 \sim \\ 10000 \end{gathered}$	\%	- You can motor's Pr20 =(L - The load gain tun paramet If Pr20 (in ues of Pr is larger of these is smalle value of	t-up the ratio of load inertia to the or inertia. inertia)/(Rotor inertia) $\times 100 \%$ ia can be estimated by executing the auto and this result will be reflected in this a ratio) is set correctly, the unit of the valand $\operatorname{Pr} 19$ becomes Hz . If the value of $\operatorname{Pr} 20$ the actual load inertia, the unit of the value meters becomes larger. If the value of $\operatorname{Pr} 20$ an the actual load inertia, the unit of the e parameters becomes smaller.
21	Real time auto tuning set-up	$\begin{gathered} \hline 0 \sim 3 \\ {[0]} \end{gathered}$	-	- You can define the operating mode of the real time auto tuning.	
	Value	Real time auto tuning			Fluctuation of load inertia during operation
	0	Not used			-_
	1	Used			Rarely fluctuates
	2				Fluctuates slowly
	3				Fluctuates quickly
				- With a larger value of Pr 21 , a quicker response to the change in load inertia can be obtained, though the operation may become unstable depending on the operating pattern. In normal cases, the value of this parameter should be 1 or 2 .	
22	Machine stiffness at auto tuning	$0 \sim 9$ [2]	-	- You can set-up the machine stifness (from 10 options) that is used at the real time auto gain tuning.	
				Pr22	Low \leftarrow Machine stiffness \rightarrow High Low \leftarrow Servo gain \rightarrow High $0 \cdot 1-----------8 \cdot 9$ Low \leftarrow Response \rightarrow High

- Large impact shock might be given to the machine, when you suddenly set this parameter to a larger value. Start from the smaller value while monitoring the machine movement.

Details of Parameters

Parameters for Switching to 2nd Gains

PrNo.	Parameter description	Range	Unit	Function		
30	2nd gain action set-up	$\begin{gathered} 0 \sim 1 \\ {[0]} \end{gathered}$	-	- You can select the switching between Pl and Poperations, and switching between the 1st and 2nd gains.		
				Value	Gain selection and switching	
				0	Fixed to the 1st gains *1 (switching between PI and P possible)	
				1	Switching between the 1 st and 2nd gains possible *2	
				*1 Switch the PI and P-action with the gain switching input (GAIN: CN I/F Pin 27).		
				GAIN input		Operation of the position loop
				COM- disconnected		PI operation
				COM- connected		P operation
				*2 See Adjustment for the conditions for switching be tween the 1st and 2nd gains.		
31	Position control switching mode	$\begin{gathered} 0 \sim 8 \\ {[0]} \end{gathered}$	-	ÅE You can select the conditions for switching between the 1st and 2nd gains at the position control mode.		
	Value	Conditions for gain switching				
	0 F	Fixed to the 1st gain				
	1 F	Fixed to the 2nd gain				
	2	2nd gain selection with the gain switching input (GAIN) ON/ (Pr30 must be set to 1)				
	3 2	2nd gain selection with a larger torque command change				
	4 Fix	Fixed to the 1st gain				
	5 2	2nd gain selection with a larger velocity command				
	6 2	2nd gain selection with a larger position error				
	7 2	2nd gain selection with the position command issued				
	8 2	2nd gain selection with no in-position				

PrNo.	Parameter description	Range	Unit	Function
32	Position control switching delay time	$\begin{gathered} \hline 0 \sim \\ 10000 \\ {[0]} \\ \hline \end{gathered}$	x $166 \mu \mathrm{~s}$	- You can set-up the delay time when switching from the 2nd. to the 1st. gain when the actual status shifts out of the preset condition with Pr31.(see page 62)
33	Position control switching level	$\begin{gathered} 0 \sim \\ 10000 \\ {[0]} \\ \hline \end{gathered}$	-	- This parameter is enabled when $\operatorname{Pr} 31$ is set to 3,5 and 6 , and you can define the level of judgement fo switch from the 1st. to the 2nd. gain.
34	Position control switching hysteresis	$\begin{gathered} 0 \sim \\ 10000 \\ {[0]} \end{gathered}$	-	- You can set-up the width of the hysteresis to be defined at the top and bottom of the level of judgement set with Pr33. - The figure below shows the definitions of Pr32 (delay time), Pr33 (switching level) and Pr34 (hysteresis). <Notes> The settings of Pr33 (level) and Pr34 (hysteresis) are enabled as absolute values.
35	Position loop gain switching time	$\begin{gathered} 0 \sim \\ 10000 \\ {[0]} \end{gathered}$	$\begin{gathered} \hline \text { Nalue + 1) } \\ \text { x } 166 \mu \mathrm{~s} \end{gathered}$	- You can set-up a phased switching time of the gain applied to the position loop alone, while the 2nd. gain switching function is enabled. - Use this parameter only for switching from a smaller position loop gain to a larger position loop gain (from Kp 1 to Kp 2) (in order to reduce the impact forces caused by a large change in gain). - Set the smaller value than the difference between KP2 and KP1.

Details of Parameters

PrNo.	Parameter description	Range	Unit	Function
36	Volocity control switching mode	$\begin{gathered} \hline 0 \sim 5 \\ {[0]} \end{gathered}$		- You can select the conditions for switching between the 1st and 2nd gains at position control. - Pr36 is same as Pr31(Position control switching mode) except for the position control portion.
	Value			Gain switching
	0	Fixed to the 1nd gain		
	1	Fixed to the 2nd gain		
	2	2nd gain selection with the gain switching input (GAIN) ON (Pr30 must be set to 1)		
	3	2nd gain selection with a large torque command change		
	4	2nd gain selection with a large velocity command change (acceleration)		
	5	2nd gain selection with a large velocity command		
37	Velocity control switching delay time	$0-100000$ [0]	x $166 \mu \mathrm{~s}$	- Same as Pr32 (switching delay time), Pr33 (switching level) and Pr34 (switching hysteresis) for position control.
38	Velocity control switching level	0-100000 [0]	-	
39	Velocity control switching hysteresis	$\begin{gathered} 0-100000 \\ {[0]} \\ \hline \end{gathered}$	-	
3 A	Torque control switching mode	$\begin{gathered} 0 \sim 3 \\ {[0]} \end{gathered}$		- You can select the conditions for switching between the 1 st and 2nd gains at torque control. - Pr3A is same as Pr31 except position control and velocity control portion.
	Value	Gain switching		
	0	Fixed to the 1nd gain		
	1	Fixed to the 2nd gain		
	2	2nd gain selection with the gain switching input (GAIN) ON (Pr30 must be set to 1)		
		2nd gain selection with a large torque command change		
3 B	Torque control switching delay time	a-10000 [0]	$\mathrm{x} 166 \mu \mathrm{~s}$	- Same as Pr32 (switching delay time), Pr33 (switching level) and Pr34 (switching hysteresis) for position control.
3 C	Torque control switching level	0-100000 [0]	-	
3 D	Torque control switching hysteresis	$\begin{gathered} \hline 0-100000 \\ {[0]} \\ \hline \end{gathered}$	-	

Parameters for Position Control

Details of Parameters

PrNo.	Parameter description	Range	Function							
$\begin{array}{\|c\|} \hline 42 \\ \text { (continued) } \end{array}$	Maximum permissible frequency and minimum required time width of command pulse inputs									
	I/F for inputting PULSE/SIGN signals		Maximum permissible frequency	Minimum required time width [$\mu \mathrm{s}$]						
			t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}		
	Interface for line drivers			500kps	2	1	1	1	1	1
	Interface for open collectors		200kpps	5	2.5	2.5	2.5	2.5	2.5	
	Make both of the rising and tailing time 0.1μ s or shorter.									
43	Command pulse inhibit input invalidation	$\begin{gathered} \hline 0 \sim 1 \\ {[1]} \end{gathered}$	You can select enabled or disabled of the command pulse inhibit input (INH: CN I/F Pin 33).							
			Value INH input							
			0 enabled							
			1 disabled							
	Command pulse input is disabled by opening the connection between INH input and COM-. If you do not use INH inputs, set Pr43 to 1. With this setting, you do not have to externally connect between INH (CN I/F Pin 33) and COM- (Pin 41).									
44	Output pulses per single turn	$\begin{gathered} \hline 1 \sim \\ 16384 \\ {[2500]} \end{gathered}$	You can set-up encoder pulse counts per single turn, which is to be fed-out to the controller. Setting in scalar.Set the required pulse counts per single turn in [Pulse/rev] unit directly. Note that the set-up of the larger counts than the encoder pulses is disabled.							

<Note>
For the default values of Pr46 through Pr4B, see page 46.

