Panasonic

AC Servo Motor Driver MINAS A-series

Operating Manual

- Thank you very much for your buying Panasonic AC Servo Motor Driver, A-series.
- Before use, read through this manual to ensure proper use. Keep this manual at an easily accessible place so as to be referred anytime as necessary.

Before Use

Safety Precautions •••••• 4	Parts Description •••••• 12
	Driver ••••••• 12
After Opening the Package 8	Motor •••••• 13
Check the Model of Driver •••••••8	Installation •••••••••••14
Check the Model of Motor	Driver ······ 14
- Check the Combination of Driver and Motor 10	Motor •••••• 16

Preparations and Adjustments

, ,	
CN SER and CN NET Connectors (For PC or Controller) ••••••• 27 CN I/F Connector (For Controller) •••••• 28 (Circuits Available for Typical Control Modes) •••••• 29 (Input and Output Signals, and their Functions) ••••••• 32 (Interface circuit) •••••• 38	Adjustments ••••• 55 Purposes of Gain Adjustments ••••• 55 Kinds of Gain Adjustments ••••• 55 How to Adjust Gain •••• 57 How to Use "NormalAuto-Gain" Tuning ••••• 58 How to Use "Real Time Auto-Gain" Tuning •••• 59
Parameter Setting42Overview42Parameter Groups and Listing42Setting the Parameters47MODEs Structure48	How to Adjust Gain Manually •••••• 60

Important Information

Appendixes

Conformance to EC Directives and UL Standards $ \bullet \bullet$	Overview of a Communication Control
List of Connectable Motors •••••• App. 7	Software PANATERM •••••• App. 67
How to UseApp •••••• App. 9	Optional Parts ••••• App. 69
"Absolute" Driver •••••• App. 20	Recommended Parts •••••• App. 84
"Full Close" Driver •••••• App. 28	Outer Views and Dimensions App. 86
Details of Parameters •••••• App. 30	Properties ••••• App. 106
Details of Operation •••••• App. 57	Specifications •••••• App. 107

Observe the following precautions in order to avoid injuries of operators and other persons, and mechanical damages.

The following DANGER and CAUTION symbols are used according to the level of dangers possibly occurring if you fail to observe the instructions or precautions indicated.

DANGER	Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury.
	Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury and physical damage.

The following symbols indicate what you are not allowed to do, or what you must observe.

\wedge	This symbol indicates that the operation is prohibited.
\bigcirc	This symbol indicates that the operation must be per-
0	formed without fail.

DANGER

An over-current protection, earth leakage breaker, over-temperature protection and emergency stop should be installed.

Failure to observe this instruction could result in electric shocks, injuries and/or fire.

Don't insert your hands in the driver.

Failure to observe this instruction could result in burns and/or electric shocks.

struction could result in electric shocks.

Install an external emergency stop device so that you can shut off the power in any emergency cases.

Failure to observe this instruction could result in injuries, electric shocks, fire, malfunction and/or mechanical damages.

Ground the earth terminal of the driver.

Failure to observe this instruction could result in electric shocks.

Safety Precautions

▲ Caution

Use the motor and driver in the specified combination.

Execute the trialoperations with the motor fixed but without motor load connected. Connecting a load to the motor is possible only after successful trial operation.

Failure to observe this instruction could result in fire.

If an error occurs, remove the causes for the errora and secure the safety before restarting the operation.

Failure to observe this instruction could result in injuries.

Avoid extreme adjustment or change. Avoid an operation which causes unstable action.

Failure to observe this instruction could result in injuries.

Don't touch the motor, driver or its regenerative discharge resistor, since they become hot.

iuries.

Failure to observe this instruction could result in burns.

Failure to observe this in-

struction could result in in-

Don't modify, dismantle or repair the driver.

Failure to observe this instruction could result in electric shocks and/or injuries.

▲ Caution Don't hold the cables or After recovery from the power motor shaft when transpoting failure, the equipment may the motor restart suddenly. Don't approach to the equipment during power failure. Failure to observe this instruction could result in injuries. *Provide appropriate settings as a preparedness against the accidental restart of the machine in order to ensure the safety of personnel. Don't block the heat Observe the voltage specidissipation hole or insert fied foreign matters in it. Failure to observe this Failure to observe this instruction could result instruction could result in in electric shocks, electric shocks, injuries and/or fire. injuries and/or fire. Make sure that the This equipment should be treated as an industrial waste when it is wirings are made correctly. disposed of. When discarding batteries, insulate them with tapes or Failure to observe this other similar means and obey instruction could result in the local rules. electric shocks, injuries.

After Opening the Package

- After Opening the Package
- Make sure that the product is what you have ordered.

Check whether the product has been damaged or not during transportation. If the product is not correct, or it has been damaged, contact dealer or sales agent.

Check the Model of Driver

Check the Model of Motor

Table 1-a Rated Motor Output

Table 1-b

1-b Rotary Encoder

Symbol	Rated output	Symbol	Rated output
3A	30W	10	1kW
5A	50W	12	1.2kW
01	100W	15	1.5kW
02	200W	20	2kW
03	300W	25	2.5kW
04	400W	30	3kW
05	500W	35	3.5kW
06	600W	40	4kW
08	750W	45	4.5kW
09	900W	50	5kW

Symbol	Sp	ecificatio	ons	
Symbol	Туре	No. of pulses	Resolution	Lead wire
Α	Incremental	2500P/r	10000	11-wire
С	Absolute		17bit	7-wire
D	Absolute/ incremental		17bit	7-wire

Introduction

Table 1-c	Motor Structure
-----------	-----------------

Oil seal	Brake		Shaft	
Oli Seal	DIAKE	Straight	Key way	D-cut
None	None	A	E	N
	Yes	В	F	Р
None	None	С	G	Q
	Yes	D		R

"D-cut" shafts are available for MSMA30W to 750W and MQMA100W to 400W.

Check the Combination of Driver and Motor

The driver has been designed for use in combination with the specified motors only. Check the specifications (Series symbol, output rating, voltage rating and encoder type) of the motor you want to use.

With the incremental type encoder: 2500P/r

	Amplifier			Mot	tor		
Amplifier	type	Series symbol	Motor type	Voltage	Output rating	Revolution rating	Encoder type
MSDA3A1A1A	Type1	MSMA	MSMA3AZA**		30W		
MSDA5A1A1A		(Small)	MSMA5AZA**		50W		
MSDA011A1A			MSMA011A**	100V	100W		
MSDA021A1A	Type2		MSMA021A**		200W		
MSDA041A1A	Type2	low	MSMA041A**		400W		Incremental
MSDA3A3A1A	Type1	inertia	MSMA3AZA**		30W	3000r/min	2500P/r, 11
MSDA5A3A1A		IIIeilla	MSMA5AZA**		50W		wires
MSDA013A1A			MSMA012A**	200V	100W		
MSDA023A1A			MSMA022A**	2000	200W		
MSDA043A1A	Type2		MSMA042A**		400W		
MSDA083A1A	Type2		MSMA082A**		750W		
MSDA103A1A	Type4-2	моми	MSMA102A**		1.0kW		
MSDA153A1A		MSMA	MSMA152A**]	1.5kW		
MSDA203A1A	Type4-3	(Large)	MSMA202A**]	2.0kW		
MSDA253A1A			MSMA252A**]	2.5kW		Incremental
MSDA303A1A	Type5	Low	MSMA302A**	200V	3.0kW	3000r/min	2500P/r, 11
MSDA353A1A		inertia	MSMA352A**		3.5kW		wires
MSDA403A1A			MSMA402A**]	4.0kW		
MSDA453A1A			MSMA452A**]	4.5kW		
MSDA503A1A			MSMA502A**		5.0kW		

Before Use

Amplifier typeAmplifier typeAmplifier typeAmplifier typeAmplifier typeAmplifier typeMotor typeVoltageOutput ratingRevolution ratingEncoder typeMSDA3A1D1AType1MSMAMSMA3AZC**30W50W50W100W100WMSDA011D1AType2MSMA011C**100V100W200W100W <th></th> <th>Amplific</th> <th></th> <th></th> <th>Mo</th> <th>tor</th> <th></th> <th></th>		Amplific			Mo	tor		
MSDA5A1D1A MSMAIL MSMA5AZC** 50W MSDA011D1A Type2 MSMA011C** 100V 200W MSDA021D1A Type2 MSMA041C** 400W 3000r/min MSDA3A3D1A Type1 MSMA041C** 400W 3000r/min MSDA013D1A Type1 MSMA041C** 50W 3000r/min MSDA013D1A Type1 MSMA012C** 50W 3000r/min MSDA023D1A Type2 MSMA012C** 50W 100W 200V MSDA023D1A Type2 MSMA042C** 750W 200V 100W MSDA083D1A Type2 MSMA082C** 10W 200W 10W	Amplifier		Series	Motor type	Voltage			Encoder type
MSDA011D1A MSMA011C** 100V 100W 10W 10W <th{< td=""><td>A3A1D1A 1</td><td>A1D1A Type1</td><td>MSMA</td><td>MSMA3AZC**</td><td></td><td>30W</td><td></td><td></td></th{<>	A3A1D1A 1	A1D1A Type1	MSMA	MSMA3AZC**		30W		
MSDA021D1A Type2 MSDA021D1A Type2 MSDA041D1A Type2 MSDA041D1A Type1 MSDA3A3D1A Type1 MSDA013D1A Type1 MSDA023D1A MSMA021C** MSDA023D1A MSMA022C** MSDA023D1A MSMA022C** MSDA043D1A Type2 MSMA022C** 100W MSMA042C** 200V MSMA043D1A Type2 MSMA042C** 400W MSMA042C** 750W	A5A1D1A	A1D1A	(Small)	MSMA5AZC**		50W		
MSDA041D1A Type2 MSDA3A3D1A Type1 MSDA5A3D1A Type1 MSDA5A3D1A Type1 MSDA5A3D1A Type1 MSDA013D1A MSMA041C** MSDA023D1A MSMA041C** MSDA023D1A MSMA012C** MSDA043D1A Type2 MSMA042C** 200V MSMA042C** 400W MSMA042C** 100W MSMA043D1A Type2 MSMA082C** 750W	A011D1A	11D1A	_	MSMA011C**	100V	100W		
MSDA041D1A Type2 MSMA041C** 400W MSDA3A3D1A Type1 Low inertia MSMA041C** 3000r/min MSDA5A3D1A Type1 MSMA041C** 50W 3000r/min MSDA013D1A MSMA012C** 50W 100W 200V 100W MSDA023D1A MSMA022C** MSMA022C** 200V 200W 200W 400W MSDA043D1A Type2 MSMA042C** 400W 200W 400W 40W 40W <t< td=""><td>A021D1A</td><td>21D1A Type2</td><td>_</td><td>MSMA021C**</td><td></td><td>200W</td><td></td><td></td></t<>	A021D1A	21D1A Type2	_	MSMA021C**		200W		
MSDA3A3D1A Type1 MSMA3AZC** 30W 3000r/min Increase MSDA5A3D1A Inertia MSMA5AZC** 50W 50W 100W encoder, 17 bits MSDA013D1A MSMA012C** MSMA022C** 100W 200W 400W 100W 10W 10	A041D1A	41D1A Type2	- Low	MSMA041C**		400W		
MSDA5A3D1A MSMA MSMA5AZC** 50W 50W MSDA013D1A MSMA012C** 200V 100W 200W MSDA023D1A MSMA022C** 400W 200W 400W MSDA083D1A Type2 MSMA082C** 750W 10kW	A3A3D1A	A3D1A Type1		MSMA3AZC**		30W	3000r/min	
MSDA023D1A MSMA022C** 200V MSDA043D1A Type2 MSMA042C** 400W MSDA083D1A Type2 MSMA082C** 750W MSDA103D1A Type42 MSMA102D** 1.0kW	A5A3D1A	A3D1A	Inertia	MSMA5AZC**		50W		encoder, 17 bits
MSDA023D1A MSMA022C** 200W MSDA043D1A Type2 MSMA042C** 400W MSDA083D1A Type2 MSMA082C** 750W MSDA103D1A Type2 MSMA102D** 1.0kW	A013D1A	13D1A		MSMA012C**	2001/	100W		
MSDA083D1A Type2 MSMA082C** 750W MSDA103D1A Type42 MSMA102D** 1.0kW	A023D1A	23D1A		MSMA022C**	2000	200W		
MSDA103D1A Type4-2 MSMA102D** 1.0kW	A043D1A	43D1A Type2		MSMA042C**		400W		
MSDA103D1A Type4-2 MSMA102D** 1.0kW	A083D1A	83D1A Type2	_	MSMA082C**		750W		
	A103D1A 1	03D1A Type4-2	мема	MSMA102D**		1.0kW		
MSDA153D1A MSMA152D** 1.5kW Absolute/	A153D1A	53D1A		MSMA152D**		1.5kW		Absolute/
MSDA203D1A Type4-3 (Large) MSMA202D** 2.0kW incremental type	A203D1A 1	03D1A Type4-3	(Large)	MSMA202D**		2.0kW		incremental type,
MSDA253D1A MSMA252D** 2.5kW 17 bits, 7 wires	A253D1A	53D1A	_	MSMA252D**		2.5kW		17 bits, 7 wires
MSDA303D1A Type5 Low MSMA302D** 200V 3.0kW 3000r/min See Note 2)	A303D1A	03D1A Type5	Low	MSMA302D**	200V	3.0kW	3000r/min	See Note 2)
MSDA353D1A inertia MSMA352D** 3.5kW	A353D1A	53D1A	inertia	MSMA352D**		3.5kW		
MSDA403D1A MSMA402D** 4.0kW	A403D1A	03D1A		MSMA402D**		4.0kW		
MSDA453D1A MSMA452D** 4.5kW	A453D1A	53D1A		MSMA452D**		4.5kW		
MSDA503D1A MSMA502D** 5.0kW	A503D1A	03D1A		MSMA502D**		5.0kW		

With the absolute/incremental type encoder, 17 bits

< Notes >

- The above table shows the possible combinations between the driver (MSDA) and lowinertia type motors (MSMA). For middle-inertia (MDMA), high-inertia (MHMA), flat (MFMA), flat & small (MQMA) and middle-inertia (MGMA) motors, see the Appendix.
- 2. The default is for "incremental" spec.

When you use the driver with the "absolute" spec, you need to;

1) Change the value of the parameter "Absolute encoder set-up (PrOB)" from 1 (factory set default) to 0.

2) Install the battery (see Appendix "Optional Parts" for the batteries).