Details of Parameters

PrNo.	Parameter description	Range	Function	
$\begin{array}{\|c\|} \hline 46 \\ \sim \\ \text { 4B } \\ \text { (continued) } \end{array}$			You can select the numera *1 Select the 1st. or 2nd. nu (DIV: CN I/F Pin 28). *2 Use the 3rd and 4th com as "fill-close" operatio <Example> - Basic relation is defined mand input of encoder re Therefore, when the en enter $f=5000$ pulses in ca of scale ratio of $1 / 4$ to tur - Set-up the Pr46, Pr4A an (F) equals the resolution $F=f x(P$ F: Internal command pu f: Command pulse cou	e command scalar. with scalar input switching (Pr46) selection (Pr47) selection scalars only for special operations such details, see FullClose Specifications motor runs one revolution with the com (f), when the scale ratio is 1 . esolution is $10000 \mathrm{P} / \mathrm{r}$, it is necessary ale ratio of 2 , and $f=40000$ pulse in cas motor one revolution. o that the post-scaling internal command or 217) of the encoder. $\left.{ }^{4 A}\right) /$ Pr4B $=10000$ or 2^{17} ts required for motor one revolution ed for motor one revolution
Resolution of encoder		$2^{17}(131072)$		10000(2500P/r x 4)
Example 1: Command input (f) is 5000 pulses per one revolution		$\begin{array}{cc} & \begin{array}{c} \operatorname{Pr} 4 \mathrm{~A} \\ \operatorname{Pr} 46 \boxed{17} \times 2 \\ \operatorname{Pr} 4 \mathrm{~B} \sqrt{17} \\ \hline \end{array} \\ \hline \end{array}$		$\frac{\operatorname{Pr} 46 \boxed{10000 \times 2}}{\operatorname{Pr} 4 \mathrm{~B} \sqrt[5000]{ }} \stackrel{\operatorname{Pr} 4 \mathrm{~A}}{0}$
Example 1: Command input (f) is 4000 pulses per one revolution		$\frac{\operatorname{Pr} 4 \mathrm{~A}}{\operatorname{Pr} 46 \boxed{1 \times 2}} \begin{gathered} \operatorname{Pr} 4 \mathrm{~B} \sqrt{10000} \\ \hline \end{gathered}$		$\frac{\operatorname{Pr} 4 \mathrm{~A}}{} \begin{gathered} \\ \operatorname{Pr} 46 \boxed{2500} \times 2 \\ \operatorname{Pr} 4 \mathrm{~B} \sqrt{10000} \end{gathered}$

PrNo.	Parameter description	Range		Function
4 C	Smoothing filter set-up	$\begin{gathered} 0 \sim 7 \\ {[1]} \end{gathered}$	This filter is a the command	imary delay filter that is inserted after the scaling function in ulse input portion.
	Purpose of this filter - Reduce the stepwise motion of the motor that may appear when the command input is rough. - The command input may become rough when: 1) The scale ratio is large (10 times or greater) 2) The command frequency is low.			
			- You can set-up the time constant of the smoothing filter in 8 steps with Pr4C.	
			Value	Time constant
			0	No filtering function
			1	\downarrow
			\sim	Large time constant
			7	\downarrow
4 D	Counter clear input	$\begin{gathered} 0 \sim 1 \\ {[0]} \end{gathered}$	You can set-up the conditions for clearing the position error counter, i.e. for issuing the counter clear signal (CL: CN I/F Pin 30).	
			Value	Conditions
			0	Cleared with level (*1)
			1	Cleared with edge (rising part)
			*1 : Minimum	ne width of the CL signal
			CL	30)

Details of Parameters

Parameters for Velocity Control

PrNo.	Parameter description	Range		Function
50	Velocity command input gain	$\begin{gathered} 10 \sim \\ 2000 \\ {[500]} \end{gathered}$	You can set applied to th	he relationship between the motor speed and the voltage ocity command input (SPR: CN I/F Pin 14).
	- Pr50 defines the gradient "rpm/command voltage". - The default of Pr50 is 500 [(r/min)/V], e.g. 6 V with $3000 \mathrm{r} / \mathrm{min}$. <Notes> 1. Don't apply more than ?10V to the velocity command input (SPR). 2. If the position loop is composed externally, the set-up value of $\operatorname{Pr50}$ affects the overall position gain. Higher set-up of Pr50 could cause oscillation.			
51	Velocity command input logic inversion	$\begin{gathered} \hline 0 \sim 1 \\ {[1]} \end{gathered}$	You can invert the polarity of the velocity command input (SPR). Use this parameter in such a case as you want to change the motor rotating direction without changing the polarity of the command signals from the controller.	
			Value	Rotating direction
			0	CCW with (+) command (viewed from the shaft end)
			1	CW with (+) command (viewed from the shaft end)
			<Notes> The default that the con fault setting.	s parameter is 1 , i.e. CW rotation with (+) command. Note onal versions of MINAS series drivers have the same de-
	<Notes> When the driver is used at velocity control mode, in combination with the external positioning unit, pay extra attention to the case when the polarity of this parameter does not match to that of the velocity signal from the positioning unit. This could cause the motor malfunction.			

Details of Parameters

Parameters for Torque Control

<Notes>

You can't set-up a greater value with this parameter than default value (300\%), which is defined by the system parameter (Max. torque output).

Details of Parameters

Parameters for various sequences

PrNo.	Parameter description	Range	Function
60	In-position range	$\begin{gathered} 0 \sim \\ 32767 \end{gathered}$	- You can set-up the output timing of the in-position signal (COIN: CN I F Pin 39), completing the travel of the motor (work), after the command pulse entry. - The in-position (positioning complete) signal (COIN) will be fed-out when the position error counter pulsed fall within a preset range
	- The unit of position error pulses is the "resolution" of the encoder. It differs depending on the type of encoder. 1) 17 -bit encoder: $217=131072$ 2) 2500 P/rev encoder: 4×2500 <Notes> 1. If you set-up too small value to Pr60, time to feed-out COIN signal gets longer, or causes a chattering. 2. The value of this parameter does not affect the accuracy in positioning.		
61	Zero speed	$\begin{gathered} 0 \sim \\ 10000 \\ {[50]} \end{gathered}$	- You can set-up the output timing of the zero speed detection signal (ZSP CN I/F pin 12). Unit in [r/min]. - The ZSP signal will be fed-out when the motor speed becomes lower than this setting.
	Pr61 affects both CW and CCW directions regardless of the actual rotating direction.		

<Note>
For the default values of Pr60 and Pr63, see page 46.

Details of Parameters

PrNo.	Parameter description	Range	Function		
65	UVtrip selection at main power-off	$0 \sim 1$ [1]	You can select whether or not to activate the under-voltage trip in case the main power is shut-off.		
	Value	Under-voltage protective function			
	0	If the main power is lost during Servo-ON, Servo-OFF get active (the motor does not trip). After this, when the main power is on, Servo-ON will be made active again.			
	1	If the main power is lost during Servo-ON, the under-voltage protective function (Err-13) is activated, and the motor trips.			
			See "Timing chart for the mains and control power shut off" in Appendix.		
66	DB inhibition at overtravel limit	$\begin{gathered} 0 \sim 1 \\ {[0]} \end{gathered}$	You can set-up the conditions for decelerating the motor after the over-travel limit input (CCWL: CNI/ F Pin 9 or CWL : CN I/F Pin 8) is made active.		
	Value	Motor operation from deceleration to and after stop			
	0	The dynamic brake (DB) is activated, and the motor is stopped. After stop, the dynamic brake is released.			
	1	Without dynamic brake the motor stops after coasting After stop, the motor remains free.			
67	Sequence at main power-off	$\begin{gathered} \hline 0 \sim 7 \\ {[0]} \end{gathered}$	You can set-up the conditions of the following operations after main power off. 1) Decelerating and halting the motor 2) Clearing the position error counter		
	Value	Operating conditions			Content of the position error counter
		During deceleration		After stop	
	0	D B		DB	Cleared
	1	Free run (coasting)		DB	\uparrow
	2	DB		Free (DB not engaged)	\uparrow
	3	Free run (coasting)		Free (DB not engaged)	\uparrow
	4	DB		DB	Held
	5	Free run (coasting)		DB	\uparrow
	6	DB		Free (DB not engaged)	\uparrow
	7	Free run (coasting)		Free (DB not engaged)	\uparrow
		(DB: Dynamic brake engaged)			

Details of Parameters

PrNo.	Parameter description	Range	Function			
6 B	Mechanical brake action set-up at motor in motion	$\begin{gathered} \hline 0 \sim \\ 100 \\ {[0]} \end{gathered}$	Defines the duration from OFF of the brake release signal (BRKOFF) (i.e. brake engaged) to the shutdown of motor current (servo free) in transition to Servo-OFF during the motor in motion, not during the halt as handled by Pr6A.			
	- This parameter is necessary for avoiding the degradation of the brake due to the rotation of the motor. - The value of Tb is the value of Pr6B or the time needed for decreasing the motor revolution to about 30 rpm , whichever is smaller. $\text { Pr6B = (Entry) x } 2 \text { ms }$					
			See also "Timing chart for Serve-ON/OFF during the operation of the motor" in Appendix.			
6 C	External regenerative discharge resistor selection	$\begin{gathered} 0 \sim 2 \\ {[0]} \end{gathered}$	Defines whether the internal regenerative discharge resistor is used, or an external regenerative discharge resistor is installed (between P and B 2 terminals on the terminal block) with the internal resistor disconnected.			
	Value	Regenerative discharge resistor		Over-regenerative power protection		
	0	Internal resistor		The protection operates for the internal resistor.		
	1	External resistor		The protection operates for the external resistor whose operating limit is 10% of the duty.		
	2	External resistor		No protection		

Details of Operation (Monitor Mode)

Motor Mode

Operation

1) Turn on the mains power (driver).
2) Open the Monitor mode
(see Parameter Setting and MODE's Structure).

3) Select a mode that you want to view.

Note) With power on, the indication starts with the indication items marked with *.

Details of Operation (Monitor Mode)

Details of Monitor Mode

Indication of position error, motor speed and torque

\square-Position error

Display the reading (pulse count) of the position error counter with an indication of polarity (unit: P).
(+): Error in CCW direction
(-): Error in CW direction

r
-•••••Motor speed
Display the motor speed (rpm) with an indication of polarity (unit: r/ min.).
(+): Revolution in CCW direction
$(-)$: Revolution in CW direction
t
......Torque output
Display the generated torque with an indication of polarity (unit: \%).
(+): Torque in CCW direction
(-): Torque in CW direction
<Notes>
(+) symbol is not displayed.

Display of Control Mode

Display the current control mode.

-••... Position control mode

-.....-Speed control mode

1515

Display of I/O signals status

Display the status of control (input) and output signals via the CN I/F connectors. Use this information for checking the wiring connections.

- (ß) Pressing LEFT button will move the decimal point in blinking.

(Decimal point placed on the right side: Signal selection mode)
(Decimal point placed on the left side: Input/output selection mode)

1) Input/output selection mode

2) Signal selection mode

Details of Operation (Monitor Mode)

Signal Numbers and Names

Input signals				Output signals			
No.	Signal description	Symbol	Pin No.	No.	Signal description	Symbol	Pin No.
0	Servo-ON	SRV-ON	29	0	Servo-ready	S-RDY	35 (34)
1	Alarm clear	$\overline{\mathrm{A}-\mathrm{CLR}}$	31	1	Servo alarm	ALM	37 (36)
2	CW overtravel inhibit	CWL	8	2	In-position	COIN	39 (38)
3	CCW overtravel inhibit	CCWL	9	3	Mechanical brake release	BRK-OFF	11 (10)
4	Control mode switching	C-MODE	32	4	Zero speed detection	$\overline{\text { ZSP }}$	12
5	Speed zero clamp	ZEROSPD	26	5	Torque in-limit	TLC	40
6	Command pulse scaler switch 1	$\overline{\text { DIV }}$	28	6	Internal use		
7	Internal use			7	Internal use		
8	Command pulse input inhibit	INH	33	8	Internal use		
9	Gain switching	$\overline{\text { GAIN }}$	27	9	At-speed	$\overline{\mathrm{COIN}}$	39 (38)
A	Counter clear	$\overline{\mathrm{CL}}$	30	A	Internal use		
B	Internal use			B	Internal use		
C	Internal vel.cmnd. select 1	$\overline{\text { INH }}$	33	C	Internal use		
D	Internal vel.cmnd. select 2	$\overline{\mathrm{CL}}$	30	D	Dynamic brake action	DBRK	Internal signal
E	Internal use			E	Internal use		
F	Internal use			F	Internal use		
10	Internal use			10	Internal use		
11	Internal use			11	Internal use		
12	Internal use			12	Internal use		
13	Internal use			13	Internal use		
14	Internal use			14	Internal use		
15	Internal use			15	Internal use		
16	Internal use			16	Internal use		
17	Internal use			17	Internal use		
18	Internal use			18	Internal use		
19	Internal use			19	Internal use		
1 A	Internal use			1 A	Internal use		
1 B	Internal use			1 B	Internal use		
1 C	Internal use			1 C	Internal use		
1 D	Internal use			1 D	Internal use		
1 E	Internal use			1 E	Internal use		
1 F	Internal use			1 F	Internal use		

<Note>

The signals with symbol marked with are active with L (on).

Viewing the causes and history of an alarm

- You can view the latest 14 alarms including the current one.

-(D) To select any alarm event you wanted, press UP or DOWN button for access to the desired alarm No. Pressing DOWN will move to older alarms.)
<Notes>

1. If an alarm which is stored in the history memory is occurring, the alarm is given E-O (Error-0).
2. The alarm history cannot be deleted.

Alarm Numbers and Functions

Alarm Code No.	Function	Alarm Code No.	Function
11	Undervoltage, control power	27	Command pulse saler error
12	Overvoltage	28	External scale error
13	Undervoltage, main power	29	Error counter over flow
14	Overcurrent	35	External scale disconnection error
15	Overheat	36	EEPROM parameter error
16	Overload	37	EEPROM check code error
18	Regenerative discharge	38	Overtravel inhibit input error
20	Encoder A/B phase error	40	Absolute system down error
21	Encoder communication error	41	Absolute counter over flow error
22	Encoder connection error	42	Absolute over-speed error
23	Encoder communication data error	44	Absolute single-turn counter error
24	Position error	45	Absolute multi-turn counter error
25	Hybrid error	47	Absolute status error
26	Overspeed	Other than the above	Other errors

Details of Operation (Monitor Mode)

Alarm Display

rn -9R
A : FAlarm occurred

- : FNo alarms occurred

Over-regeneration alarm: over 85% of the acceptable consumption of the regenerative discharge resistor

Overload alarm: over 85% of the acceptable load level
<Notes>

- The battery alarm is kept active until the control power is turned off.
- Other alarms are kept displayed at least one second after the alarm event occurs.
- Alarming criteria cannot be changed.

Display of the load factor

 of the regenerative discharge resistor- Display the load factor of the regenerative discharge resistor as a percentage of the protective operation level (100\%).

- For an external regenerative discharge resistor, Pr6C should be 0 or 1 to display the load factor.

Display of the load factor

- Display the load factor as a percentage of the rated load (100\%).

- See "Overload Protection: Time Limiting Characteristic" in Appendix.

Operation in the Parameter Setting Mode

Operation in the Mode Selection mode

Display of " r " in this field means that the parameter has been modified, so it must be downloaded to EEPROM. After downloading, the parameter value is not valid until the power is turned off and turned on again.

1) Press (D) UP or (ด) DOWN button to select a parameter No. that you want to view or edit.

Press UP button to scroll down (in the arrow direction).

Press DOWN button to scroll up.
2)

SET
2) Press SET button to switch to

Monitor/Execution mode.

Operation in the Monitor/Execution mode

\uparrow The digit with the decimal point in blinking is the digit that you can modify the value.

Parameter value

1) (B) Using LEFT button, move the decimal point to a digit that you want to edit
<Note>
How many digits you can move the decimal point leftward differs depending on the parameter.
2) Press © UP or © DOWN button to select a desired value.
<Note>
Pressing (Ø) UP will increase the value. Pressing (⿴囗) DOWN will decrease the value. This setting (modification) of value will immediately affect the control.

Details of Parameters (Auxiliary Function Mode)

Auxiliary Function Mode

Operation

SET

Mode selection

Execution

Press © UP or © DOWN to select your desired mode.

Automatic Offset Adjustment Mode

This mode is to set the voltage of analogue velocity (or torque) commands to 0 V , measure the offset during Servo-OFF, and correct the offset so that small motions (rotation) can be eliminated. This automatic offset adjustment mode should be started by the following procedure.

Procedure

1) Select the automatic offset adjustment mode using the procedure mentioned above.

2) The mode is ready for execution.

Keep pressing UP button (for about three seconds). The number of short bars (-) will increase.

The mode is started.

The adjustment will complete instantaneously.

Adjustment completed
Error

<Notes>

1. The automatic offset adjustment mode is not effective for the position control mode.
2. If the input voltage is over the adjustment range ($\pm 25 \%$ of the maximum input voltage), the mode cannot work (an error occurs). Make sure that the input voltage is 0 V .
3. If the value of Pr52 produced by the mode (i.e. the result of the offset adjustment) is not downloaded to EEPROM before turning off the power, the value will be lost (the previous value remains). If you want to continue to use the new value, download it to EEPROM before turning off the power.

Alarm Clear Mode

Clearing an alarm using the LED touch panel is the same as removing the trip status by using the alarm clear signal (A-CLR).

Procedure

1) Select the alarm clear mode (refer to page 39 in Appendix). Press SET \bigcirc button to display $\because \mathbf{F E} \underset{\sim}{\text { SET }}$
2) The mode is ready for execution.

Keep pressing UP button (for about three seconds). The number of short bars (-) will increase.

The mode is started.

The clearing operation will complete instantneously.

<Notes>
If one of the errors shown below is occurring, the trip status is not removed, and Er II F. appears.
In this case, remove the error by turning off the power, removing the cause and turning on the power again.

Over-current, overheat, encoder A/B phase error, encoder communication error, encoder disconnection, encoder communication data error, EEPROM parameter error, EEPROM check code error, absolute single-turn counter error, absolute multi-turn counter error and Other error

Details of Parameters (Auxiliary Function Mode)

Absolute Encoder Clear Mode

This mode is to clear the multi-turn data of the absolute encoder, and clear the alarms regarding the encoder.