3. The absolute/incremental spec driver can be used as "Full Closed Driver".

Driver

Example: MSDA023A1A (200V 200W: Type 1)

< Notes >

For detailed information for each of driver types, see the drawings in the Appendix. Safe separation are provided between power board and control circuit.

Motor

Example: Small Low-Inertia Motor (MSMA Series, 750W and below)

< Notes >

For detailed information for each of motor types, see the drawings in the Appendix.

The driver and motor should be properly installed to avoid failures, mechanical damages and injuries.

Amplifier

Location

- A Indoors, where the driver is not subjected to rain water and direct sun beams. Note that the driver is not a waterproof structure.
- B A void the place where the driver is subjected to corrosive gases, flammable gases, grinding liquids, oil mists, iron powders and cutting particles.
- C Place in a well-ventilated, and humid- and dust-free space.
- D Place in a vibration-free space.

(Environmental Conditions)

Item	Conditions
Ambient temperature	0 to 55ÅãC (free from freezing)
Ambient humidity	Not greater than 90%RH (free from condensation)
Storage temperature	-20 to 80ÅãC (free from condensation)
Storage humidity	Not greater than 90%RH (free from condensation)
Vibration	Not greater than 5.9m/s2 (0.6G) at 10 to 60 Hz
Altitude	Not greater than 1000 m

How to Install

A his is a rack-mount type.

Place the driver vertically. Allow enough space surrounding for ventilation.

Type 3 and smaller (up to 750W): Back panel mount type (projected, use BracketA)

Type 4 and larger (1kW and larger): Front panel mount type (recessed, use Bracket B)

- B If you want to change the mounting configuration, use the optional bracket (see Appendix "Optional Parts").
- C Fit to noncombustibles such as metal.

Mounting Direction and Space Requirements

- Allow enough space to ensure enough cooling.
- Install fans to provide a uniform distribution of temperature in the control box.
- Observe the environmental requirements for the control box, mentioned in the previous page.

< Notes >

Conformance to UL Standard

Observing the following instruction makes this driver a UL508C standard authorized and EN50178 approved product.

1 Instructions in wiring

- 1)Use copper conductor wire with the rated temperature of 60Åé or higher for wiring to terminal blocks or grounding terminals.
- 2)Be sure to connect the protective grounding of the control panel(PE) to a protective grounding terminal() of the driver to prevent electric shock. Do not double-connect to the protective grounding terminals (). Two protective grounding terminals are provided.

2 Overload protection level

The overload protective function of the driver is activated when the effective current of the driver is 115% or more of the rated current. Make sure that the effective current of the driver dose not exceed the rated current. The maximum allowable instantaneous current of the driver is the current set by the torque limit setting(Pr06).

3 Installation environment

Use the driver in environment with the pollution level 2 higher provided in IEC60664-1.For example, installing in a control panel of IP54 makes the pollution level of the environment 2. To achieve IP54, the structure shall not allow water, oil, carbon or dust to enter.

Installation

Motor

Location

- A Indoors, where the driver is not subjected to rain water and direct sun beams.
- B Avoid the place where the driver is subjected to corrosive gases, flammable gases, grinding liquids, oil mists, iron powders and cutting particles.
- C Place in a well-ventilated, and humid- and dust-free space.
- D Easy maintenance, inspections and cleaning is also important.

Environmental Conditions

Item	Conditions
Ambient temperature	0 to 40°C (free from freezing)
Ambient humidity	Not greater than 90%RH (free from condensation)
Storage temperature	-20 to 80°C (free from condensation)
Storage humidity	Not greater than 90%RH (free from condensation)
Vibration	Not greater than 49m/s2 (5G) in operation; not greater than 24.5m/s2 (2.5G) at rest

How to Install

The motor can be installed either vertically or horizontally. Observe the following notes.

- A Horizontal mounting
- Place the motor with the cable outlet facing down to prevent the entry of oil and water.
- B Vertical mounting
- If the motor is coupled with a reduction gear, make sure that the oil in the reduction gear does not enter into the motor.

Oil and Water Protections)

- A This motor(IP65 rating) can be used where it is subjected to water and/or oil drops, but is not water or oilproof. Therefore, the motors should not be placed or used in such environment.
- B If the motor is coupled with a reduction gear, use the motor should with oil seals to prevent the reduction gear oil from entering into the motor.
- C Don't use the motor with the cables being immersed in oil or water.

Cable: Stress Relieving

- A Make sure that the cables are not subjected to moments or vertical loads due to external bending forces or self-weight at the cable outlets or connections.
- B In case the motor is movable, secure the cable (proper one supplied together with the motor) to a stationery part (e.g. floor), and it should be extended with an additional cable which should be housed in a cable bearer so that bending stresses can be minimized.
- C Make the bending radius of cables as large as possible.

Permissible Shaft Load

- A Make sure that both of radial and thrust load to be applied to the motor shaft during installation and running, becomes within the specified value of each model.
- B Pay extra attention at installing a rigid coupling(especially an excess bending load which may cause the damages and/or wear of the shaft and bearings.
- C Flexible coupling is recommended in order to keep the radial load smaller than the permissible value, which is designed exclusively for servo motors with high mechanical stiffness.
- D For the permissible shaft load, see "Allowable Shaft Loads Listing" in Appendix.

Installation Notes

A Don't hit the shaft with a hammer directly while attaching/detaching the coupling to the motor shaft.(otherwise the encoder at the opposite end of the shaft will be damaged).

B Try perfect alignment between shafts (misalignment may cause vibration, and damages of the bearings).

System Configuration and Wiring

General Wiring Diagram

Main Circuits

Regenerative discharge resistor

B2, and

System Configuration and Wiring

List of Available Components

A	mplifie	er		Non-fuse			Main circuit wire		Terminals
Series	Voltage	Output	Required Power (at the rated load)	breaker (rated current)	Noise filter	Magnetic contactor (contacts)	dameter(L1, L2, L3, U, V, W and E)	Control powerwire di- ameter (r and t)	on the terminalblock
MSDA		30 - 50W	approx. 0.3kVA	BBP2-10 (10A)	LF-210	BMFT61041N			
MSDA	100V	100W	approx. 0.4kVA	BBP2-15	LF-215	(3P+1a)			
MQDA	1000	200W	approx. 0.5kVA	(15 A)	LF-213		0.75mm ²		
MSDA MQDA		400W	approx. 1.0kVA	BBP2-30 (30A)	LF-230	BMFT61541N (3P+1a)	- 2.0mm ²	0.75mm ²	M4
MSDA MQDA		100W	approx. 0.3kVA	B B P 3 - 5 (5A)	LF-305		A. W. G. 14Å`18	A. W. G. 18	
	200V	200W	approx. 0.5kVA	DDD0 40		BMFT61042N			
		400W	approx. 0.9kVA	BBP3-10	LF-310	(3P+1a)			
MSDA		750W	approx. 1.3kVA	(10A)					
MGDA		300W	approx. 0.7kVA						
MFDA		400W	approx. 1.0kVA				0.75mm ²		
MHDA		500W	approx. 1.0kVA	BBP3-10	LF-310	BMFT61042N	-2.0mm ²		
MGDA		600W	approx. 1.1kVA	(10A)	LF-310	(3P+1a)	A. W. G. 18		
MDDA MFDA		750W	approx. 1.3kVA						
MGDA		900W	approx. 1.8kVA	BBP3-15	LF-315	BMFT61542N			
MSDA		1.0kW		(15A)		(3P+1a)			
MDDA									
MHDA								0.75mm ²	
MGDA	200V	1.2kW	approx. 2.3kVA	BBP3-20	LF-320	BMFT61842N		A. W. G. 18	M5
MSDA		1.5kW		(20A)		(3P+1a)	2.0mm ²		
MDDA							A. W. G. 14		
MHDA									
MFDA									
MSDA		2.0kW	approx. 3.3kVA	BBP3-30	LF-330	B M F 6 2 5 2 N			
MDDA				(40A)		(3P+2a2b)			
MHDA									
MGDA			approx. 3.8kVA	BBP3-40	LF-340	B M 6 3 5 2 N			
				(40A)	,	(3P+2a2b)			

• When these wires are used, wire lenght between circuit breaker and driver should be less than 3m.

• Chose suitable wire size for Earthing Cnductor which has some dimension as wire for power input and output.

A	mplifie	er		Non-fuse			Main circuit wire		Terminals
Series	Voltage	Output	Required Power (at the rated load)	breaker (rated current)	Noise filter	Magnetic contactor (contacts)	dameler(L1, L2, L3, U, V, W and E)	ontrol powerwire diam- eter (r and t)	on the terminalblock
MSDA		2.5kW	approx. 3.8kVA				2.0mm ²		
MDDA							A. W. G. 14		
MFDA									
MSDA		3kW	approx. 4.5kVA						
MDDA				BBP3-40	LE-340	BMF6352N			
MHDA				(40A)	21 010	(3P+2a2b)			
MGDA			approx. 5.3kVA						
MSDA		3.5kW							
MDDA									
MFDA	200V							0.75mm ²	M5
MSDA		4.0kW	approx. 6.0kVA				3.5mm ²	A. W. G. 18	ino
MDDA							A. W. G. 11		
MHDA						BMF6502N			
MSDA		4.5kW	approx. 6.8kVA		LF-350	(3P+2a2b)			
MDDA				BBP3-50					
MFDA				(50A)					
MGDA			approx. 7.5kVA		LF-360	BMF6652N			
MSDA		5kW				(3P+2a2b)			
MDDA									
MHDA									

 The model numbers of non-fuse breakers and magnetic contactors shown in the above list are manufactured by Matsushita Electric Works, Ltd.

• The model numbers of noise filters shown in the above list are manufactured by Tokin Corporation.

<Notes>

- When you use multiple drivers, determine the capacity of non-fuse breaker and noise filter according to the "total" required power capacity (net value determined by the actual loads) of the drivers.
- Terminal block and earth terminals

Wires should be copper conductors of a temperature rating of 60°C or above.

Screw tightening torque of larger than the allowable value (1.2 N-m for M4 and 2.0 N-m for M5) may damage the terminal.

• Earth wire diameter should be 2.0 mm2 (AWG14) or larger for 30W to 2.5kW, and 3.5 mm2 (AWG11) or larger for 3 to 5kW.

Main Circuits

Don't turn on the main power until the wiring is completed, to avoid electric shocks.

Wiring Instructions

- A Detach the terminal block by removing the cover securing screw.
- B Make necessary connections.

Use clamp terminal connectors with an insulation cover. For wire diameter and connector sizes, see List of Available Components (page 20).

C Attach the terminal block cover and tighten the cover securing screw.

Wiring Diagrams

Cannon Plug Type Motor Connectorss

	Motor				Cannor	n plug's	pin no.	
Brake	Series symbol	Output rating	U	V	W	Е	Brake 1	Brake 2
	MSMA	1~2.5kW						
	MDMA	0.75 ~ 2.5kW	A	В	с	D		
	MGMA	0.3 ~ 0.9kW	~	D				
	MHMA	0.5 ~ 1.5kW						
Not	MSMA	3 ~ 5kW						
fitted	MDMA	3 ~ 5kW	А	В	с	D		
	MGMA	1.2 ~ 4.5kW						
	MHMA	2 ~ 5kW						
	MFMA	0.75 ~ 1.5kW	F	I	В	D, E		
	MFMA	2.5 ~ 4.5kW	D	E	F	G, H		
	MSMA	1~2.5kW						
	MDMA	0.75 ~ 2.5kW				D		
	MGMA	0.3 ~ 0.9kW	F	I	В	E	G	Н
	MHMA	0.5 ~ 1.5kW				L		
Fitted	MFMA	0.4 ~ 1.5kW						
	MSMA	3 ~ 5kW						
	MDMA	3 ~ 5kW				G		
	MGMA	1.2 ~ 4.5kW	D	E	F	н	А	В
	MHMA	2 ~ 5kW				п		
	MFMA	2.5 ~ 4.5kW						

<Note> See "Cannon Plug (Optional)" in Appendix.

CN SIG Connector (For Encoder)

Wiring Instructions

- The cable length between the driver and motor should be max. 20 m. If you use a longer cable, contact the dealer or sales agent.
- ^o Separate these wiring min. 30 cm from the main circuit wires. Don't lay these wires in the same duct of the mains or bundle with them.
- Two types of encoder wire exit: One is "Lead wire + connector" and other is Cannon plug type(depending on the motor model).
- When you prepare your own connecting cables see the "Optional Parts" for connectors, and
- 1) Follow the wiring diagram and use the
- Wire material: 0.18 mm2 (AWG24) or above, shielded twist-paired wire with an enough bending durability,
- Signal/power paired wires should be of a twist-paired type.
- 4) Shield:
- The shield at the driver side should be connected to Pin 20 (FG) of CN SIG Connector.
- The shield at the motor side should be connected to:
 Diagonal for the should be
 diagonal for the should be

Pin 3 (for AMP connector of 9 pins type) Pin 15 (for AMP connector of 15 pins type) J-pin (for canon plug connector)

- 5) If the cable is longer than 10 m, the encoder power line (+5V and 0V) should be dual per the figure shown left.
- 6) Other terminals should be left unconnected.

Wiring Diagrams (with a 2500P/r incremental type encoder ([A]*1)

For encoder symbols, see Table 1-b in page $\left\{ \begin{array}{c} \\ \\ \end{array} \right\}$) shows a pair of twisted wires.

System configutration and wiring

Wiring Diagram

Driver with a 17 bits absolute encoder ([C]*1) Driver with a 17 bits absolute/incremental encoder ([D]*1)

*2 If you use an absolute encoder ([C]) or absolute/incremental encoder ([D]) as an incremental encoder, you don't need to connect the back-up battery.

 \pm shows a pair of twisted wires.

CN SER and CN NET Connectors (For PC or Controller)

• These connectors can be used as either RS232C or RS485. There are three ways for using these connectors as shown below.

For RS232C communication only

Connect the personal computer and the driver 1:1 through RS-232C, The PANATERM using for communication control softwere. The PANATERM using this function the monitor of the personal computer settings wave graphics.

• Rotary switch (ID): default position of 1 must be selected

For both RS232C and RS485 communication

You connect the host and the 1st driver with RS232C, and connect the drivers in series with RS485.

For RS485 communication only

Connect all the drivers and a host with RS485.

- Rotary switch (ID): select a position 1 to F.
- < NOTE >
- Max. 15 drivers can be connected to a host.
- For detailed information, see Communication Specifications.

CN I/F Connector (For Controller)

Wiring Instructions

- Displace the peripheral devices such as the controller max. 3 m away from the driver.
- Separate these wiring min. 30 cm from the main circuit wires. Don't lay these wires in the same duct of the mains or bundle with them.

The control power (VDC) between COM+ and COMshould be supplied by the customer (recommended voltage: +12VDC to +24VDC).

Control signal output terminals can accept max. 24V or 50mA: Don't apply larger voltage or current exceeding these limits.

If you directly activate a relay using the control signal, install a diode in parallel to the relay as shown in the left figure. Without a diode or with it but placed in the opposite direction, the driver will be damaged.

Use a shielded twist-paired type for the wiring of pulse input, encoder signal output or analog command input.

The Frame Ground (FG) is connected to an earth terminal in the driver.

CN I/F Connector Specifications

Receptacle on the	Connector to	controller side	Manufastura
driver side	Part description	Part No.	Manufacturer
10250-52A2JL	Solder type plug	10150-3000VE	by Sumitomo 3M
	Shell	10350-52A0-008	

• The CN I/F pins assignment is shown in "Optional Parts" in Appendix.

Circuits Available for Typical Control Modes

Preparations and Adjustments

System configutration and wiring

CN I/F Connector

Input Signals (Common) and their Functions

Signal		Pin lo.	Symbo	bl	Fu	unction	I/F circuit			
Control signal power (+)		7	COM	+	 Connect to (+) of an supply(12VDC to 24 	·				
Control signal	4	41 COM - • Connect to (-) of an external power supply(12VDC to 24VDC).								
power (-)						pends on the I/O circuit configura-				
			tion. 0.5A or larger is recommended.							
Servo-ON	2	29	SRV-O	N		to COM-, the dynamic brake will be re-	SI			
		Votes	s>		leased and the driver is enabl	·	page 38			
	1.	This	signal l	bec		wo seconds after power on	1.2			
		(see	the Tim	ning	g chart).					
	2.	Don	't use th	is S	Servo-ON or Servo-OFF	signal to turn on or off the				
		mot								
					s delay after the driver is e	enabled before any command				
			t is enter		postion to COM the driver	will be disabled(Servo-OFF) and				
		• •	-		the motor will be inhibited.	will be disabled(Servo-OFF) and				
						n of the position error counter can				
		•		•	Pr69 (Sequence under Servo-					
Control	3	32	C-MOD	Ē	ÅEWhen Pr02 (Control Mod	de Selection) = 3, 4 or 5, the con-	SI			
mode					trol mode is selected per the table below.					
switching		Pr02	2 value		COM- open	COM- closed	page 38			
_			3		(1st)	(2nd)				
			4		Position control mode	Velocity control mode				
			5		Position control mode	Torque control mode				
					Velocity control mode	Torque control mode				
CW overtravel		8	CWL		 If COM- is opened wher 	n the movable part of the ma-	SI			
inhibit					chine has moved to CV	V exceeding the limit, the mo-	page 38			
					tor does not generate to	orque.				
CCW overtravel		9	CCWL	-	 If COM- is opened wher 	n the movable part of the ma-	SI			
inhibit					chine has moved CCW	exceeding the limit, the motor	page 38			
					does not generate torq	ue.				
					When Pr04 (Overtravel	Limit Input Disabled) = 1, CW				
					and CCW inputs are dis	sabled.				
					 The dynamic brake can be may 	ade operable during CW/CCW inputs				
					valid. Use Pr66 (Dynamic Bra	ake Inactivation at Overtravel Limit) to				
					make the dynamic brake oper	rable.				

Signal	Pin No.	Sym	bol		Function	I/F circuit			
Counter	30	CL	-	The function differs depending on the control mode.					
clear	Posit	ion	• Clears the position error counter. Connect to COM- to clear the counter.						
	contr	ol							
			• Us	e Pr4D to s	elect the clear mode (0 = Level, 1 = Edge)				
	Velo	city	• Th	e interna	I speed selection 2 (input) is valid. Use this to-				
	contr	ol	g	ether with	the INH signal (input).				
			• For	r details, see	Pr05 (Velocity Set-Up Switching) description.				
	Torque	control	• In	valid					
Command	33	IN	4	The func	tion differs depending on the control mode.	SI			
pulse input inhibit	Posit				nd pulse input inhibit signal (input) is selected. can be made disabled using Pr43.	page 38			
		01		-	-				
				r43 value	Meaning				
				1	The INH signal (input) is disabled.				
				0	• With COM- closed, the pulse command signal				
					(PULSE SIGN) is enabled.				
					With COM- open, the pulse command signal (PULSE SIGN) is inhibited.				
					1 A Second Se				
	Velo	,			ommand velocity selection 1 (input) is valid. Use				
	contr	ol		•	r with the CL signal (input).				
					e Pr05 (Speed Set-Up Switching) description.				
	Torque	Control	• In	valid					
Speed zero	26	ZERO	SPD	• With 0	COM- open, the velocity command is con-	SI			
clamp				sider	ed zero.	page 38			
				This in	put can be made disabled using Pr06.				
				Pr43 va	lue Meaning				
				0	ZEROSPD is disabled.				
				1	ZEROSPD is enabled				

System configutration and wiring

Signal	Pin No.	Sy	mbol		Function											
Gain	27	G	AIN	• Th	e function depends on the value of Pr30.	SI										
switching	Pr30 v	Pr30 value		Pr30 value		Pr30 value		Pr30 value		Pr30 value		Pr30 value		ction M-	Function	page 38
	0		Open		Velocity loop: PI operation											
					Velocity loop: P operation											
	1		Open		• 1st gain selected (Pr10, 11, 12, 13 and 14)											
			Close		• 2nd gain selected (Pr18, 19, 1A, 1B, 1C)											
				• No.	2 Gain change Funcutions See Protective Adjustments on page 62.											
Alarm clear	31	A-	CLR	• If t	the COM- connection is kept closed for more than	SI										
			120 ms, the alarm status will be cleared.													
				• For details, see Protective Functions on page												
				6	4.											

Input Signals (Position Control) and their Functions						
Signal	Pin No.	Symbol	Function	I/F circuit		
Command	3	PULS1	This is the input terminal for command pulses. The driver receives	PI		
pulse			this signal by a high-speed photo coupler.	page 38		
	4	PULS2	 The input impedance of PULSE and SIGN signals is 220É∂. 			
			• Command pulses can be input in three different ways. Use			
Command	5	SIGN1	Pr42 to select one of the following.			
sign			1) Quadrature (A and B) input			
	6	SIGN2	2) CW (PULSE)/CCW (SIGN) pulse input			
			3) Command pulse (PULS)/Sign (SIGN) input			
Command	28	DIV	• With COM- closed, the numerator of the command scalar is	SI		
pulse scalar			changed from the value stored in Pr46 (Numerator of 1st Com-	page 38		
switch			mand Scalar) to the value stored in Pr47 (Numerator of 2nd			
			Command Scalar).			
			< Note >			
			Don't enter command pulses 10 ms after or be-			
			fore switching.			
Battery +	44	BATT +	Connect a backup battery for absolute encoder			
Battery -	45	BATT -	(pole-sensitive !).			
			• If the battery is connected directly to the driver, it is not neces-			
			sary to connect a battery to this terminal.			

_
Ρ
L
Φ
g
a
aj
t
0
n
S
а
5
Б
~
2
<u>d</u>
S
tr
n
Ð
n
ts

Signal	Pin No.	Symbol	Function	I/F circuit
Velocity	14	SPR/	< At velocity control >	AI
(torque)		TRQR	 This becomes velocity command input (analogue) 	page 39
command			• You can set-up the relationship between the command	
	(15)	(GND)	voltage level and the motor speed, with Pr50 (Velocity	
			Command Input Gain) .	
			 Use Pr51 to inverse the polarity of the command input. 	
			< At torque control >*	
			 This becomes torque command input (analogue) 	
			• You can set-up the relationship between the command	
			voltage level and the motor torque, with Pr5C (Torque	
			Command Input Gain) .	
			 Use Pr5D to inverse the polarity of input signals. 	
			Use Pr56 (4th Speed Set-up) to adjust the speed limit in	
			torque control.	
			< Note >	
			SPR/TRQR are invalid in position control mode.	
CCW	16	CCWTL/	< At velocity and position control >	
torque limit		TRQR*	• You can limit the motor torque in the CCW direction by	AI
			entering positive voltage (0 to +10V) to CCWTL.	page 39
	(17)	(GND)	You can limit the motor torque in the CW direction by enter-	
			ing negative voltage (-10 to 0V) to CWTL.	
			• The torque limit value is proportional to the volt-	
			age with a factor of 100%/3V.	
			CCWTL and CWTL are valid when Pr03 (Torque Limit Input In-	
			hibit) = 0. They are invalid when Pr03 = 1.	
CW	18	CWTL	< At torque control >*	
torque limit			 Both of CCWTL and CWTL are invalid. 	
	(17)	(GND)	• Use the 4th. speed set-up(Pr56) to limit the	
			speed.	

Input Signals (Velocity and Torque Control) and their Functions

* When the torque control mode is selected at the velocity/torque switching mode (Pr02 = 5), the No.16 pin (CCWTL/TRQR) becomes the torque command input (analogue). You can set-up the relationship between the command voltage level and the motor torque with Pr5C (Torque Command Input Gain).

Output Signals (Common) and their Functions

Signal	Pin No.	Sym	nbol		Function	I/F circuit			
Servo alarm	37	ALM	Л+	• Th	is output(transistor) turns OFF, when the driver	SO1			
	36	ALI	- N	de	detects and error(trip).				
Servo-ready	35	S-RE)Y +	• Thi	s output(transistor) turns ON, when the main power is on(for	SO1			
	34	S-RI	DY -	bo	th the driver and the motor) and no alarm is active.	page 40			
Mechanical	11	BRK-C)FF +	• Th	is output(transistor) turns ON , when the brake	SO1			
brake release	10	BRK-0	DFF -		released.	page 40			
Zero speed	12	ZS	βP	• Sig	gnal which is selected at Pr0A (ZSP Output	SO2			
detection				S	election) will be turned on.s	page 40			
	Pr0A	value	Signal s	ymbol	Function				
	0)	ΤL	С	Output(transistor) turns ON during the In-toque limiting.				
	1	I	ZS	Р	Output(transistor) turns ON when the motor speed becomes lower than				
					that of the preset speed with Pr61(Zero speed).				
	2	2	WAI	RN	Output(transistor) turns ON when either one				
			AL	.L	of over-regeneration, overload or battery warn-				
					ing is activated.				
	3	3	WARN REG WARN OL		Output(transistor) turns ON when the over-regeneration (more than 85% of permissible power of the internal regenerative discharge resistor) warn-				
					ing is activated.				
	4	t			Output(transistor) turns ON when the overload (the ef-				
					fective torque is more than 85% of the overload trip level)				
					warning is activated.				
	5	5	WAI	RN	Output(transistor) turns ON when the battery (the voltage of				
			BA	гт	the backup battery becomes lower than approx. 3.2V at the				
					encoder side) warning is activated.				
Torque	40	TL	.C	• Si	gnal which is selected by Pr09 (TLC Output	SO2			
in-limit				s	election) will be turned ON.	page 40			
				• Se	e the above ZSP signal for the set-up of Pr09				
				ar	nd functions.				
	39	COI	N +			SO1			
In-position/At-	38	co	N -			page 40			
speed	Co	ntrol	Européine						
	m	ode		Function					
	Posit	ion	Outp	utput(transistor) turns ON when the position error is below the					
			+ .		ue by Pr60 (In-Position Range).				
	Veloci	ty and			ansistor) turns ON when the motor speed reaches				
	torque)	the	prese	t value by Pr62 (At-Speed).				

Signal	Pin No.	Symbol	Function	I/F circuit
A-phase output	21	OA +	 Provides differential outputs of the encoder signals 	PO1
	22	OA -	(A, B and Z phases) that come from the divider	page 40
B-phase output	48	OB +	(equivalent to RS422 signals).	
	49	OB -	• The logical relation between A and B phases can be selected by	
Z-phase output	23	OZ +	Pr45 (Output Pulse Logic Inversion).	
	24	OZ -	Not insulated	
Z-phase output	19	CZ	• Z-phase signal output in an open collector (not	PO2
			insulated)	page 41
Velocity	43	SP	· Outputs the motor speed, or voltage in proportion to the	AO
monitor			commanded speed with polarity.	page 41
output	(17)	(GND)	+ : CCW rotation	
			- : CW rotation	
			• Use Pr07 (Velocity Monitor Selection) to switch between actual	
			and commanded speed, and to define the relation between	
			speed and output voltage.	
Torque	42	IM	• Outputs the output torque, or voltage in proportion to the posi-	AO
monitor			tion error with polarity.	page 41
output	(17)	(GND)	+ : Fgenerating CCW-torque	
			-: Fgenerating CW-torque	
			• Use Pr08 (Torque Monitor Selection) to switch between torque	
			and positional error, and to define the relation between torque/	
			positional error and output voltage.	

Output Signals (Others) and their Functions

Signal	Pin No.	Symbol	Function	I/F circuit
Signal	13	GND	 Signal ground in the driver 	
ground	15		• Internally isolated from the control power (COM -).	
	17			
	25		 Internally connected to the earth terminal. 	
Frame	50	FG	 No connections should be made. 	
ground				
(Not in use)	1			
	2			
	20			
	46			
	47			

CN I/F Connector

Interface Circuit (Input Circuit)

SI SI Connecting to se quence input signals

- Connect to a contact of switch and relay, or a transistor of an open collector output.
- Use a switch or relay for micro current so that insufficient contact can be avoided.
- Lower limit of the power supply (12 to 24V) should not be less than 11.4V in order to secure the appropriate level of primary current of the photo coupler.

PI PI Command pulse input circuit

- 1) Line Driver I/F
- This is a good signal transmission method that is less sensitive to noises. We recommend you to use this to maintain the reliability of signals.
- 2) Open Collector I/F
- This uses an external control power supply(VDC).
- This requires a current-limiting resistor corresponding to the capacity of the VDC value.

Vdc	R value
12V	1kΩ 1/4W
24V	2kΩ 1/4W

 $\frac{V_{DC} - 1.5}{R + 220} = 10 mA$

shows a pair of twisted wires.

Preparations and Adjustments

AI AI Analogue Commend Input

- · There are three analogue command inputs of SPR/RTQR (14 pins), CCWTL (16 pins) and CWTL (18 pins).
- The maximum permissible input voltage is ±0V. For the input impedance of these inputs, see the right figure.
- · If you make a simplified circuit comprising a variable resistor (VR) and resistor (R), refer to the right figure.

When the variable range of each input is - 10V to + 10V, the VR should be a B type resistor of $2k\Omega$ (min.1/2W). The R should be 200Ω (min.1/2W).