Procedure

1) Select the absolute encoder clear mode (refer to page 39 in Appendix). will appear. Press SET $\bigcirc \bigcirc$
2) The mode is ready for execution.

Keep pressing UP button (for about three seconds). The number of short bars (-) will increase.

The mode is started.

<Notes>
If you execute this mode for a driver with an incremental encoder, Errar. will appear.

After executing the absolute encoder clear mode, turn off the power of the driver, and then turn it on again.

Overview of a Communication Control Software PANATERM

How to Connect

Installing PANATERM on a hard disc

<Notes>
1.The memory capacity of the hard disc should be 15 MB or more.
2.Install PANATERM with setup discs, otherwise the software does not work.

Installation Procedure

1) Turn on your personal computer. Start Windows95 (or 98). (Note: if there is any application program on, close all of them.)
2) Insert the PANATERM Setup Disc 1 into the floppy disc drive.
3) Start Explorer, and switch to (select) the floppy disc drive. (For the procedure for starting the Explorer program, see the instructions for Windows.)
4) Double click on "Setup.exe" (PANATERM Setup program will start).
5) Click on OK to start the setup program.
6) Keep the operation according to the guide of the setup program.
7) Click on Start installing? to start the setup routine.
8) Confirm an message "Setup completed". Then click on OK
9) Close all the applications. Then restart Windows. PANATERM will be added to the program menu.

Overview of a Communication Control Software PANATERM

Starting PANATERM

<Notes>

1. Once you install PANATERM on your hard disc, you do not have to install it again for next use.
2. Before using PANATERM, the driver, power supply, motor and encoder should be connected. For the procedure for starting PANATERM, see the Windows manual.

Procedure

1) Turn on your personal computer. Start Windows95 (or 98).
2) Turn on the driver.
3) Click on the start button of Windows (see the Windows manual).
4) Select (click on) PANATERM from the program menu.
5) An opening splash will be displayed for two seconds, and then PANATERM screen will appear.

For the operation, functions and other details about PANATERM, see the Instructions for the PANATERM program.

Optional Parts

MINAS-A series Cables

Dwg. No.	Motor type	Cable	Part No.	Remarks
1-1	MSMA30 ~ 750W MQMA100 ~ 400W	Encoder cable (17 bits, 7 wires) for absolute/incremental encoders	MFECAO**OLAA	
2-1		Encoder cable (2500 pulses, 11 wires), incremental encoders	MFECAO**OEAA	
3-1		Motor cable	MFMCAO**OEET	
4-1		Brake cable	MFMCBO**OGET	
1-2	MSMA1.0 ~ 2.5kW MDMA750W ~ 2.5 kW MHMA500W ~ 1.5kW MGMA300 ~ 900W	Encoder cable (17 bits, 7 wires) for absolute/incremental encoders	MFECAO**OLSA	
2-2		Encoder cable (2500 pulses, 11 wires), incremental encoders	MFECAO** $O E S A$	
3-2		Motor cable	MFMCDO**2ECT	
4-2		Brake cable(With brake)	MFMCAO**2FCT	
1-2	MSMA3.0~5.0kW MDMA3.0 ~ 5.0kW MHMA2.0 ~ 5.0kW MGMA1.2 $\sim 4.5 \mathrm{~kW}$	Encoder cable (17 bits, 7 wires) for absolutelincremental encoders	MFECAO**OLSA	
2-2		Encoder cable (2500 pulses, 11 wires), incremental encoders	MFECAO**OESA	
3-3		Motor cable	MFMCAO**3ECT	
4-3		Brake cable(With brake)	MFMCAO**3FCT	
1-2	MFMA400W ~ 1.5kW	Encoder cable (17 bits, 7 wires) for absolute/incremental encoders	MFECAO**OLSA	
2-2		Encoder cable (2500 pulses, 11 wires), incremental encoders	MFECAO**OESA	
3-4		Motor cable	MFMCAO**2ECT	
4-2		Brake cable(With brake)	MFMCAO**2FCT	
1-2	MFMA2.5 ~ 4.5kW	Encoder cable (17 bits, 7 wires) for absolutelincremental encoders	MFECAO**OLSA	
2-2		Encoder cable (2500 pulses, 11 wires), incremental encoders	MFECAO**OESA	
3-5		Motor cable	MFMCDO**3ECT	
4-3		Brake cable(With brake)	MFMCAO**3FCT	

Optional Parts

Encoder Cables

fig1-1 MFECAO**OLAA

fig1-2
MFECA0**OLSA

$L(m)$	Part No.
3	MFECA0030LSA
5	MFECA0050LSA
10	MFECA0100LSA
20	MFECA0200LSA

fig2-2 MFECAO**OESA

$L(m)$	Part No.
3	MFMCA0030EET
5	MFMCA0050EET
10	MFMCA0100EET
20	MFMCA0200EET

fig 3-2 MFMCD0**2ECT

$L(m)$	Part No.
3	MFMCD0032ECT
5	MFMCD0052ECT
10	MFMCD0102ECT
20	MFMCD0202ECT

fig 3-3 MFMCA0**3ECT

$L(m)$	Part No.
3	MFMCA0033ECT
5	MFMCA0053ECT
10	MFMCA0103ECT
20	MFMCA0203ECT

fig 3-4 MFMCA0**2ECT

$L(m)$	Part No.
3	MFMCA0032ECT
5	MFMCA0052ECT
10	MFMCA0102ECT
20	MFMCA0202ECT

Optional Parts

Motor (with Brake) Cables (Robotop ${ }_{\odot}$, 600 6 DP)

MFMCB0**0GET (Brake cable)

fig 4-2 MFMCA0**2FCT

$L(m)$	Part No.
3	MFMCA0032FCT
5	MFMCA0052FCT
10	MFMCA0102FCT
20	MFMCA0202FCT

fig 4-3 MFMCA0**3FCT

$L(m)$	Part No.
3	MFMCA0033FCT
5	MFMCA0053FCT
10	MFMCA0103FCT
20	MFMCA0203FCT

Connector Kits for External Equipment

1) Part No. DVOP0980
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	$10150-3000 \mathrm{VE}$	1	SUMITOMO	For CN I/F
Shell	$10350-52 \mathrm{~A} 0-008$	1	3 M	$(50$ pins $)$

3) Alignment of $\mathrm{CN} \mathrm{I/F} \mathrm{(50} \mathrm{pins)} \mathrm{(Looking} \mathrm{from} \mathrm{where} \mathrm{the} \mathrm{plug} \mathrm{is} \mathrm{soldered)}$

<Notes>
1.Before making connections, check the Pin Numbers stamped on the plugs.
2.For the symbols and functions of the pins, see the section "CN I/F Connector" in the main part of this manual.
3.Pins marked with NC should be left unconnected.

Optional Parts

Connector Kits for Motor and Encoder

- Used for: MSMA 30W to 750W

MQMA 100w to 400W
[with a17-bit absolute encoder]

1) Part No. DVOP2110
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	$10120-3000 \mathrm{VE}$	1	Sumitomo $3 M$	For CN I/SIG
$(20 \mathrm{pin})$				

- Used for: MSMA 30W to 750W MQMA 100w to 400W
$\left[\begin{array}{l}\text { with a } 2500 \text {-pulse, } \\ \text { 11-wire incremental encoder }\end{array}\right]$

1) Part No. DVOP 0490
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	$10120-3000 \mathrm{VE}$	1	Sumitomo	For CN I/SIG
$(20 \mathrm{pin})$				

- Used for : MSMA 1.0kW to 2.5 kW

MDMA 0.75 kW to 2.5 kW
MHMA 0.5 kW to 1.5 kW
with a 17-bit absolute/incremental encoder or 2500-pulse incremental encoder
without brake

1) Part No. DVOP0960
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo 3M	For CN I/SIG (20pin)
Shell	10320-52A0-008	1		
Straight plug	MS3106B20-29S	1	Japan Aviation Electronics Industry, Ltd	For encoder cable
Cable clamp	MS3057-12A	1		
Straight plug	MS3106B20-4S	1	Japan Aviation Electronics industry, Lto.	For motor cable
Cable clamp	MS3057-12A	1		

- Used for: MSMA 3.0 kW to 5.0 kW

MDMA 3.0 kW to 5.0 kW
MHMA 2.0 kW to 5.0 kW
MGMA 1.2 kW to 4.5 kW
$\left[\begin{array}{l}\text { with a 17-bit absolute/incremental } \\ \text { encoder or 2500-pulse incremental } \\ \text { encoder }\end{array}\right]$
without brake

1) Part No. DVOP1510
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo$3 M$	For CN I/SIG (20pin)
Shell	10320-52A0-008	1		
Straight plug	MS3106B-20-29S	1	Japan Aviation Electronics Industy, Lto.	For encoder cable
Cable clamp	MS3057-12A	1		
Straight plug	MS3106B22-22S	1	Japan Aviation Electronics Industy, Ltod.	For motor cable
Cable clamp	MS3057-12A	1		

Optional Parts

- Used for : MSMA 1.0kW to 2.5 kW

MDMA 0.75 kW to 2.5 kW
MHMA 0.5 kW to 1.5 kW MGMA 300W to 900 W
with a 17-bit absolute/incremental encoder or 2500 -pulse incremental encoder