- The A/D converters for these inputs should have the following resolution.
- 1) ADC1 (SPR and TRQR)

- : 16 bits (including one bit for sign)
- 2) ADC2 (CCWTL and CWTL) : 10 bits (including one bit for sign

Interface Circuit (Output Circuit)

SO1

SO2 Sequence output circuit

- This comprises a Darlington amplifier with an open collector. This is connected to a relay or photo coupler.
- here exists a collector-to-emitter oltage VCE(SAT) of approx. 1V at transistor ON, because of Darlington connection of the out put transistor. Note that normal TTLIC can't be directly connected since this does not meet VIL re quirement.
- This circuit has an independent emitter connection, or a emitter connection that is commonly used as the minus (-) terminal (COM-) of the control power.
- The maximum rating is 30V, 50mA.

PO Line Driver (Differential Output) Output

- Provides differential outputs of encoder signals (A, B and Z phases) that come from the scalar.
- Receive these signals with a line receivers. In this case, install a resistor of approx. 330Ω between the inputs.
- These outputs are non-insulated signals.

⇒ shows a pair of twisted wires.

Open Collector Output Maximum rating: 30V. 50mA • Outputs Z-phase signals among those from the encoder. The outputs are non-19 ¦ CZ • Receive these signal with high-speed photo coupler at controller side, since

- these Z-phase signal width is normally narrow.
 - shows a pair of twisted wires.

25 ¦ GND High-speed photo coupler

AO Analogue Monitor Output

- This output is the velocity monitor signal (SP) or torgue monitor signal (IM).
- The signal range is approx. 0 to ± 9V.
- The output impedance is 1kΩ. Pay attention to the input impedance of your measuring instruments and

external circuits connected.

<Resolution>

PO2

insulated.

- 1) Velocity monitor signal (SP): 8r/min./ LSB calculated from 6V/3000r/min (Pr07 = 3)
- 2) Torque monitor signal (IM): 0.4%/LSB calculated from 3V/rated value (100%)

Preparetions and Adjustments

Parameter Setting

Overview

This driver has various parameters that are used for adjusting or setting the features or functions of the driver. This

section describes the purpose and functions of these parameters. Understanding these parameters is essential for

obtaining the best, application-specific operation of the driver.

You can view, set and adjust these parameters using either:

1) the front touch panel or

2) your personal computer with the communication software PANATERM .

Parameter Groups and Listing

Group	ParameterNo. Pr □□	Brief explanation
Function selection	00 ~ 0F	You can select the control mode, allocate I/O signals, and set the baud rate and etc.
Adjustment	10 ~ 1F	You can set various factors and constants such as the servo gains (1st and 2nd) for position, velocity and integration, and time constants of filters.
	20 ~ 2F	Real time auto-tuning parameters You can set the real time auto-tuning mode, select the machine stiffness, etc.
Position control	30 ~ 3F	You can set the parameters relating to the switching between 1st and 2nd gains.
	40 ~ 4F	You can set the input format of command pulses, logical selection, encoder pulse rate and pulse scalar.
Velocity and torque control	50 ~ 5B	You can set the input gain, polarity inversion and offset ad- justment of velocity command. You can set the internal speed (1st to 4th and jog speed), and it's acceleration and deceleration time.
	5C ~ 5F	You can set the input gain, polarity inversion and offset ad- justment of torque command and set the torque limit.
Sequence	60 ~ 6F	You can set the conditions for detecting of the output such as in-position and zero-speed, and set the processing condi- tions at excess position error, etc. You can also set the conditions for stopping at the main power-off, in-alarm and servo-off, or conditions for the error counter clearance, etc.
Full-close version	70 ~ 7F	"Full close" parameters. For details, see "Full-Close Specifications".

For details, see "Details of Parameters" in Appendix.

	Ple
	ede
	Iret
	lior
	ns :
	ano
	ЧÞ
	dju
	lsti
_	me
	reparetions and Adjustments
	-0,

Paramet	ters for Selecting Function		P : Position,	S : Velocity,	T : Torque
ParameterNO. (Pr 🗌 🗌)	Parameter description	Range	Default	Default	Related control mode
*00	Axis address	0 ~ 15	1	—	$P \cdot S \cdot T$
*0 1	Initial LED status	0~2	1	_	P·S·T
*02	Control mode set-up	0 ~ 10	1	—	$P\cdotS\cdotT$
0 3	Analogue torque limit inhibit	0 ~ 1	1	—	P·S
0 4	Overtravel Input inhibit	0 ~ 1	1	—	$P\cdotS\cdotT$
05	Internal speed switching	0~2	0	—	S
*06	ZEROSPD input selection	0 ~ 1	0	—	S
0 7	Speed monitor(SP) selection	0~9	3	—	$P\cdotS\cdotT$
08	Torque monitor (IM) selection	0 ~ 10	0	—	$P\cdotS\cdotT$
09	TLC output selection	0~5	0	—	$P\cdotS\cdotT$
0 A	ZSP output selection	0~5	1	—	$P\cdotS\cdotT$
*0 B	Absolute encoder set-up	0~2	1	—	$P\cdotS\cdotT$
*0 C	Baud rate set-up of RS232C	0~2	2	_	$P\cdotS\cdotT$
*0 D	Baud rate set-up of RS485	0 ~ 2	2	_	$P\cdotS\cdotT$
0 E, 0 F	Internal use			_	_
	•				

Parameters for Adjusting Time Constants of Gain Filters, etc.

Paramete (Pr□[Parameter description	Range	Default	Unit	Related control mode
1	0	1st position loop gain	10 ~ 2000	50	1/s	Р
1	1	1st velocity loop gain	1 ~ 3500	<<100>>	Hz	P·S·T
1	2	1st velocity loop integration time constant	1 ~ 1000	50	ms	P·S·T
1	3	1st speed detection filter	0~5	4	_	P·S·T
1	4	1st torque filter time constant	0 ~ 2500	<<50>>	0.01ms	$P \cdot S \cdot T$
1	5	Velocity feed forward	0~100	0	%	Р
1	6	Feed forward filter time constant	0 ~ 6400	0	0.01ms	Р
1	7	(Internal use)	_		—	_
1	8	2nd position loop gain	10 ~ 2000	50	1/s	Р
1	9	2nd velocity loop gain	1 ~ 3500	<<100>>	Hz	P·S·T
1	А	2nd velocity loop integration time constant	1 ~ 1000	50	ms	P·S·T
1	В	2nd speed detection filter	0~5	4	_	$P \cdot S \cdot T$
1	С	2nd torque filter time constant	0 ~ 2500	<<50>>	0.01ms	$P\cdotS\cdotT$
1	D	Notch frequency	100 ~ 1500	1500	Hz	P·S·T
1	Е	Notch width selection	0 ~ 4	2	_	P·S·T
1	F	Disturbance torque obserber	0~8	8	_	$P\cdotS\cdotT$

For values marked with << >>, see <Note> in page 44. For values marked with *, see page 46.

Parameters for Defining the Real Time Auto Gain Tuning

Parameter No. (Pr□□)	Parameter description	Range	Default	Unit	Related control mode
2 0	Inertia ratio	0 ~ 10000	<<100>>	%	P·S·T
2 1	Real time auto tuning set-Up	0~3	0		$P \cdot S \cdot T$
2 2	Machine stiffness at auto tuning	0~9	2		P·S·T
2 3	(Not available)				
24~2F	(Internal use)				

Parameters for Adjustments (for 2nd Gain)

Paramete (Pr	er No.	Parameter description	Range	Default	Unit	Related control mode
3	0	2nd gain action set-up	0 ~ 1	0		$P \cdot S \cdot T$
3	1	Position control switching mode	0~8	0		Р
3	2	Position control switching delay time	0 ~ 10000	0	166µs	Р
3	3	Position control switching level	0 ~ 10000	0		Р
3	4	Position control swiching hysteresis	0 ~ 10000	0		Р
3	5	Position loop gain switching time	0 ~ 10000	0	(1 + Setting value)	Р
					x 166µs	
3	6	Velocity control switching mode	0~5	0		S
3	7	Velocity control switching delay time	0 ~ 10000	0	166µs	S
3	8	Velocity control switching level	0 ~ 10000	0		S
3	9	Velocity control switching hysteresis	0 ~ 10000	0		S
3	А	Torque control switching mode	0~3	0		Т
3	В	Torque control switching delay time	0 ~ 10000	0	166µs	Т
3	С	Torque control switching level	0 ~ 10000	0		Т
3	D	Torque control switching hysteresis	0 ~ 10000	0		Т
3 E ~	3 F	(Internal use)				

For values marked with << >>, see <Note> in page 44.

<Note>

The following parameters have different default values depending on the Series of the Driver.

Parameter No.	Default			
(Pr □□)	Series MSDA and MQDA Series MDDA, MFDA, MHDA and MGDA			
1 1	100	50		
1 4	50	100		
1 9	100	50		
1 C	50	100		
2 0	100	0		

Parameters for Position Control P : Position, S : Velocity, T : Torque					
Parameter N (Pr	Parameter description	Range	Default	Unit	Related control mode
* 4 0	Command pulse multiplier set-up	1~4	4		Р
* 4 1	Command pulse logic inversion	0 ~ 3	0		Р
* 4 2	Command pulse input mode set-up	0 ~ 3	1		Р
4 3	Command pulse inhibit input invalidation	0 ~ 1	1		Р
*4 4	Output pulses per single turn	1 ~ 16384	2500	P/r	P·S·T
*4 5	Pulse output logic Inversion	0 ~ 1	0		P·S·T
4 6	Numerator of 1st command pulse ratio	1 ~ 10000	<10000>		Р
4 7	Numerator of 2nd command pulse ratio	1 ~ 10000	<10000>		Р
4 8	Numerator of 3rd command pulse ratio	1 ~ 10000	<10000>		Р
4 9	Numerator of 4th command pulse ratio	1 ~ 10000	<10000>		Р
4 A	Multiplier of numerator of command pulse ratio	0 ~ 17	<0>	2^n	Р
4 B	Denominator of command pulse ratio	1 ~ 10000	10000		Р
4 C	Smoothing filter set-up	0 ~ 7	1		Р
4 D	Counter clear input	0 ~ 1	0		Р
4 E, 4 F	(Internal use)				

Parameters for Velocity and Torque Control

Paramete (Pr 🗌		Parameter description	Range	Default	Unit	Related control mode
5	0	Velocity command input gain	10 ~ 2000	500	(r/min) / V	S·T
5	1	Velocity command input logic inversion	0 ~ 1	1		S·T
5	2	Velocity command offset	- 2047 ~ 2047	0	0.3mV	S·T
5	3	1st internal speed	- 10000 ~ 10000	0	r/min	S·T
5	4	2nd internal speed	- 10000 ~ 10000	0	r/min	S·T
5	5	3rd internal speed	- 10000 ~ 10000	0	r/min	S·T
5	6	4th internal speed	- 10000 ~ 10000	0	r/min	S·T
5	7	JOG speed set-up	0 ~ 500	300	r/min	P·S·T
5	8	Acceleration time set-up	0 ~ 5000	0	2ms/kr/min	S·T
5	9	Deceleration time set-up	0 ~ 5000	0	2ms/kr/min	S·T
5	А	S-shaped Accel./Decel. time set-up	0 ~ 500	0	2ms	S·T
5	В	(Internal use)				
5	С	Torque command input gain	10 ~ 100	30	0.1V/100%	Т
5	D	Torque command input inversion	0 ~ 1	0		Т
5	Е	Torque limit set-up	0 ~ 500	300	%	P·S·T
5	F	(Internal use)				

For values marked with < > or *, see <Note> in page 46.

Parameters for Sequence

P: Position, S: Velocity, T: Torque

				,		
Paramet (Pr⊡		Parameter description	Range	Default	Unit	Related control mode
6	0	In-position range	0 ~ 32767	<10>	Pulse	Р
6	1	Zero speed	0 ~ 10000	50	r/min	P•S•T
6	2	At-speed	0 ~ 10000	1000	r/min	S•T
6	3	Position error set-up	1 ~ 32767	<1875>	1/256Pulse	Р
6	4	Position error invalidation	0~1	0		Р
6	5	Undervoltage trip selection at main power-off	0~1	1		P•S•T
6	6	Dynamic Brake inhibition at overtravel limit	0~1	0		P•S•T
6	7	Sequence at main power-off	0~7	0		P•S•T
6	8	Sequence at alarm	0~3	0		P•S•T
6	9	Sequence at Servo-OFF	0~7	0		P•S•T
6	А	Mech. break action set-up at motor stadstill	0 ~ 100	0	2ms	P•S•T
6	В	Mech. break action set-up at motor in motion	0 ~ 100	0	2ms	P•S•T
* 6	С	External regenerative discharge resistor selection	0~2	0		P•S•T
6 D ~	6 F	(Internal use)				

<Note>

The following parameters have different default values depending on the type of the encoder incorporated.

Parameter No.		Default	
		With the 2500P/r incremental encoder ([A])	With the 17 bits absolute encoder or absolute/incremental encoder ([C] or [D])
4	6	10000	1
4	7	10000	1
4	8	10000	1
4	9	10000	1
4	А	0	17
6	0	10	131
6	3	1875	25000

• To validate the parameters having a parameter number marked with *, set the parameters, then download them nto EEPROM, then turn off the control power and then turn it on again.

Parameters (Pr70 to Pr7F) for "Full-Close" drivers

Pr70 ~ Pr7F

Refer to "Full-Close Specifications".

Preparetions and Adjustments

Setting the Parameters

• You can set the Parameters with;

1) the front touch panel or

2) Ayour personal computer with the A-series communication software PANATERM.

<Note>

For the use of PANATERM for parameter handling, see the instruction manual of the software.

• Using the front panel

Panasonic 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	LED (6 digits) Use this to change/shift the digit. Use this to change data/execute the action of the selected parameters. Pressing ibutton to increase the value. Pressing ibutton to decrease the value. SET button Switches between the mode (selected with mode switching button) and the execution display.
	MODE switching button You can select five MODE options. O Monitor Mode Parameter Set-up Mode EEPROM Writing Mode O Auto Gain Tuning Mode O Auxiliary Mode

To set a parameter, select the Parameter Setting Mode.

MODE's Structure

You can select a desired MODE by using the front panel button.

Preparetions and Adjustments

Using the front touch panel 1) Turn the driver (power) ON. PR00 2) Press SET button. Panasonic 3) Keep pressing MODE button. PRlΠ Select your desired 4) MODE Parameter No. by using UP SE 50 and DOWN button. Press SET button. 5) 100 SE 6) (©) (O) (O) Change the value using LEFT ARROW, UP and DOWN buttons. 7) ((Press SET button. Select EPROM Writing Mode. MODE $EE_{-}SEE$ 8) Keep pressing MODE button F F FPress SET button. 9) FF 10) Keep pressing UP button (approx. 3 seconds). Bars in the display increases as shown in the right figure. ዏ Start writing (momentary message Start will be displayed as shown in the riaht fiaure). in ish reset Error Writing complete Writing error

(

- If you set a parameter that will become valid after a reset operation, " F G F F" will appear at writing complete. Turn off the power and then turn it on again to make the change valid.
- You can re-write the parameter by keeping the UP button depressed at the parameter writing complete. <Notes>

1.If a writing error occurs, return to the first step of the writing procedure, and repeat it.

2.Do not turn off the power during EEPROM writing. Otherwise a false data may be entered. If this happens, set all parameters again, make sure that all the parameter values are correct, and then write them down to EEPROM.

Inspections before Trial Run

- 1) Inspecting the wiring
- Make sure that all wire connections (especially main power and motor output) are correct.
- Make sure that there are no improper grounding connections, and earth wires are properly connected.

Trial Run without Motor Load (JOG)

Use the JOG function (run with the motor and driver alone) for trial run.

If the motor runs with this JOG, it means the motor and the driver are in good condition and so is the connection between them.

<Notes>

1.Disconnect the load from the motor and CN I/F, before executing the trial run.

2.Set the user parameters to the defaults (especially Pr10 (Position Gain) and Pr11 (Velocity Gain)) to avoid oscillation and other unfavorable behaviors.

Procedure

- 1) Turn ON the power (driver).
- 2) Switch the parameter set-up(basis mode).
- 0 Motor speed will be displayed (initial display) Call out. RF_JoG

- Press SET button. 3)
- 4) (() Keep pressing UP button until " E R d y appears(see the fig. below)
 - Keep pressing UP button (approx.3 seconds). Bars increased as the rightfig, shows

The trial run preparation is now complete.

5) ((iii) Keep pressing LEFT ARROW button until " 5 - 11 - 0 - ... " appears. (Decimal point shifts from right to rERdYleft by keep pressing LEFT ARROW rERdYbutton (approx, 3 seconds) as the right fia. shows.

The secondary preparation is now complete.

5) The motor runs CCW by pressing (🔿) UP button, and runs CW by pressing O DOWN button, at the speed set by Pr57 (JOG speed set-up).

Operation With CN I/F Connected

- 1) Connect CN I/F.
- 2) Connect the control signal (COM+/-) to the power supply (12 to 24 VDC) .
- 3) Turn the main power (driver) ON.
- 4) Check the defaults of the parameters.
- 5) Connect between SRV-ON (CN I/F pin 29) and COM- (CN I/F pin 41) to make Servo-On active.

The motor will be kept excited.

Run at Position Control Mode

- Set Pr42 (Command Pulse Input Mode Set-Up) according to the output form of the controller. Then write it down to EEPROM. Then turn the power OFF and then ON again.
- 2) Send a low-frequency pulse signal from the controller to the driver to run the motor at low speed.
- 3) Check the motor speed at monitor mode.
 - Make sure that the speed is per the set-up.
 - Check if the motor stops when the command(pulse) is stopped.

Set-up of motor speed		and input pulse	frequency
Input pulse	Input pulse Motor		Pr 4A
frequency	speed	Pr	· 4B
(PPS)	(r/min)	17 bits	2500P/r
500K	3000	1 x 2 ¹⁷ 10000	10000 x 2 0 10000
250K	3000	1 x 2 ¹⁷ 5000	10000 x 2 0 5000
100K	3000	1 x 2 ¹⁷ 2000	10000 x 2 0 2000
500K	1500	1 x 2 ¹⁶ 10000	5000 x 2 ⁰ 10000

* You can set any value by setting any value for the numerator and denominator. However, the motor action will not follow the extreme setting of the ratio. It is recommended to set within a range from 1/50 to 20.

Relationship between motor speed and input pulse frequency

Pulley ratio: 18/60

Gear ratio: 12/73

Overall reduction: 18/365

(Example) Rotate the motor by 60 degrees with an overall reduction ratio of 18/365

	Encode	er pulse		
	17 bits	2500P/r	2 ⁿ	10 Decimal
Pr46 x 2 Pr4A	365 x 2 ¹⁰	365 x 2 ⁰	2 ⁰	1
Pr48	6912	108	2 ¹	2
	From the controller to the driver, enter a command with which the	From the controller to the driver,	2 ²	4
Theory	motor turns one revolution with	enter a command with which the motor turns one revolution with	2 ³	8
	8192 (213) pulses.	10000 pulses.	24	16
Determining the	$\frac{365}{18} \times \frac{1\text{\AA} \sim 2^{17}}{2^{13}} \times \frac{60^{\circ}}{360^{\circ}}$	$\frac{365}{18} \times \frac{10000}{10000} \times \frac{60^{\circ}}{360^{\circ}}$	25	32
parameter	18 [^] 2 ¹³ [^] 360°	18 [^] 10000 [^] 360°	2 ⁶	64
	365 x 2 17	365 x 2 ⁰	27	128
	=	=	2 ⁸	256
			2 ⁹	512
	The numerator 47841280 is greater than 2621440, and the denominato		2 ¹⁰	1024
	r is greater than 10,000. Thus,		2 ¹¹	2048
			2 ¹²	4096
			2 ¹³	8192
	$\frac{365}{18} \times \frac{1 \times 2^{10}}{2^6} \times \frac{60^{\circ}}{360^{\circ}}$		2 ¹⁴	16384
			2 ¹⁵	32768
	$=\frac{365 \times 2^{17}}{5000}$		2 ¹⁶	65536
	6912		2 ¹⁷	131072

Run at Velocity Control Mode

- 1) Apply a DC voltage between the velocity command input SPR (CN I/F pin 14) and GND (CN I/F pin 15). Increase the voltage gradually from 0, and make sure that the motor runs and the speed change accordinalv.
- 2) Select the Monitor Mode to monitor the motor speed.
 - Make sure that the motor speed is as per the commanded speed.
 - · Set the command to 0 to see if the motor stops.
- 3) If the motor still runs at very low speed, even the command voltage is set to 0, use the Auxiliary Mode to correct the voltage of command input (see Automatic Offset Adjustment function in Appendix).
- 4) To change the speed or direction, adjust the following parameters.

Pr50 (Velocity Command Input Gain)

Pr51 (Velocity Command Input Inversion)

See "Details of Parameters" in Appendix

Wiring Diagram

Parameters

PrNo.	Parameter description	Value	Default
Pr02	Control mode set-up	1	1
Pr04	Overtravel input inhibit	1	1
Pr06	ZEROSPD input selection	1	0
Pr50	Velocity command input gain	Set as re-	500r/min/V
Pr58	Acceleration time set-up	quired	0
Pr59	Deceleration time set-up		0
Pr5A	S-shaped accel/decel time set-up		0

ZEROSPD switch

Close: Run Open: Stop

One way operation

Input Signal Status

No. Input signal Monitor display 0 Servo-ON

	2	CW overtravel inhibit		
	3	CCW overtravel inhibit	—	
ı	5	Speed zero clamp	—	Stop with +A

+ A

operation, use a bipolar power source.

Adjustments

Purposes of Gain Adjustment

In case of the servo motor, the motor is required to act per any command without any time delay, or without missing

any commands. To ensure this, gain adjustment is necessary.

<Example: ball screw>

Types of Gain Adjustment

	Туре	Description
Automatic	Normal mode	Accelerate and decelerate the motor per the preset
adjustment	auto gain tuning	(internally fixed) patterns to calculate the load inertia
		from the required torque. Then automatically define
		appropriate gains according to the inertia.
	Real time	During an actual operation, calculate the load inertia in
	auto gain tuning	real time. Then automatically define appropriate gains
		according to the inertia. The gains will be automatically
		adjusted against the fluctuation of load inertia during
		operation.
Manual	Manual gain tuning	You can manually adjust the necessary gains to obtain
adjustment		the most appropriate action by monitoring command to
		the driver, motor speed, torque and position error as the
		monitor signals(SP, IM), or using the optional
		communication software, PANATERM(especially with is
		graphic functi

Applicability of Automatic Adjustment

Item	Conditions	
Load inertia	Must be at least three times as large as the motor	
	inertia, but not greater than 20 times.	
Load	The machine (motor load) and its coupling must have a higher mechanical stiffness.	
	The backlash of the gears and other equipment must be small.	
	Eccentric load must be smaller than one-fourth of the rated torque.	
	The viscous load torque must be smaller than one-fourth of the rated torque.	
	Any oscillation must not cause any mechanical damages of the machine (motor load).	
	Two CCW turns and subsequent two CW turns must in no case cause any troubles.	

The auto gain tuning affects the values of the following six parameters.

Pr10	1st Position Loop Gain	Pr13	1st Speed Detection Filter
Pr11	1st Velocity Loop Gain	Pr14	1st Torque Filter Time Constant
Pr12	1st Velocity Loop Integration Time Constant	Pr20	Inertia Ratio

 Pr15 (Velocity Feed Forward) will be automatically changed to 0%, if the auto gain tuning is executed.

<Notes>

The auto gain tuning will be disabled when you select a control mode using an external scale, i.e. Pr02 is set to 6, 7, 8, 9 or 10.

The real time auto gain tuning will be disabled in the following cases:

- 1) Running pattern at a constant speed
- 2) Running pattern with a small acceleration/deceleration

(Relationship between Gain Adjustment and Mechanical Stiffness

To increase the mechanical stiffness,

- 1) The machine (motor load) should be firmly secured to a rigid foundation.
- 2) The coupling between the motor and machine should be a high-stiffness special one designed for servo motors.
- 3) The timing belt should have a larger width. The tension of the timing belt should be adjusted according to the allowable axial load of the motor.
- 4) The gears should have a smaller backlash characteristic.
- The inherent frequency (resonance) of the machine significantly affects the gain adjustment of the servo motor. If the machine has a lower resonance frequency (i.e. lower stiffness), you can't set the high response of the servo system.

How to Adjust Gain

<Note>

- Pay extra attention to the safety.
- If the machine enter to oscillation (abnormal sound and vibration) , shut off the power immediately, or change to Servo-OFF.

Adjustments

- 58

gain values will be lost.

<Notes>

Symptom	Cause	Remedy
Error message	Either one of Alarm, Servo-Off or Po-	Avoid operation near the limit switch or home
displayed	sition Error Counter Clear activated.	position sensor.
		Turn to Servo-ON.
	The load inertia cannot be calculated	Cancel the Position Error Counter Clear.
Values of gain affecting parameters (e.g. Pr10)doesn't change		Execute the manual adjustment.

How to Use "Real Time Auto-Gain" Tuning

- 1) Select the Parameter Set-up Mode.
- 2) Set Pr1F (Disturbance torque observer) to 8 (invalid).
- 3) Set Pr22 (Real time auto tuning machine stiffness).

First, set the parameter to the smallest value and then gradually increase it up to a

Driving method	Mechanical stiffness
Ball screw + direct coupling	4~8
Ball screw + timing belt	3~6
Timing belt	2~5
Gear, or rack & pinion	1~3
Others: lower stiffness	1~3

with which no abnormal sound or vi bration will occur.

- 4) Set Pr21 (Real time auto tuning mode set-up) to 1 or 2.
 - The operation may not be stable depending the operation pattern. In this case, set the parameter to 0 (to disable the auto tuning function).

Pr21 value	Real time auto tuning set-up	Fluctuation of load inertia during operation
0	Disabled	
1		Almost no change
2	Enabled	Small change
3		Quick change

• With a larger value, the response to the change in load inertia (acceleration) is quicker.

5) Start the motor.

- 6) If the fluctuation in load inertia is small, stop the motor (machine), and set Pr21 to 0 to fix the gain (in order to raise the safety).
- 7) Download the obtained gain values to EEPROM. Note that if you turn off the power before downloading, the gain values will be lost.

<Notes>

- Before changing Pr21 or Pr22, stop (servo-lock) the motor.
- Don't modify Pr10 through Pr15.
- Otherwise it may give a shock to the machine.

How to Adjust Gain Manually

Before Adjustment

You may adjust the gains by viewing or hearing the motions and sound of the machine during operation. But, to adjust the gains more quickly and precisely, you can obtain quicker and secure adjustment by analog wave form monitoring.

- Using the analogue monitor output You can measure the actual motor speed, commanded speed, torque, position error in analog voltage level with an oscilloscope. To do this, it is necessary to specify the types of output signals and output voltage level by using Pr07 (Velocity monitor selection), Pr08 (Torque monitor selection). For details, see "CN I/F Connector" in the main part of this manual, and "Details of Parameters" in Appendix.
- Wave form graphic function of PANATERM You can view the graphic information of the command to the motor, actual motor action (speed, torque and position error) on the computer display screen.
 For details, see the instructions of PANATERM.

Guidance Values of Gains, and How to Adjust

See the table below for the guidance values of gains, if the inertia ratio has been set correctly.

Machine	Position loop gain Pr10	Velocity loop gain Pr11	Velocity loop integration time constant Pr12
Ball screw	100 ~ 150	200 ~ 300	100 ~ 150
Timing belt	50	100 ~ 200	50
Rack & pinion	70	100	70

How to adjust

1) Adjust the gain Pr11 and Pr12 which relate to the velocity loop.

2) Adjust the position loop gain, Pr10.

3) Pr10 (Position loop gain) should be smaller than Pr11 (Velocity loop gain).

<Note>

You cannot adjust the current loop gain, since these are fixed per the model.

How to Adjust the Gain at Position Control Mode

- 1) Start the motor (machine).
- 2) Set Pr10 (1st Position Loop Gain) to 50.
- Increase the value of Pr11 (1st Velocity Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
- CIncrease the value of Pr10 (1st Position Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
- 5) Decrease the value of Pr12 (1st Velocity Loop Integration Time Constant) accord ing to the Inposition time.
- With a larger value, positional errors may not be converged.
- 6) If you want to improve the response further, adjust Pr15 (Velocity Feed Forward) within the extent that the motor (machine) does not generate abnormal sound or vibration.
- With a larger value, overshoot and/or chattering of in-position signals may occur, which results in a longer in-position time. Note that this may be improved by adjusting the value of Pr16 (Feed Forward Filter).

How to Adjust the Gains for Velocity Control

1.If the controller does not have a position loop gain

Adjust Pr11 (1st Velocity Loop Gain) and Pr12 (1st Velocity Loop Integration Time Constant). Note that Pr15 (Velocity Feed Forward) is not effective.