MFM 0.4 kW to 1.5 kW
$\left[\begin{array}{l}\text { with a 17-bit absolute/incremental } \\ \text { encoder or } 2500 \text {-pulse incremental } \\ \text { encoder }\end{array}\right]$
without brake with brake

1) Part No. DVOP0690
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo$3 M$	For CN I/SIG (20pin)
Shell	10320-52AO-008	1		
Straight plug	MS3106B20-29S	1	apan Aviation Electornics Industy, Lto.	For encoder cable
Cable clamp	MS3057-12A	1		
Straight plug	MS3106B20-18S	1	Japan Aviation Electronics Industr, Lto.	For motor cable
Cable clamp	MS3057-12A	1		

- Used for : MSMA 3.0kW to 5.0kW

MDMA 3.0 kW to 5.0 kW
MHMA 2.0 kW to 5.0 kW
MGMA 1.2 kW to 4.5 kW

MFM 2.5 kW to 4.5 kW
$\left[\begin{array}{l}\text { with a 17-bit absolute/incremental } \\ \text { encoder or 2500-pulse incremental } \\ \text { encoder }\end{array}\right]$
$\left[\begin{array}{l}\text { with a 17-bit absolute/incremental } \\ \text { encoder or } 2500 \text {-pulse incremental } \\ \text { encoder }\end{array}\right]$ without brake with brake

1) Part No. DVOP0970
2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	$\begin{gathered} \text { Sumitomo } \\ 3 \mathrm{M} \\ \hline \end{gathered}$	For CN I/SIG Åi20pin)
Shell	10320-52AO-008	1		
Straight plug	MS3106B20-29S	1	apan Aviation Electronics Industry, Lto	For encoder cable
Cable clamp	MS3057-12A	1		
Straight plug	MS3106B24-11S	1	Japan Aviation Electronics Industy, Lto.	For motor cable
Cable clamp	MS3057-16A	1		

<Notes>

1. Plugs, shells and other parts may be equivalents of other manufacturer's make.
2. Alignment of CN SIG pins

<Notes>
3. The tables above show the pins alignment, looking from where the plugs are soldered.
4. The pin 20 (FG) should be connected to the shield of the shielded wire. Pins marked with NC should be left unconnected.
5. For the use of these pins, see the section "CN SIG Connector (for Encoder)" in the main part of this manual.

Optional Parts

Interface Cables

1) Part No. DVOP2190
2) Dimension

3) Wire table

Pin No.	Wire color								
1	Orange (Red 1)	11	Orange (Brack 2)	21	Orange (Red 3)	31	Orange (Red 4)	41	Orange (Red 5)
2	Orange (Brack1)	12	Yellow (Brack 1)	22	Orange (Brack3)	32	Orange (Brack4)	42	Orange (Brack5)
3	Gray (Red 1)	13	Gray (Red 2)	23	Gray (Red 3)	33	Gray (Red 4)	43	Gray (Red 5)
4	Gray (Brack 1)	14	Gray (Brack 2)	24	Gray (Brack 3)	34	White(Red 4)	44	White(Red 5)
5	White (Red 1)	15	White (Red 2)	25	White (Red 3)	35	White (Brack4)	45	White((Brack5)
6	White (Brack 1)	16	Yellow (Red 2)	26	White (Brack3)	36	Yellow (Red 4)	46	Yellow (Red 5)
7	Yellow (Red 1)	17		27	Yellow (Red 3)	37	Yellow (Brack4)	47	Yellow (Brack5)
8	Pink (Red 1)	18	Pink (Red 2)	28	Yellow (Brack3)	38	Pink (Red 4)	48	Pink (Red 5)
9	Pink (Brack 1)	19	White (Brack2)	29	Pink (Red 3)	39	Pink (Brack 4)	49	Pink (Brack 5)
10	Orange (Red2)	20	-	30	Pink (Brack 3)	40	Gray (Brack 4)	50	Gray (Brack 5)

<Notes>
For example, Orange (Red 1) for Pin No. 1 means that the lead wire is colored in orange with one dot mark in red.

Communication Cables (for connection to personal computer)

1) Part No. DVOP1160 (for PC98 series)

2) Part No. DVOP1960 (for DOS/V)

Communication Cables (for RS485)

Part No.	$\mathrm{L}[\mathrm{mm}]$
DVOP1970	200
DVOP1971	500
DVOP1972	1000

Communication Control Software PANATERM

1) Part No. DVOP 2320
2) 3.5 inch floppy disc

।<Note>
For the operating environment and other details, see the Instructions for PANATERM.

Optional Parts

Brackets for Mounting the Driver

Driver type	Part No.	Screws *1	Outer dimension
Type 1	$\begin{aligned} & \text { DVOP } \\ & 2100 \end{aligned}$	M3 x 8 pan head screw x 4 pcs.	Upper and lower brackets (each 1) for front panel mounting
Type 2-3	$\begin{aligned} & \text { DVOP } \\ & 2101 \end{aligned}$	M3 x 8 pan head screw x 4 pcs.	2-M3 pan head screw
$\begin{gathered} \text { Type 4-2 } \\ 4-3 \end{gathered}$	$\begin{aligned} & \text { DVOP } \\ & 2102 \end{aligned}$	M4x 6 pan head screw x 4 pcs.	Brackets (2) for back panel mounting

*1 The mounting screws are supplied together with the brackets.
<Notes>
Type-5 drivers can be secured in either way of front panel mounting or back panel mounting. To change the mounting method, change the L-shape brackets supplied.

External Regenerative Discharge Resistor

Part.No.	Product number	Model	
		Resistance	
DV0P1980	RH150M	50Ω	90 W
DV0P1981	RH150M	100Ω	90 W
DV0P1982	RH220M	30Ω	120 W
DV0P1983	RH500M	20Ω	300 W

Manufacturer: IWAKI MUSEN KENKYUSHO CO., LTD.
Recommended combination between driver and external regenerative discharge resistor

	Power supply	
Driver type	Single-phase 100V	Three-phase 200V
1	$\begin{gathered} \text { DVOP } 1980 \\ x 1 \end{gathered}$	$\begin{gathered} \text { DVOP } 1981 \\ x \quad 1 \end{gathered}$
2		
3		
$\begin{aligned} & 4-2 \\ & 4-3 \end{aligned}$		```DVOP1982 x 2 (in parallel) or DVOP1983 x 1```
5		DVOP1982 $\times 2 \AA$ § 3 (in parallel) or DVOP1983 x1or2(in parallel)

For driver types, see pages 10 and 11 (main part) and pages 7 and 8 (Appendix).

RH150M, RH220M

Lead wires : 300mm

	A	B	C	D	E
RH150	212	180	202	44	30
RH220	230	200	220	60	20

RH500M

Optional Parts

Battery and Battery Holder for Absolute Encoder

Battery (for driver types 1 to 5)
A Part No. DVOP2060
B Lithium battery, Toshiba Battery make
 ER6V, 3.6V, 2000mAh

Battery Holder (for driver types 1 to 3) A Part No. DVOP2061

<Notes>

Driver types 4-2, 4-3 and 5 do not need the battery holder.

Absolute Driver (with battery): Outer Dimension

Driver Types 1 through 3

Driver type	L Dimension	LL
$1 \AA ` 2$	130	147
3	170	187
<Notes>
Absolute drivers of types 4-2, 4-3 and 5 have the same dimension as the standard type.

Reactre

Driver series	Voltage	Rated output	Reactor Part No.	Driver series	Voltage	Rated output	Reactor Part No.
MSDA	100 V	30W ~ 100W		MSDA	200 V	2.0 kW	DVOP223
MQDA		100W	DVOP222	MDDA			
MSDA		200W ~ 400W		MHDA			
MQDA			DVOP220	MGDA		2.0 kW	DVOP224
MSDA	200 V	30W ~ 400W		MSDA		2.5 kW	
MQDA		100W ~ 400W		MDDA			
MGDA		300W		MFDA			
MFDA		400W		MSDA		3.0 kW	
MHDA		500W	DVOP221	MDDA			
MGDA		600W		MHDA			
MSDA		750W		MGDA			
MDDA				MSDA		3.5 kW	
MFDA			DVOP222	MDDA			
MGDA		900W, 1.2kW		MFDA			
MSDA		1.0 kW		MSDA		4.0 kW	DVOP225
MDDA		1.5 kW		MDDA			
MHDA				MFDA			
MFDA		1.5kW					

Recommended Parts

Surge Absorber for Motor Brake

motor	Surge absorber for brake
MSMA30W ~ 1.0kW	- C-5A2 or Z15D151 Ishizuka.co.
MQMA100W ~ 400W	
MHMA2.0kW $\sim 5.0 \mathrm{~kW}$	
MGMA600W ~ 2.0kW	
MSMA1.5kW ~ 5.0kW	- C-5A3 or Z15D151 Ishizuka.co.
MDMA750W	
MDMA3.5kW $\sim 5.0 \mathrm{~kW}$	
MFMA750W $\sim 1.5 \mathrm{~kW}$	
MGMA3.0kW $\sim 4.5 \mathrm{~kW}$	
MDMA1.0kW $\sim 3.0 \mathrm{~kW}$	- TNR9G820K NIPPON CHEMIA ${ }_{[} \mathrm{CON}$ CO.
MFMA400W	
MFMA2.5kW $\sim 4.5 \mathrm{~kW}$	
MHMA500W $\sim 1.5 \mathrm{~kW}$	
MGMA300W	