- Increase the value of Pr11 (1st Velocity Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
- 2) Decrease the value of Pr12 (1st Velocity Loop Integration Time Constant) gradually until the overshoot/undershoot is reduced to an acceptable level.
- 2. If the controller has a position loop gain
 - 1) Set Pr58 (Acceleration Time Set-Up), Pr59 (Deceleration Time Set-Up) and Pr5A (S-Curve Accel/ Decel Time Set-Up) to 0.
 - 2) Increase the value of Pr11 (1st Velocity Loop Gain) gradually until the motor (machine) does not generate abnormal sound or vibration.
 - Decrease the value of Pr12 (1st Velocity Loop Integration Time Constant) gradually until the overshoot/undershoot is reduced to an acceptable level.
 - 4) Adjust the position loop gain on the controller.

<Notes>

Position loop gain changes when you change the value of Pr50 (Velocity Command Input Gain).

	Pr50 value Relationship between command voltage and velocity		Position loop gain set in the controller
	Default = 500 6V at 3000r/min		Assuming this is 1
Examples	250	6V at 1500r/min	1/2
ples	750	6V at 4500r/min	1.5 times

How to improve the response further

You can manually adjust the 2nd gain.

With the 2nd gain adjustment, you can expect quicker response.

	1st Gain	2nd Gain	
Pr10	1st Position Loop Gain	Pr18	2nd Position Loop Gain
Pr11	1st Velocity Loop Gain	Pr19	2nd Velocity Loop Gain
Pr12	1st Velocity Integration Time Constant	Pr1A	2nd Velocity Integration Time Constant
Pr13	1st Speed Detection Filter	Pr1B	2nd Speed Detection Filter
Pr14	1st Torque Filter Time Constant	Pr1C	2nd Torque Filter Time Constant

<Example>

When you want to reduce the noise produced during the stopping (servo-locking), you set the lower gain after the motor stops.

	Action	Commanded speed			
Suppress	Status	Stop (servo-lock)	Run	Stop (servo-lock)	→Time
the vibration by	Gain	Lower gain (1st gain)	Higher gain (2nd gain) + 1ms 2ms	Lower gain (1st gain)	

	Parameters to be set-up	Set-up value	Description
Pr30	2nd gain action set-Up	1	Switches to 2nd gains
Pr31	Position control switching mode	7	Switches to 2nd gains, if a position command is entered
Pr32	Position control switching delay time	12	Returns to 1st gains if "no command" status
			(no command pulse is entered for166µs)
			lasts 2 ms.
Pr35	Position loop gain switching time	5	Shift from lower gain to higher gain at posi- tion control in a step of ((5+1)x166µs=1ms). The set-up value should be smaller than the
			difference between Pr10 and Pr18.
Pr10	1st position loop gain		
Pr11	1st velocity loop gain		You can set the gains at the motor standstill.
Pr12	1st velocity integration time constant		
Pr13	1st speed detection filter		
Pr14	1st torque filter time constant		
Pr18	2nd position loop gain		
Pr19	2nd velocity loop gain		You can set the gains during run.
Pr1A	2nd velocity integration time constant		
Pr1B	2nd speed detection filter		
Pr1C	2nd torque filter time constant		

<Notes> For setting parameters for other control modes, see Appendix.

To reduce the mechanical resonance

If the machine is not stiff, vibration and noise may be generated due to the resonance by shaft torsion, and you mey not be able to set-up the higher gains. You can suppress the resonance by 2 types of the filters.

 Torque command filter (Pr14 and Pr1C) Set the filter's time constant so that the frequency components around the resonance region can be attenuated. You can obtain the cutoff frequency (fc) by the following formula; Cutoff frequency, fc (Hz) =

1/(2Ɍ x Parameter value x 0.00001)

 Notch filter (Pr1D and Pr1E) Adjust the notch frequency of the filter to the resonance frequency.

Pr1D	Notch frequency	Set this about 10% lower than the resonance frequency measured by the frequency characteristics analysis function of PANATERM.
Pr1E	Notch width selection	Use the default value of 2.

How to measure the resonance frequency of a machine system

- 1) Log-on PANATERM and open the frequency characteristics screen.
- Set the following parameters and measuring conditions. Note that the values shown below are only guidance.
- Decrease the value of Pr11 (1st Velocity Loop Gain) to 25 (to make the resonance frequency more distinguishable).
- Set the amplitude to 50 r/min (so that the torque may not saturate).
- Set the offset to 100 r/min. (to increase the amount of velocity detection information, and run the motor in one-way rotation).
- Polarities: (+) for CCW and (-) for CW.
- Set the sampling rate to 1 (from a range between 0 and 7).
- 3) Start the frequency characteristics analysis function.
- <Notes>
- Before starting the measurement, make sure that the machine does not move beyond the limit. Approximate speed = Offset (r/min.) x 0.017 x (Sampling rate + 1)
- With a larger offset value, good results can be obtained, though the speed becomes higher.
- Set-up Pr22 (Real time auto tuning mode set-up) to 0.

<Notes>

• Set-up the offset larger than the amplitude setting, and with one-way rotation so that you can obtain better results.

What are the Protective Functions?

The MINAS driver has various protective functions. When one of the protections is activated, the motor trips according to the timing chart shown in "Error Handling" in Appendix, and the Servo Alarm Output (ALM) is turned off.

Actions to be taken after trip events

- After a trip event, the LED touch panel displays an alarm code no., and no Servo-ON occurs.
- Any trip status is cleared by keeping A-CLR (Alarm Clear Input) on for at least 120 ms after A-CLR off.
- •The overload protection can be cleared by A-CLR at least 10 seconds after the occurrence of the event. If the control power connection between r and t is opened, the time limiting operation is cleared.
- The alarms mentioned above can also be cleared with the LED touch panel. See Alarm Clear Modes in Appendix.
- The alarms mentioned above can also be cleared by using PANATERM.

<Notes>

Protections marked with * cannot be cleared with A-CLR (Alarm Clear Input). They should be cleared by turning the power off, removing the causes, and then turning the power on again.

Protective Functions: Causes and Corrections

Protection	Alarm Code No.	Cause	Countermeasures
Undervoltage, control power	11	The P-N voltage of the control power con- verter is lower than the specified value. Or the control voltage is too low due to an instantaneous outage or short- age of power capacity.	Measure the P-N voltage to check whether the voltage is correct or not. Modify the control voltage to an acceptable value, and/or increase the power capacity.
Overvoltage error	12	The line voltage is larger than the specified acceptable range, so that the P-N voltage of the converter is larger than the specified value, or the line voltage was raised by a condensive load or UPS (Uninterruptible Power Supply).	Measure the terminal-to-terminal voltages (between L1, L2 and L3). Remove the causes. Feed a power of correct voltage.

Protection	Alarm Code No.	Cause	Countermeasures
Overvoltage error (continued)		 The internal regenerative discharge resistor is disconnected. The external regenerative discharge resistor is not suitable so that regenerative energy can- not be absorbed. The driver (circuit) failed. 	ing a circuit tester. If it read Åá, the connec- tion is broken. Replac the driver. Insert an external regen-
Undervoltage, main power	13	 The P-N voltage of the main power converter is lower than the specified value during Servo-ON. 2) The main power line voltage is too low, an instantaneous outage occurred, the power source is too small, the main power is turned off, or the main power is not fed. 3) Too small power source: the line voltage dropped due to the inrush current at power on. 	of the magnetic contact, and then restart the power source. 2) Alncrease the capacity of the main power. For the required capacity, see "List of Applicable Components".

Protective Functions

Protection	Alarm Code No.	Cause	Countermeasures
*Overcurrent error	14	The current flowing in the converter is larger than the specified value. 1) The driver failed (due to defective circuits or IGBT parts).	 Disconnect the motor wires, and enter Servo-ON. If this trouble hap-pens im- mediately, replace the driver with a new one (that is working correctly).
		2) Motor wires (U, V and W) are shorted.	 Check if the U. V and W wires are shorted at the connections. Recon nect them, if necessary.
		3) Motor wires (U, V and W) are grounded.	 Measure the insulation resistance be- tween U/V/W and earth wire. If the re- sistance is not correct, replace the mo- tor with a new one.
		4) Motor burned	 Measure the resistance between U,V and W. If they are unbalanced, replace the motor with a new one.
		5) Poor connection of Motor wires	 Check if the U/V/W connector pins are firmly secured with screws. Loosened pins should be fixed firmly.
		6) The relay for the dynamic brake is melted and stuck due to the fre quent Servo-ON/ OFF.	 Replace the driver with a new one. Do not start or stop the motor by entering Servo-ON or OFF.
		7) The motor is not compatible with the driver.	 Check the capacity of the motor and driver on the nameplate. If the motor is not compatible with the driver, replace it with a correct one.
* Overheat error	15	The radiator is heated up to exceed the limit temperature. The power elements of the driver is overheated. Overload.	Check the ambient temperature and cool- ing conditions. Check the load rate. Make the environment under which the driver operates. Reduce the load.

Protection	Alarm Code No.	Cause	Countermeasures
Overload error	16	Overload protection is activated via the specified time limiting operation when the integration of a torque command exceeds the specified overload level. Caused by a long operation with a torque that exceeds the specified torque limit.	Monitor the torque (current wave) using an oscilloscope to check whether the torque is surging or not. Check the load factor and overload alarm messages.
		 Long operation with more load and torque than the rating. 	 Increase the capacity of the driver and motor. Lengthen the ramp time of accel- eration/deceleration. Reduce the motor load.
		 Vibration or hunting due to incorrect gains. Cause vibration and/or abnormal sound. 	2) Readjust the gains.
		3) Motor wires connected wrong or broken	 Correct the motor wiring per the wiring diagrams. Replace cables.
		 The machine is hit against a heavy hing, or suddenly becomes heavy in operation. The machine is en tangled. 	4) Free the machine of any tangle . Reduce the motor load.
		5) The electromagnetic brake is ON.	5) Measure the voltage at the brake wiring connections. Turn off the brake.
		 In a system of multiple drivers, some motors are wired incorrectly to other axis. 	 Correct the motor and encoder wiring to eliminate the mismatching between the mo
Regenerative discharge	18	The regenerative energy is larger than the capacity of the regenerative discharge resistor.	Check the load rate of the regenerative re- sistor in the Monitor mode. The driver should not be used with continuous regen- erative braking.
		 When the load inertia is too large, the converter voltage increases due to the large energy regener ated during decel- eration, and in creases more due to the shortage of energy consumption by the regenerative discharge resistor. 	 Check the operation pattern (using the velocity monitor). Check the load rate of the regenerative resistor and the over-re- generation alam on display. Increase the capacity of the driver and motor. Increase the deceleration time. Use an external regenerative resistor. Check the connection wire between B1 and B2 terminals.
		2) When the velocity of the motor is too high, the regenerative energy cannot be con- sumed within the	 Check the operation pattern (using the velocity monitor). Check the load rate of the regenerative resistor and

Protective Functions

Protection	Alarm Code No.	Cause	Countermeasures
* Encoder A/B- phase error	20	No A- and B-phase pulse is detected. The 11- wire encoder failed.	Correct the encoder wiring per the wiring dia- gram. Correct the connection of the pins.
* Encoder communication error	21	Due to no communication between the encoder and driver, the detective function for broken en- coder wires is activated.	
* Encoder connection error	22	The connection between the 11-wire encoder and driver is broken. The encoder rotates higher than the specified rate when control power is on	Make sure that the power of the encoder is 5VDC ? 5% (4.75 to 5.25V). Especially when the wire length is long, it is important to meet this require- ment. You should not bundle the encoder wires and motor wires together. Connect the shield to
* Encoder communication data error	23	The encoder sends an erroneous data mainly due to noises. The encoder is connected cor- rectly, though the data is not correct.	FG. See the encoder wiring diagram.
Position error	24	The position error pulse is larger than Pr63 (po- sition error limit). The motor operation does not respond to the commands.	Check whether the motor operates per the po- sition command pulse or not. See the torque monitor to check if the output torque is saturated. Readjust the gains. Maximize the value of Pr5E (torque limit set-up). Correct the encoder wiring per the wiring diagram. Increase the accelera- tion and deceleration time. Reduce the load and velocity.
Hybrid error	25	When the driver of the full-closed version is un- der the full-closed and hybrid control with an external encoder, the load position detected by the external encoder and the motor position detected by the motor encoder are beyond the limit specified by Pr73 (hybrid error limit).	Check the connection between the motor and load. Check the connection between the exter- nal encoder and driver. Correct the values of the external scale numerator and denominator re- garding parameters Pr74, Pr75, Pr 76 and Pr77. Increase the value of Pr73. Increase the value of Pr71 (hybrid switching time).
Over-speed	26	The motor velocity exceeds the specified limit.	Decrease the target speed (command values). Decrease the value of Pr50 (velocity command input gain). Adjust the scale ratio so that the fre- quency of the command pulse is 500 kpps or less. If an overshoot occurs, readjust the gains. Correct the encoder wiring per the wiring diagram.ÅB

Protection	Alarm Code No.	Cause	Countermeasures	
Command pulse sealer error	27	The command pulse is larger than 500 kpps at the entrance of the position error counter. The scale ratios set by Pr46 through Pr4B (numera- tor of 1st to 4th command scale) are not cor- rect.	Reduce the multiplication factor by adjusting the values of Pr46 through Pr4B, and then adjust the scale ratios so that the command pulse frequency is 500 kpps or less.	
External scale error	28	When Pr76 (scale error invalidation) = 0, and the driver is operated under the full-closed and hybrid control with an external encoder, the scale error input is OFF.	Check the reason why the CN I/F Pin 33 is OFF.	
Error counter over flow	29	The value of the position error counter is over 227 (134217728).	Check that the motor operates per the position command pulse. See the torque monitor to check that the output torque does not get saturated. Readjust the gains. Maximize the value of Pr5E (torque limit set-up). Correct the encoder wiring per the wiring diagram.	
* External scale disconnection error	35	The external scale is disconnected, or the scale fails.	Check the power supply for the external scale. Correct the wiring and SIG connections per the wiring diagram.	
* EEPROM parameter error	36	The data contained in the parameter storage area of the EEPROM is broken, so erroneous data is retrieved.	Set all the parameters again. If this error occurs frequently, the driver may have been broken. Replace the driver with a new one. Return the old driver to the sales agent for repair.	
* EEPROM check code error	37	The check code of the EEPROM is broken, so erroneous data is retrieved.	The driver may have been broken. Replace the driver with a new one. Return the old driver to the sales agent for repair.	
Overttravel inhibit	38	Both the CW and CCW over-travel limits are not active.	Check the switches, wires and power supply that constitute the circuits. Check that the control power (12 to 24VDC) can be established with- out delay. Check the value of Pr04. Correct the wiring, if necessary.	

Protective Functions

Protection	Alarm Code No.	Cause	Countermeasures	
Absolute system down error	40	The power of the encoder is out.	Check the voltage of the battery. Connect to the battery, and then clear the encoder using the absolute encoder clear mode contained in the auxiliary function (see Details of Op- eration in Appendix).	
Absolute encoder counter overflow	41	The data of the multi-turn counter of the encoder exceeds the specified limit.	Limit the movable range to ?32767 revolu- tions (15 bits) from the initial position. Adjust the value of Pr0B.	
Absolute encoder overspeed error	42	The encoder rotates faster than the specified rate when it is battery-powered.	Connect the power to the encoder and then make sure that the encoder voltage is 5V?5%. Correct the SIG connections, if nec- essary.	
* Absolute encoder single- turn counter error	44	The encoder detects an error of the single-turn counter.	The motor may be broken. Replace the mo- tor with a new one. Return the old motor to the sales agent for repair.	
* Absolute encoder multi- turn counter error	45	The encoder detects an error of the multi- turn counter.		
Absolute encoder status error	47	The encoder detects an internal status error. After the control power on, the encoder ro- tates faster than the specified rate.	Take measures to keep the motor away from rotating until the driver outputs S-RDY.Take measures to keep the motor away from rotating until the driver outputs S-RDY.	
Full close selection error	97	When an 11-wire encoder is used, Pr02 (con- trol mode selection) is set to 7, 8 or 9 ("full- close" control).	Set the value of Pr02 to 0, 1, 2, 3, 4 or 5.	
* Other error error * Other error	E E E E E E 3 3 3 3 3 3 F F F F F F 7 7 7 7 7 7 Numbers other than the above	to large noises or any other reasons.	Turn off the power and turn it on again. If the error cannot be eliminated, the motor and/or driver may be broken. Disconnect the power supply of these equipment, and replace them with new ones. Return the old equipment to the sales agent for repair.	

• Routine maintenance and inspections are essential for proper and satisfactory operation of the driver and motor.

Notes to Maintenance/Inspections Personnel

1)Power-on/off operations should be done by the operators themselves.

- 2)For a while after power off, the internal circuits is kept charged at higher voltage. Inspections should be done a while (about 10 minutes), after the power is turned off and the LED lamp on the panel is extinguished.
- 3)Do not take insulation resistance measures because the driver gets damaged.

Inspection Items and cycles

Normal (correct) operating conditions:

Ambient temperature: 30°C (annual average) Load factor : max. 80% Operating hours : max. 20 hours per day

Туре	Cycles	nspection items
Daily inspection	Daily	 Ambient temperature, humidity, dust, particles, foreign matters, etc. Abnormal sound and vibration Main circuit voltage Odor Lint or other foreign matters in the ventilation openings Cleanliness of the operation board Damaged circuits Loosened connections and improper pin positions Foreign matters caught in the machine (motor load)
Periodical inspection Every year Every year Burned terminals		Signs of overheat

Daily and periodical inspections should be done per the following instructions.

<Notes>

If the actual operating conditions differ from things mentioned above, the inspection cycles may change accordingly.

(Replacement Guidance

Parts replacement cycles depend on the actual operating conditions and how the equipment has been used. Defective parts should be replaced or repaired immediately.

Equipment	Part	Standard replacement cycles (hour)	Remarks	
	Smoothing condenser	about 5 years		
	Cooling fan	2 to 3 years		
Driver		(10 to 30 thousand hours)	The replacement cycles shown here are just only for reference. If any part is found	
	Aluminum	about 5 years		
	electrolytic capacitor on the print board			
	Bearing	3 to 5 years	defective regardless of the standard re-	
		(20 to 30 thousand hours)	placement cycles, immediately replace it	
	Oil seal	5000 hours	with a new one.	
Motor	Encoder	3 to 5 years		
		(20 to 30 thousand hours)		
	Battery	1 year from		
	(Absolute encoder)	the first use		

The motor does not rotate.

[Check Points]

The motor does not rotate.

Category	Causes	Countermeasures
Parameters	The control mode selected is not cor-	Check the value of Pr02 (control mode set-up).
	rect.	0: position control, 1: velocity control, 2: torque control
	The internal velocity command	Check the value of Pr05 (Internal speed swiching).
	(switching between internal and exter-	0: At analogue velocity command set-up,
	nal commands) does not work.	Change the value to 1 or 2.
	The torque limit inhibition setting is not	
	correct.	Check the value of Pr03
		(Analog torque limit inhibit).
		0: torque cannot be produced, so the motor does not rotate.
		Change the value to 1.
	The torque limit has been set to 0.	Check the value of Pr5E (torque limit set-up).
		Change the value to 300 (default).
	The zero speed clamp is ON, so the	Check the value of Pr06 (ZERPSPD input selection).
	motor does not operate.	Change the value to 0. If the value is 1, the zero clamp func-
		tion is valid. If you desire to set the parameter to 1, enable
		the zero speed clamp input, and adjust the wiring so that the
		zero speed clamp input can be turned on correctly.
		Check the value of Pr04. If the value is 0, connect between
	The circuit for CW/CCW overt-ravel	CN I/F pins 9 and 41, and 8 and 41.
Wiring	inhibit is open.	Connect (short circuit) between CN I/F pins 29 and 41.
	CN I/F Servo-ON signal is not re-	Disconnect between CN I/F pins 30 and 41.
	ceived.	
	CN I/F Counter clear is ON (shorted).	Check the value of Pr43. If the value is 0, connect between
	CN I/F command pulse input inhibit	CN I/F pins 33 and 41. If the value is 1, the command pulse
	is active, so the motor does not	input inhibition is disregarded, so the motor will rotate ac-
	operate.	cording to command pulses.
		Turn off the power. Disconnect the motor. Rotate the motor
		shaft by hand to make sure that the motor rotates
	Bearing lock	freely. If the motor is fitted with an electromagnetic brake,
		rotate the shaft by hand while applying a voltage
Installation		(24VDC) to the brake. If the motor does not rotate, consult
		the sales agent to repair it.

The rotation is not smooth.

The motor rotates slowly even if the target speed is zero in the speed control mode.

Category	Causes	Countermeasures
Parameters	The control mode selection is not correct.	With the position control mode selected, if Pr02 is set to other than 0, the motor will rotate slowly because Pr52 (velocity command offset) governs the operation of the motor. Change the value of Pr02 to 0.
Adjustment	The gains are not appropriate.	Increase the value of Pr11 (1st velocity loop gain). Insert a torque filter (Pr14) and then further increase the value of Pr11.
	Velocity and position commands are	Check the behavior of the motor using the check pin on the
	not stable.	LED touch panel and the wave form graphics function of PANATERM. Check the wiring and its connections. Check the controller.
Wiring	CN I/F signals are chattering. 1) Servo-ON signal	 Check the wiring and connections between CN I/F pins 29 and 41 by monitoring the display of input and output sig- nals status. Modify the wiring so that Servo-ON signals can be made active correctly. Check the controller.
	and 18, and 16 and 17 using a circ loscope. Modify the wiring so that	2) Check the wiring and connections between CN I/F pins 17 and 18, and 16 and 17 using a circuit tester and/or oscil- loscope. Modify the wiring so that CW/CCW torque limit input can be made active correctly. Check thecontroller.
 3) Counter clear input signal 3) Check the wiring and connecting 30 and 41 by monitoring the disignals status. Modify the wiring Counter input can be made and an an	3) Check the wiring and connections between CN I/ F pins 30 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Position Error Counter input can be made active correctly. Check the controller.	
	4) Speed zero clamp signal	4) Check the wiring and connections between CN I/F pins 26 and 41 by monitoring the display of input and output sig- nals status. Modify the wiring so that Zero Speed Clamp input can be made active correctly. Check the controller.
	5) Command pulse input inhibit signal	5) Check the wiring and connections between CN I/F pins 33 and 41 by monitoring the display of input and output sig- nals status. Modify the wir-ing so that Command Pulse Input Inhibit can be made active correctly. Check the ontroller.

Troubleshooting

Category	Causes	Countermeasures
Wiring	Velocity commands contain noises.	Use shielded cables for connection to CN I/F. Power and sig- nal cables should be separated by at least 30 cm and put in
	Improper offset	duct.
		Measure the voltage between CN I/F pins 14 and 15 (veloc-
		ity command inputs) using a circuit tester and/or oscilloscope.
		Adjust the value of Pr52 so that the motor can stop.
	Velocity commands contain noises.	Use shielded cables for connection to CN I/F. Power and sig-
		nal cables should be separated by at least 30 cm and put in
		duct.

Causes	Countermeasures
Position commands (amount of com- mand pulses) are not correct.	Count the number of feedback pulses while repeating to travel back and forth within a fixed distance. If the number of feed- back pulses varies, adjust the controller. Take measures to reduce the noise on the command pulse.
Reading of in-position signals occurs at the edge.	Use the check pin (IM), to monitor the position error when the in-position signals are received. Read the in-position sig- nals at a mid point on the time span, not at the edge. If the command pulses are deformed or narrowed, adjust the
The form and width of the command pulses deviate from the specified values.	pulse generation circuit. Take measures to reduce the noise on the command pulse.
The position loop gain is too small.	Check the amount of position error in the monitor mode. In- crease the value of Pr10 to the extent that no oscillation oc- curs.
The setting of in-position detection range (Pr60) is too large.	Decease the value of Pr60 (in-position range) to the extent that the in-position signals do not chatter.
The command pulse frequency exceeds 500 kpps.	Decrease the command pulse frequency. Change the values of Pr46 through Pr4B (numerator of 1st to 4th command scale).
The scale is not appropriate.	Check the repetition accuracy. If repeated without fluctua- tion, increase the capacity of the motor and driver.
	Position commands (amount of com- mand pulses) are not correct. Reading of in-position signals occurs at the edge. The form and width of the command pulses deviate from the specified val- ues. The position loop gain is too small. The setting of in-position detection range (Pr60) is too large. The command pulse frequency ex- ceeds 500 kpps.

CN I/F signals are chattering: 1) Servo-ON signals	1) Check the wiring and connections between CN I/F pins 29 $$
	and 41 by monitoring the display of input and output signals status. Modify the wiring so that Servo-ON signals can be made active correctly. Check the controller.
2) Counter clear input signal	2) Check the wiring and connections between CN I/F pins 30 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Position Error Counter input can be made active correctly. Check the controller.
3) CW/CCW torque limit input signal	3) Check the wiring and connections between CN I/F pins 17 and 18, and 16 and 17 using a circuit tester and/or oscillo- scope. Modify the wiring so that CW/CCW torque limit in- put can be made active correctly. Check the controller.
4) Command pulse input inhibit signal	4) Check the wiring and connections between CN I/F pins 33 and 41 by monitoring the display of input and output signals status. Modify the wiring so that Command Pulse Input In- hibit can be made active correctly. Check the controller.
.oad inertia is large.	Check the overshoot at stop using the wave form graphics function of PANATERM. Adjust the gains. If this is not effec-
4 <u>)</u>) CW/CCW torque limit input signal

The initial (home) position varies.

Category	Causes	Countermeasures
System	When calculating the initial (home)	Check that the Z-phase accords to the center of the proxim-
	position, the Z-phase output is not	ity dog. Perform initialization correctly according to the con-
	detected.	troller.
	Creep speed to initial position is too	Decrease the return speed near the initial (home) position,
	high.	or lengthen the initialization sensor.
Wiring	The output of the initial (home) posi-	Check the input to the sensor using an oscilloscope. Modify
	tion proximity sensor (dog sensor) is	the wiring around the sensor. Take measures to reduce the
	chattering.	noise.
	Noise on encoder wires	Take measures to reduce the noise (noise filters, ferrite cores,
		etc.). Properly connect the shield wires of I/F cables. Use
		twist-paired wires. Separate the signal and power wires.

Troubleshooting

Category	Causes	Countermeasures
Wiring	Z-phase signal is not output.	Monitor the Z-phase signal using an oscilloscope. Check that
		CN I/F Pin 13 is connected to the ground terminal of the con-
		troller. Connect the open collector to the ground of the driver.
		Replace the driver and controller, or repair them.
		Check that the line driver is connected at the both sides. If
	The circuit for Z-phase signal is not	the controller does not have a differential input, use CZ out-
	correct.	put (open collector).

The motor p	produces an abnormal sou	und and/or vibration.
Category	Causes	Countermeasures
Wiring	Velocity commands contain noises.	Check the wiring between CN I/F Pins 14 and 15 (velocity command inputs) using an oscilloscope. Take measures to reduce the noise (noise filters, ferrite cores, etc.). Properly connect the shield wires of I/F cables. Use twist-paired wires. Separate the signal and power wires.
Adjustment	The gains are too large.	Decrease the values of Pr10 (velocity loop gain) and Pr11 (position loop gain).
	The velocity detection filter is not correct.	Increase the value of Pr13 (speed detection filter) until the sound decreases to an acceptable level, or return the value to 4 (default).
Installation	Resonance between the machine and motor occurs.	Adjust the value of Pr14 (torque filter). Check the mechani- cal resonance using the frequency characteristics analysis program in PANATERM. If a resonance occurs, set Pr10(notch frequency).
	Motor bearing	Operate the motor without load in order to check the sound and vibration near the bearing. Replace the motor and oper- ate it to do the same checks. Repair the motor, if necessary. Operate the motor without load or use a new motor in order
	Electromagnetic sound, gear sound, braking sound, hub sound, rubbing sound from the encoder, etc.	to locate the source of sounds. Repair the motor, if neces- sary.

Overshoot or undershoot

The motor overheats (burnt)

Category	Causes	Countermeasures
Adjustment	Gains are not correct.	Check the gains using the wave form graphics monitoring
		function of PANATERM, speed monitor (SP) and/or torque
		monitor (IM). Adjust the gains. See "Adjustments" chapter.
Installation	Load inertia is too large.	Check the load inertia using the wave form graphics moni-
	j j	toring function of PANATERM, velocity monitor
		Check the coupling between the motor and machine.
	Rattling or slip of the machine	If the ambient temperature is higher than the specified value,
		install a cooling fan.
	Environment (ambient temperature, etc.)	Check the cooling fans of the driver and machine. The cool-
	The cooling fan does not work. The	ing fan of the driver should be replaced at regular cycles.
	air intake is dirty.	This replacement should be done by a service engineer of
		the sales agent.
	Mismatch between the driver and	Check the nameplates of the driver and motor. For available
	motor	combinations between driver and motor, see the instruction
		manuals or catalogues.
	Motor bearings fail.	Turn off the power. Rotate the motor shaft by hand to check
		whether abnormal sound (rumbling) occurs or not. If it
		rumbles, replace it with a new one, or repair it.
	The electromagnetic brake is ON (fail-	Check the voltage at the brake terminal. Apply 24VDC to re-
	ure to release the brake).	lease the brake.
	The motor fails (due to oil, water, etc.).	Avoid high temperature/humidity, oil, dust and iron powders.
	The motor is operated by external	
	forces while the dynamic brake is ac-	Check the operation pattern, use and working status. This
	tivated.	kind of operation should be avoided.