Peripheral Equipment Manufacturers

3.1999.present

Manufacturer/agent	Tel	Equipment
Matsushita Electric Works, Ltd.	06-6908-1131	No-fuse breaker, magnetic contact and surge absorber
IWAKI MUSEN KENKYUSHO CO., LTD.	044-833-4311	Regenerative discharge resistor
NIPPON CHEMI_CON CORPORATION	Kantou Area $03-5436-7608$ Chub Area $052-772-8551$ Kansai Ares $06-6338-2331$	
Ishizuka Electronics Corporation	Kantou Area $03-3621-2703$ Chub Area $052-777-5070$ Kansai Ares $06-6391-6491$	Surge absorber for Brake
Tokin Corporation	Kantou Area $03-3475-6814$ Chub Area $052-581-9336$ Kansai Ares $06-6263-6781$	Noise Filter
TDK Corporation	Kantou Area $03-5201-7229$ Chub Area $052-971-1712$ Kansai Ares $06-6245-7333$	Noise filter for signal line
Okaya Electric Industries Co., Ltd.	East Japan 03-3424-8120 West Japan 06-6392-1781	Surge absorber / Noise filter
Japan Aviation Electronics Industry, Ltd.	Kantou Area $03-3780-2717$ Chub Area $052-953-9520$ Kansai Ares $06-6447-5259$	
Sumitomo 3M	Kantou Area $03-5716-7290$ Chub Area $052-322-9652$ Kansai Ares $06-6447-3944$	Connector
AMP (JAPAN), LTD.	Kantou Area $044-844-8111$ Chub Area $0565-29-0890$ Kansai Ares $06-6251-4961$	

MSMA Series 30W～750W

			Output（W）	LL	S	LA		LC	LF
$\begin{aligned} & M \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$		Model	30	65	7	45	30	38	6
		MSMA5ZA1］	50	73	8				
		MSMA01口A1］	100	103					
		MSMA02■A1口	200	94	11	70	50	60	7
		MSMA04 \square A1口	400	123.5	14				
		MSMA082A1口	750	142.5	19	90	70	80	8
		MSMA3AZC1口	30	82	7	45	30	38	6
		MSMA5AZC1口	50	90	8				
		MSMA01 $\square \mathrm{C} 1 \square$	100	120					
		MSMA02■C1口	200	109	11	70	50	60	7
		MSMA04 \square C1 \square	400	138.5	14				
		MSMA082C1］	750	157.5	19	90	70	80	8
		MSMA3AZA1 \square	30	97	7	45	30	38	6
		MSMA5AZA1 \square	50	105	8				
		MSMA01 \square A1 \square	100	135					
		MSMA02 \square A1 \square	200	127	11	70	50	60	7
	\sum	MSMA04 \square A1 \square	400	156.5	14				
	\checkmark	MSMA082A1 \square	750	177.5	19	90	70	80	8
		MSMA3AZC1 \square	30	114	7	45	30	38	6
	交	MSMA5AZC1 \square	50	122	8				
		MSMA01DC1D	100	152					
		MSMA02 $\square \mathrm{C} 1 \square$	200	142	11	70	50	60	7
		MSMA04 \square C1 \square	400	171.5	14				
		MSMA082C1D	750	192.5	19	90	70	80	8

"D" cut type

Key way type

		LR	L Z	LW	LK	KW	KH	RH	LN	LO	LP	Weight (kg)
$\begin{aligned} & M \\ & \mathrm{M} \\ & \mathrm{~S} \\ & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$		25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.27
				14	12.5	3	3	6.2		7.5	7.5	0.34
												0.56
		30	4.5	20	18	4	4	8.5	22	10	10	1.0
				25	22.5	5	5	11		12.5	12.5	1.6
		35	6		22	6	6	15.5	25	17.5	17.5	3.2
		25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.33
				14	12.5	3	3	6.2		7.5	7.5	0.40
												0.62
		30	4.5	20	18	4	4	8.5	22	10	10	1.1
				25	22.5	5	5	11		12.5	12.5	1.7
		$\begin{aligned} & 35 \\ & \hline 25 \end{aligned}$	6		22	6	6	15.5	25	17.5	17.5	3.3
			3.4	13	12	2	2	5.8	20	6.5	6.5	0.47
				14	12.5	3	3	6.2		7.5	7.5	0.53
												0.76
		30	4.5	20	18	4	4	8.5	22	10	10	1.4
	\sum			25	22.5	5	5	11		12.5	12.5	2.0
	5	35	6		22	6	6	15.5	25	17.5	17.5	3.9
	\bigcirc	25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.53
	$\frac{N}{\mathbb{N}}$			14	12.5	3	3	6.2		7.5	7.5	0.59
												0.82
		30	4.5	20	18	4	4	8.5	22	10	10	1.5
				25	22.5	5	5	11		12.5	12.5	2.1
		35	6		22	6	6	15.5	25	17.5	17.5	4.0

MSMA Series $1.0 \sim 5.0 \mathrm{~kW}$

O Encoder specifications
A1 $\square 2500$ P／r incremental encoder
D1 $\square 17$ bits absolute encoder

		Model	Output（W）	LL	S	LA	LB	LC	LD	LE
MSMA		M SMA $102 \mathrm{~A} 1 \mathrm{\square}$	1.0	172	19	100	80	90	120	3
		M SMA152A1口	1.5	177		115	95	100	135	
		M SMA 202 A 1 \square	2.0	202						
		MSMA252A1口	2.5	227						
		MSMA302A1口	3.0	214	22	Ål	110	120	162	
		MSMA352A1口	3.5	234						
		MSMA402A1口	4.0	237	24	145		130	165	6
		MSMA452A1］	4.5	257						
		M SMA502A1］	5.0	277						
		MSMA102D1口	1.0	172	19	100	80	90	120	3
		MSMA152D1口	1.5	177		115	95	100	135	
		MSMA202D1口	2.0	202						
		M SMA $252 \mathrm{D} 1 \mathrm{\square}$	2.5	227						
		M SMA $302 \mathrm{D} 1 \mathrm{\square}$	3.0	214	22	Å	110	120	162	
		MSMA352D1口	3.5	234						
		MSMA402D1口	4.0	237	24	145		130	165	6
		MSMA452D1口	4.5	257						
		MSMA502D1口	5.0	277						
		MSMA102A1■	1.0	197	19	100	80	90	120	3
		MSMA152A1■	1.5	202		115	95	100	135	
		MSMA202A1口	2.0	227						
		MSMA252A1口	2.5	252						
		MSMA302A1口	3.0	239	22	Å	110	120	162	
		MSMA352A1口	3.5	259						
		MSMA402A1口	4.0	262	24	145		130	165	6
	$\underset{\ni}{\ddagger}$	MSMA452A1］	4.5	282						
	Ј	MSMA502A1口	5.0	302						
		MSMA102D1口	1.0	197	19	100	80	90	120	3
		MSMA152D1口	1.5	202		115	95	100	135	
		MSMA202D1 ${ }^{\text {a }}$	2.0	227						
		M SMA $252 \mathrm{D} 1 \square$	2.5	252						
		MSMA302D1口	3.0	239	22	Å	110	120	162	
		MSMA352D1口	3.5	259						
		MSMA402D1口	4.0	262	24	145		130	165	6
		MSMA452D1口	4.5	282						
		MSMA502D1口	5.0	302						

		LF	LP	LQ	LR	L Z	LW	LK	KW	K H	RH	Weight (kg)
MSMA		7	-	-	55	6.6	45	42	6	6	15.5	4.5
		10				9						5.1
												6.5
												7.5
		12	130	145		wide 9		41	8	7	18	9.3
												10.9
			-	-	65	9	55	51			20	12.9
												15.1
												17.3
		7			55	6.6	45	42	6	6	15.5	4.5
		10				9						5.1
												6.5
												7.5
		12	130	145		wide 9		41	8	7	18	9.3
												10.9
			-	-	65	9	55	51			20	12.9
												15.1
												17.3
		7			55	6.6	45	42	6	6	15.5	5.1
		10				9						6.5
												7.9
												8.9
		12	130	145		wide 9		41	8	7	18	11.0
												12.6
			-	-	65	9	55	51			20	14.8
	$\underset{\sim}{ \pm}$											17.0
	5											19.2
	$\frac{\square}{2}$	7			55	6.6	45	42	6	6	15.5	5.1
	$\stackrel{\text { त }}{\text { 人 }}$	10				9						6.5
												7.9
												8.9
		12	130	145		wide 9		41	8	7	18	11.0
												12.6
			-	-	65	9	55	51			20	14.8
												17.0
												19.2

MQMA Series 100W～400W

O Encoder specifications
A1 $\square 2500$ P／r incremental encoder
D1 $\square 17$ bits absolute encoder

		Model	Output（W）	L L	S	L A	L B	LC	LE
$\begin{aligned} & \mathrm{M} \\ & \mathrm{Q} \\ & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$		M Q M A $01 \square$ A 1 \square	100	60	8	70	50	60	3
		M Q M A $02 \square$ A 1 \square	200	67	11	90	70	80	5
		M Q M A $04 \square$ A 1 \square	400	82	14				
		MQMA01口C1口	100	87	8	70	50	60	3
		M Q M A $02 \square \mathrm{C}$ 1 \square	200	94	11	90	70	80	5
		MQMAO4 \square C 1 \square	400	109	14				
		MQMA01口A 1 \square	100	84	8	70	50	60	3
		M Q M A $02 \square$ A 1	200	99.5	11	90	70	80	5
		M Q M A $04 \square$ A 1 \square	400	114.5	14				
		M Q M A $01 \square \mathrm{C} 1 \square$	100	111	8	70	50	60	3
		M Q M A $02 \square$ C 1 \square	200	126.5	11	90	70	80	5
		M Q M A 0 4 \square C $1 \square$	400	141.5	14				

"D" cut type

		LF	LR	LW	LK	KW	KH	RH	LN	LO	LP	Weight (kg)
$\begin{gathered} M \\ Q \\ \mathrm{Q} \\ \mathrm{~A} \end{gathered}$		7	25	14	12.5	3	3	6.2	20	7.5	7.5	0.65
		8	30	20	18	4	4	8.5	22	10	10	1.3
				25	22.5	5	5	11		12.5	12.5	1.8
		7	25	14	12.5	3	3	6.2	20	7.5	7.5	0.75
		8	30	20	18	4	4	8.5	22	10	10	1.4
				25	22.5	5	5	11		12.5	12.5	1.9
		7	25	14	12.5	3	3	6.2	20	7.5	7.5	0.9
	\sum	8	30	20	18	4	4	8.5	22	10	10	2.0
	\checkmark			25	22.5	5	5	11		12.5	12.5	2.5
	\bigcirc	7	25	14	12.5	3	3	6.2	20	7.5	7.5	1.0
	N	8	30	20	18	4	4	8.5	22	10	10	2.1
				25	22.5	5	5	11		12.5	12.5	2.6

O Encoder specifications
A1 $\square 2500 \mathrm{P} / \mathrm{r}$ incremental encoder
D1 $\square 17$ bits absolute encoder

		Model	Output（W）	LL	S	LA	LB	LC	LD	LE
		MDMA082A1口	0.75	144	19	－	110	120	162	3
		MDMA102A1］	1.0	147	22	145		130	165	6
		MDMA152A1口	1.5	172						
		MDMA202A1口	2.0	197						
		MDMA252A1］	2.5	222	24					
		MDMA302A1口	3.0	247						
		MDMA352A1口	3.5	219	28	165	130	150	190	3.2
		MDMA402A1口	4.0	239						
		MDMA452A1口	4.5	202	35	200	114.3	176	233	
		MDMA502A1口	5.0	222						
		MDMA082D1口	0.75	144	19	－	110	120	162	3
		MDMA102D1口	1.0	147	22	145		130	165	6
		MDMA152D1口	1.5	172						
		MDMA202D1口	2.0	197						
		MDMA252D1口	2.5	222	24					
		MDMA302D1口	3.0	247						
		MDMA352D1 \square	3.5	219	28	165	130	150	190	3.2
		MDMA402D1口	4.0	239						
		MDMA452D1口	4.5	202	35	200	114.3	176	233	
		MDMA502D1口	5.0	222						
		MDMA082A1口	0.75	169	19	－	110	120	162	3
		MDMA102A1口	1.0	172	22	145		130	165	6
		MDMA152A1口	1.5	197						
		MDMA202A1口	2.0	222						
		MDMA252A1口	2.5	247	24					
		MDMA302A1口	3.0	272						
		MDMA352A1口	3.5	244	28	165	130	150	190	3.2
		MDMA402A1口	4.0	264						
	\sum	MDMA452A1口	4.5	227	35	200	114.3	176	233	
	5	MDMA502A1口	5.0	247						
	$\stackrel{\square}{0}$	MDMA082D1口	0.75	169	19	－	110	120	162	3
		MDMA102D1口	1.0	172	22	145		130	165	6
		MDMA152D1口	1.5	197						
		MDMA202D1口	2.0	222						
		MDMA252D1口	2.5	247	24					
		MDMA302D1口	3.0	272						
		MDMA352D1口	3.5	244	28	165	130	150	190	3.2
		MDMA402D1口	4.0	264						
		MDMA452D1口	4.5	227	35	200	114.3	176	233	
		MDMA502D1口	5.0	247						

MDMA 1.0~5.0kW
MDMA 750W

		LF	LP	LQ	LR	L Z	LW	LK	KW	KH	RH	Weight (kg)
		12	130	145	55	wide 9	45	42	6	6	15.5	4.8
			-	-		9		41	8	7	18	6.8
			-	-								8.5
			-	-								10.6
			-	-	65		55	51			20	12.8
			-	-								14.6
		18	-	-		11					24	16.2
			-	-								18.8
			-	-	70	13.5		50	10	8	30	21.5
			-	-								25.0
		12	130	145	55	wide 9	45	42	6	6	15.5	4.8
			-	-		9		41	8	7	18	6.8
			-	-								8.5
			-	-								10.6
			-	-	65		55	51			20	12.8
			-	-								14.6
		18	-	-		11					24	16.2
			-	-								18.8
			-	-	70	13.5		50	10	8	30	21.5
			-	-								25.0
		12	130	145	55	wide 9	45	42	6	6	15.5	6.5
			-	-		9		41	8	7	18	8.7
			-	-								10.1
			-	-								12.5
			-	-	65		55	51			20	14.7
			-	-								16.5
		18	-	-		11					24	18.7
			-	-								21.3
			-	-	70	13.5		50	10	8	30	25.0
			-	-								28.5
		12	130	145	55	wide 9	45	42	6	6	15.5	6.5
			-	-		9		41	8	7	18	8.7
			-	-								10.1
			-	-								12.5
			-	-	65		55	51			20	14.7
			-	-								16.5
		18	-	-		11					24	18.7
			-	-								21.3
			-	-	70	13.5		50	10	8	30	25.0
			-	-								28.5

MHMA Series 500W～5．0kW

O Encoder specifications

A1 $\square 2500$ P／r incremental encoder
D1 $\square 17$ bits absolute encoder

		Model	Output（W）	LL	S	LA	LB	LC	LD
$M$$M$$M$$M$$A$		MHMA052A1口	0.5	147	22	145	110	130	165
		MHMA102A1口	1.0	172					
		MHMA152A1口	1.5	197					
		MHMA202A1口	2.0	187	35	200	114.3	176	233
		MHMA302A1口	3.0	202					
		MHMA402A1口	4.0	227					
		MHMA502A1口	5.0	252					
		M HMA052D1口	0.5	147	22	145	110	130	165
		MHMA102D1口	1.0	172					
		MHMA152D1口	1.5	197					
		MHMA202D1口	2.0	187	35	200	114.3	176	233
		MHMA302D1口	3.0	202					
		MHMA402D1口	4.0	227					
		MHMA502D1口	5.0	252					
		MHMA052A1口	0.5	172	22	145	110	130	165
		MHMA102A1口	1.0	197					
		MHMA152A1口	1.5	222					
		MHMA202A1吅	2.0	212	35	200	114.3	176	233
		M HMA302A1口	3.0	227					
	\sum	MHMA402A1口	4.0	252					
	$\stackrel{\square}{5}$	MHMA502A1口	5.0	277					
		M HMA052D1口	0.5	172	22	145	110	130	165
	$\stackrel{\text { त }}{\text { त }}$	MHMA102D1口	1.0	197					
		MHMA152D1口	1.5	222					
		MHMA202D1口	2.0	212	35	200	114.3	176	233
		MHMA302D1口	3.0	227					
		MHMA402D1口	4.0	252					
		MHMA502D1口	5.0	277					

		LE	LF	LR	L Z	LW	LK	KW	KH	RH	Weight (kg)
$\begin{aligned} & \mathrm{M} \\ & \mathrm{H} \\ & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$		6	12	70	9	45	41	8	7	18	5.3
											8.9
											10.0
		3.2	18	80	13.5	55	50	10	8	30	16.0
											18.2
											22.0
											26.7
		6	12	70	9	45	41	8	7	18	5.3
											8.9
											10.0
		3.2	18	80	13.5	55	50	10	8	30	16.0
											18.2
											22.0
											26.7
		6	12	70	9	45	41	8	7	18	6.9
											9.5
											11.6
		3.2	18	80	13.5	55	50	10	8	30	19.5
											21.7
											25.5
	F										30.2
		6	12	70	9	45	41	8	7	18	6.9
	$\frac{\sim}{\hat{\alpha}}$										9.5
											11.6
		3.2	18	80	13.5	55	50	10	8	30	19.5
											21.7
											25.5
											30.2

MFMA Series 400W～4．5kW

Encoder specifications
A1 $\square 2500$ P／r incremental encoder
D1 $\square 17$ bits absolute encoder

		Model	Output（W）	LL	S	LA	LB	LC	LD
MFFMA	\sum \vdots 	MFMA042A1］	0.4	117	19	145	110	130	165
		MFMA082A1吅	0.75	124	22	200	114.3	176	233
		MFMA152A1口	1.5	142	35				
		MFMA252A1吅	2.5	136		235	200	220	268
		MFMA352A1口	3.5	144					
		MFMA452A1口	4.5	160					
		MFMA042D1口	0.4	117	19	145	110	130	165
		MFMA082D1口	0.75	124	22	200	114.3	176	233
		MFMA152D1口	1.5	142	35				
		MFMA252D1口	2.5	136		235	200	220	268
		MFMA352D1口	3.5	144					
		MFMA452D1口	4.5	160					
		MFMA042A1口	0.4	142	19	145	110	130	165
		MFMA082A1吅	0.75	149	22	200	114.3	176	233
		MFMA152A1口	1.5	167	35				
		MFMA252A1口	2.5	163		235	200	220	268
		MFMA352A1口	3.5	171					
		MFMA452A1口	4.5	191					
		MFMA042D1口	0.4	142	19	145	110	130	165
		MFMA082D1口	0.75	149	22	200	114.3	176	233
		MFMA152D1口	1.5	167	35				
		MFMA252D1口	2.5	163		235	200	220	268
		MFMA352D1口	3.5	171					
		MFMA452D1口	4.5	191					

		LE	LF	LR	L Z	LW	LK	K W	KH	RH	Weight (kg)
$\begin{gathered} M \\ F \\ M \\ A \end{gathered}$		6	12	55	9	45	42	6	6	15.5	4.7
		3.2	18		13.5		41	8	7	18	8.6
				65		55	50	10	8	30	11.0
		4	16								14.8
											15.5
				70							19.9
		6	12	55	9	45	42	6	6	15.5	4.7
		3.2	18		13.5		41	8	7	18	8.6
				65		55	50	10	8	30	11.0
		4	16								14.8
											15.5
				70							19.9
		6	12	55	9	45	42	6	6	15.5	6.7
		3.2	18		13.5		41	8	7	18	10.6
				65		55	50	10	8	30	14.0
		4	16								17.5
	\sum_{\neq}										19.2
	J			70							24.3
	$\stackrel{\square}{7}$	6	12	55	9	45	42	6	6	15.5	6.7
		3.2	18		13.5		41	8	7	18	10.6
				65		55	50	10	8	30	14.0
		4	16								17.5
											19.2
				70							24.3

Dimensions

MGMA Series 300W～4．5kW

O Encoder specifications
A1 $\square 2500 \mathrm{P} / \mathrm{r}$ incremental encoder
C1 $\square 17$ bits absolute encoder

		Model	Output（W）	LL	S	LA	LB	LC	LD
$\begin{gathered} \mathrm{M} \\ \mathrm{G} \\ \mathrm{M} \\ \mathrm{~A} \end{gathered}$		MGMA032A1口	0.3	122	22	145	110	130	165
		MGMA062A1口	0.6	147					
		MGMA092A1口	0.9	172					
		MGMA122A1口	1.2	162	35	200	114.3	176	233
		MGMA202A1口	2.0	182					
		MGMA302A1口	3.0	222					
		MGMA452A1口	4.5	300.5	42				
		MGMA032D1口	0.3	122	22	145	110	130	165
		MGMA062D1口	0.6	147					
		MGMA092D1口	0.9	172					
		MGMA122D1口	1.2	162	35	200	114.3	176	233
		MGMA202D1口	2.0	182					
		MGMA302D1口	3.0	222					
		MGMA452D1口	4.5	300.5	$\begin{aligned} & 42 \\ & \hline 22 \end{aligned}$				
		MGMA032A1口	0.3	147		145	110	130	165
		MGMA062A1口	0.6	172					
		MGMA092A1口	0.9	197					
		MGMA122A1口	1.2	187	35	200	114.3	176	233
		MGMA202A1口	2.0	207					
		MGMA302A1吅	3.0	247					
	F	MGMA452A1口	4.5	345.5	42				
		MGMA032D1口	0.3	147	22	145	110	130	165
		MGMA062D1口	0.6	172					
		MGMA092D1口	0.9	197					
		MGMA122D1口	1.2	187	35	200	114.3	176	233
		MGMA202D1口	2.0	207					
		MGMA302D1口	3.0	247					
		MGMA452D1口	4.5	345.5	42				

- App. 99 -

Dimensions

Driver Type 1 Approximate weight : 1.0 kg

Front panel mount type
(front panel mounting is optional)

Back panel mount type (Standard)

Mounting bracket
(optional: DVOP2100)

Mounting bracket (optional: DVOP2100)

Driver Type 2 Approximate weight: 1.1 kg

Front panel mount type (front panel mounting is optional)

Back panel mount type
(Standard)

Mounting bracket
(optional: DVOP2100)

Mounting bracket
(standerd)
Mounting bracket
onal: DVOP2101)

- App. 101 -

Dimensions

Driver Type 3 Approximate weight: 1.4 kg

Front panel mount type
(front panel mounting is optional)

Back panel mount type
(Standard)

Mounting bracket
(optional: DVOP2101)

(optional: DVOP2101)

Driver Type 4-2 Approximate weight : 3.8kg

Dimensions

Driver Type 4-3 Approximate weight : 4.2 kg

Driver Type 5 Approximate weight : 8 kg

Specifications

Overload Protection: Time Limiting Characteristic

Specifications

Gain Switching Conditions

- Position Control Mode (\bigcirc : the parameter valid, -: invalid)

Gain switching conditions			Parameters for position control		
			Delay time* ${ }^{1}$	Level	Hysteresis* ${ }^{2}$
Pr31	Switching conditions	Figure	Pr32	Pr33	Pr34
0	Fixed to 1st gain		-	-	-
1	Fixed to 2nd gain		-	-	-
2	Gain switching input, 2nd gain selected with GAIN On		-	-	-
3	2nd gain selected with a large torque command differential	A	\bigcirc	\bigcirc	\bigcirc
4	Fixed to 1st gain		-	-	-
5	Large target velocity commanded	C	\bigcirc	\bigcirc	\bigcirc
6	Large position error	D	\bigcirc	\bigcirc	\bigcirc
7	Position command existing	E	\bigcirc	-	-
8	Positioning incomplete	F	\bigcirc	-	-

- Velocity Control Mode

Gain switching conditions			Parameters for velocity control		
			Delay time* ${ }^{1}$	Level	Hysteresis* ${ }^{2}$
Pr36	Switching conditions	Figure	Pr37	Pr38	Pr39
0	Fixed to 1st gain		-	-	-
1	Fixed to 2nd gain		-	-	-
2	Gain switching input, 2nd gain selected with GAIN On		-	-	-
3	2nd gain selected with a large torque command differential	A	\bigcirc	\bigcirc	\bigcirc
4	2nd gain selected with a large speed command differential	B	\bigcirc	\bigcirc	\bigcirc
5	Large speed command	C	\bigcirc	\bigcirc	\bigcirc

- Gain switching conditions

Gain switching conditions			Torque Control Mode		
			Delay time ${ }^{*}$	Level	Hysteresis* ${ }^{\text {2 }}$
Pr3A	Switching conditions	Figure	Pr3B	Pr3C	Pr3D
0	Fixed to 1st gain		-	-	-
1	Fixed to 2nd gain		-	-	-
2	Gain switching input, 2nd gain selected with GAIN On		-	-	-
3	2nd gain selected with a large torque command differential	A	\bigcirc	\bigcirc	\bigcirc

Specifications

*1 Delay time (parameters Pr32, Pr37 and Pr3B) become effective when returning from 2nd gain to 1st gain.
*2 For the definitions of hysteresis parameters (Pr34, Pr39 and Pr3D), see the right figure.

- Figures A through F are shown in the next page.

<Notes>

The figures above do not reflect the gain switching timing delay caused by hysteresis (parameters Pr34, Pr39 and Pr3D).

- App. 108 -

- App. 109 -

Specifications

- App. 110 -

- Control Block Diagram

After-Sale Service Repair

Repair

Ask the seller where the product was purchased for details of repair work.
When the product is installed in a machine or device, consult first the manufacturer of the machine or device.

Information

Customer Service
TEL : 072-870-3057-3110
Operating hours : 9:00 to 17:00, Monday to Saturday (except Sunday, National holiday and the end/biginning of the year)

Memorandum(Fill in the blanks for convenience in case of inquiry or repair)

Date of purchase	Date:	Model No.	MUDS MUMS Place of purchase
	Telephone No.(

[^0]: * When the torque control mode is selected at the velocity/torque switching mode ($\operatorname{Pr02=5\text {),the}}$ No. 16 pin (CCWTL/TRQR) becomes the torque command input (analogue). You can set-up the relationship between the command voltage level and the motor torque with Pr5C (Torque Command Input Gain).

[^1]: * See page 38 in Appendix.