The motor speed does not increase up to the specified value.

The speed (movement) is too large or small.

Category	Causes	Countermeasures
Parameter	The velocity command input gain is	Check that the value of Pr50 (velocity command input gain)
	not correct.	is 500 (i.e. 3000rpm/6V).
Adjustment	The position loop gain is too small.	Adjust the value of Pr10 (position loop gain) to approximately
	The scale is not appropriate.	100.
		Correct the values of Pr46 (numerator of 1st command pulse
		ratio), Pr4A (Multiplier of numerator of command pulse radio)
		and Pr4B (denominator of pulse command scale). See "Details
		of Parameters" chapter.

Parameter values change to the former value.

Category	Causes	Countermeasures
Parameter	Parameter values are not downloaded into EEPROM before power off.	See "Parameter Setting" chapter (page 52).

In PANATERM, a message "communication port or driver cannot be detected" appears.

Category	Causes	Countermeasures
Wiring	The communication cable (RS232C) is connected to CN NET.	The communication cable (RS232C) must be connected to CN SER.

Appendixes

Conform to EC Dir	rectives and UL Standards	App. 2
List of Connectable	e Motors	App. 7
How to Use		
	• Holding brake	App. 9
	• Dynamic brake	App. 12
	• Timing chart	App. 14
	Allowable loads on output axes	App. 18
	Initialization (Precautions)	App. 19
"Absolute" Driver		App. 20
Full Close" Driver		App. 28
Details of Paramet	ters	App. 30
Details of Operation) n	App. 57
Overview of a Commun	nication Control Software PANATERM	App. 67
Optional Parts	(encoder cables, motor cables, brake cable	
	connector kits, communication cables,	
	communication control software PANATERM,	
	mounting brackets and reactors)	App. 69
Recommended Pa	arts	
	Surge absorber for motor brake	App. 84
	List of peripheral equipment manufacturers	App. 85
Outer Views and E	Dimensions	
	• Motor	App. 86
	• Driver	App. 100
Properties		
Overload protection: tir	ne-related characteristics -	App. 106
Specifications		
	Gain switching conditions for each control mode	App. 107
	Block diagrams	App. 109
	Specifications of driver	App. 113

EC Directives

The EC Directives apply to all such electronic products as those having specific functions and directly sold to general consumers in EU countries. These products are required to meet the EU unified standards and to be furnished with CE Marking.

Our product, AC servo, has specific functions, but is not sold directly to general consumers, i.e. this product is regarded as a component that constitutes a machine or equipment. Therefore, the product (AC servo) is not required to be furnished with CE Marking.

However, our AC servos meet the EC Directives for Low Voltage Equipment so that the machine or equipment comprising our AC servos can meet relevant EC Directives.

EMC Directives

Our servo systems can meet EMC Directives and related standards. However, to meet these requirements, the systems must be limited with respect to configuration and other aspects, e.g. the distance between the servo driver and motor is restricted, and some special wiring conditions must be met. This means that in some cases machines and equipment comprising our servo systems may not satisfy the requirements for wiring and grounding conditions specified by the EMC Directives. Therefore, conformance to the EMC Directives (especially the requirements for emission noise and noise terminal voltage) should be examined based on the final products that include our servo drivers and servo motors.

Subject	Applicable standard						
Motor	IEC34-1		Standards referenced by				
Motor	EN50178		Low-Voltage Directive				
and	IEC61800-3	EMC Requirements for Variable Speed Electric Power Driven Systems					
driver	EM55011	Radio Disturbance Characteristics of Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment					
	IEC61000-4-2	Standards					
	IEC61000-4-3	Radio Frequency Electromagnetic Field Immunity Test	referenced by				
	IEC61000-4-4	Electric High-Speed Transition Phenomenon - Burst Immunity Test	EMC Directives				
	IEC61000-4-5	Lightning Surge Immunity Test					
	IEC61000-4-6	High Frequency Conduction - Immunity Test					
	IEC61000-4-11	Instantaneous Outage- Immunity Test					

Applicable Standards

IEC: International Electrical Commission

EN Europaischen Normen

EMC: Electromagnetic Compatibility

Peripheral Equipment

Environment

The servo driver should be used under Contamination Level 2 or 1 specified by IEC60664-1 (housing the driver in an IP54 control box).

100V system: Single-phase 100 to 115V +10%/-15%, 50/60Hz

200V system: Three-phase 200 to 230V +10%/-15%, 50/60Hz

(1) Use under the environment of Over-voltage Category III specified by IEC60664-1.

(2) The power for interface should be marked CE or EN Standard (EN60950) type, 12VDC to 24VDC, insulated.

(Circuit Breaker)

Install a circuit breaker between the power supply and noise filter. The circuit breaker should be IEC Standard and UL listed (Ψ) marked).

(Noise Filter)

Power

If several drivers are used, and a single noise filter is installed at the power supply, consult the manufacturer of the noise filter.

(Surge Absorber)

Install a surge absorber at the primary side of the noise filter.

<Notes>

When performing a voltage-resisting test, remove the surge absorber. Otherwise the absorber may be damaged.

Install noise filters.

Install noise filters (specially designed for signal wires) for all cables (power, motor, encoder and interface wires).

Grounding

- 1) Connect between the servo driver's protective earth terminal () and control box's protective earth (PE) to prevent electric shocks.
- Multiple connections to a single protective earth terminal () should be avoided. There are two protective earth terminals.

Peripheral Devices Applicable to Drivers (EC Directives)

Driver's Series No.	Voltage	Output rating	Circuit breaker (current rating)	Noise filter	Surge absorber	Noise filter for signal lines			
MSDA	4.0.01/	30W ~ 200W	1 0 A	DVOP1441					
MQDA	100V	400W	1 5 A	DVOP1442					
MSDA MQDA		30W ~ 400W	10A	DVOP1441					
MGDA		300W							
MSDA		750W, 1kW		Trip cruce desclaration					
MDDA		750W, 1kW							
MFDA		400W, 750W	15A		DVOP1450 I	DVOP1460			
MHDA		500W, 1kW							
MGDA		600W, 900W							
MSDA		1.5kW							
MDDA		1.5kW	20A	DVOP1442					
MFDA		1.5kW							
MHDA	200V	1.5kW							
MGDA		1.2kW							
MSDA		2kW, 2.5kW							
MDDA		2kW, 2.5kW							
MFDA		2.5kW	3 0 A						
MHDA		2kW							
MGDA		2kW							
MSDA		3kWÅ`5kW							
MDDA		3kWÅ`5kW							
MHDA		3kWÅ`5kW	50A	DVOP1443					
MFDA	A	3.5kW, 4.5kW							
MGDA		3kW, 4.5kW							

Install noise filfers

Optional Part No.	Manufacturer's Product No.	Manufacturer
DVOP1460	ZCAT3035-1330	TDK Corporation

Weight: 62.8 kg

Noise Filters for Signal Lines

Noise Filter

Conform to UL Standards

The noise filters conform to UL508C (File No. E164620) to satisfy the following conditions.

- 1) The servo driver should be used under Contamination Level 2 or 1 specified by IEC60664-1 (housing the driver in an IP54 control box).
- 2) Install a circuit breaker or fuse between the power supply and noise filter. The circuit breaker or fuse should be a UL listed (1) marked) type. The current rating of the circuit breaker or fuse should be per the table in page 4.

List of Motors applicable to Drivers

Driver with a 2500 P/r incremental encoder

			Арг	olicable	e moto	ors	
Drivers	Size	Series	Product name	Voltage	Output rating	Velocity rating	Encoder
MDDA083AIA		MDMA	MDMA082A**		750W		
MDDA103AIA	Size		MDMA102A**		1.0kW		
MDDA153AIA	4-2		MDMA152A**]	1.5kW		
MDDA203AIA	Size		MDMA202A**		2.0kW		Incremental.
MDDA253AIA	4 - 3		MDMA252A**]	2.5kW	2000r/min	2500 P/r,
MDDA303AIA		Middle Inertia	MDMA302A**	200V	3.0kW		11-wire
MDDA353AIA]		MDMA352A**]	3.5kW		
MDDA403AIA	Size		MDMA402A**]	4.0kW		
MDDA453AIA]		MDMA452A**]	4.5kW		
MDDA503AIA]		MDMA502A**]	5.0kW		
MHDA053AIA		MHMA	MHMA052A**		500W		
MHDA103AIA	Size		MHMA102A**		1.0kW		
MHDA153AIA			MHMA152A*		1.5kW	2000r/min	Incremental, 2500 P/r, 11-wire
MHDA203AIA	Size 4-3	High	MHMA202A**ñ	200V	2.0kW		
MHDA303AIA	0.	Inertia	MHMA302A**		3.0kW		
MHDA403AIA	Size		MHMA402A**		4.0kW		
MHDA503AIA			MHMA502A**		5.0kW		
MFDA043AIA	Size 3	MFMA	MFMA042A**		400W		
MFDA083AIA	Size		MFMA082A**		750W		Incremental,
MFDA153AIA	4 - 2		MFMA152A**		1.5kW	2000r/min	2500 P/r,
MFDA253AIA	Size 4-3	Flat	MFMA252A**	200V	2.5kW		11-wire
MFDA353AIA	Size		MFMA352A**	_	3.5kW		
MFDA453AIA	5		MFMA452A**		4.5kW		
MGDA033AIA	Size 3	MGMA	MGMA032A**		300W		
MGDA063AIA	Size		MGMA062A**	_	600W		
MGDA093AIA	4 - 2		MGMA092A**	_	900W		Incremental,
MGDA123AIA	Size 4-3	Middle Inertia	MGMA122A**	2000	1.2kW	1000r/min	2500 P/r,
MGDA203AIA	0:		MGMA202A**		2.0kW		11-wire
MGDA303AIA	Size		MGMA302A**		3.0kW		
MGDA453AIA			MGMA452A**		4.5kW		
MQDA011AIA	Size 1	MQMA	MQMA011A**		100W		
MQDA021AIA	Size 2		MQMA021A**	100V	200W		Incremental,
MQDA041AIA	Size 3	Flat	MQMA041A**		400W	3000r/min	2500 P/r,
MQDA013AIA	Size	Small	MQMA012A**		100W		11-wire
MQDA023AIA	1		MQMA022A**	200V	200W		
MQDA043AIA	Size 2		MQMA042A**		400W		

List of Motors applicable to Drivers

Driver with a 17 bits absolute/incremental encoder

			A	pplicable	e motors	3	
Drivers	Size		Product name	Voltage	Output rating	Velocity rating	Encoder
MDDA083DIA		MDMA	MDMA082D**		750W		
MDDA103DIA	Size		MDMA102D**		1.0kW		
MDDA153DIA	4-2		MDMA152D**	-	1.5kW		
MDDA203DIA	Size	1	MDMA202D**	-	2.0kW		Absolute/
MDDA253DIA	4-3		MDMA252D**	-	2.5kW	1	Incremental,
MDDA303DIA		Middle Inertia	MDMA302D**	200V	3.0kW	2000r/min	17 bits, 7-wire,
MDDA353DIA			MDMA352D**	-	3.5kW		see Note 1)
MDDA403DIA	Size		MDMA402D**	-	4.0kW		,
MDDA453DIA	- 5		MDMA452D**	-	4.5kW		
MDDM503DIA			MDMA502D**	-	5.0kW		
MHDA053DIA	Size	MHMA	MHMA052D**		500W		
MHDA103DIA	4 - 2		MHMA102D**	-	1.0kW		
MHDA153DIA			MHMA152D**		1.5kW		Absolute/
MHDA203DIA	Size 4-3	High	MHMA202D**	200V	2.0kW	2000r/min	Incremental, 17 bits, 7-wire,
MHDA303DIA		Inertia	MHMA302D**		3.0kW		
MHDA403DIA	Size 5		MHMA402D**		4.0kW		see Note 1)
MHDA503DIA			MHMA502D**	a frances a	5.0kW		
MFDA043DIA	Size 3	MFMA	MFMA042D**		400W		
MFDA083DIA	Size		MFMA082D**		750W		Absolute/
MFDA153DIA	4 - 2		MFMA152D**	200V	1.5kW	2000r/min	Incremental, 17 bits, 7-wire, see Note 1)
MFDA253DIA	Size 4-3	Flat	MFMA252D**		2.5kW		
MFDA353DIA	Size		MFMA352D**		3.5kW		
MFDA453DIA	5		MFMA452D**		4.5kW		
MGDA033DIA	Size 3	MGMA	MGMA032D**		300W		
MGDA063DIA	Size		MGMA063D**		600W		
MGDA093DIA	4 - 2		MGMA093D**		900W		Absolute/
MGDA123DIA	Size 4-3	Middle	MGMA123D**	200V	1.2kW	1000r/min	Incremental,
MGDA203DIA	0.	Inertia	MGMA203D**		2.0kW		17 bits, 7-wire,
MGDA303DIA	Size		MGMA303D**		3.0kW		see Note 1)
MGDA453DIA			MGMA453D**		4.5kW		
MQDA011DIA	Size 1	MQMA	MQMA011C**		100W		
MQDA021DIA	Size 2		MQMA021C**	100V	200W		Absolute/
MQDA041DIA	Size 3		MQMA041C**		400W	-	Incremental,
MQDA013DIA	Size	Flat Small	MQMA012C**		100W	3000r/min	17 bits, 7-wire,
MQDA023DIA	1		MQMA022C**	200V	200W		see Note 1)
MQDA043DIA	Size 2		MQMA042C**		400W		

Holding brake

The brake is to hold the work (movable part coupled to a vertical motor axis) to prevent it from falling by gravity in case the servo power is lost.

<Caution>

The holding brake is to hold the work, not stop its motion. Never use the brake for decelerating and stopping the machine.

Wiring (Example)

This circuit shows a function of controlling the brake using the brake release signal (BRK-OFF) from the driver.

<Notes and Cautions>

- 1. The brake coil has no polarities.
- 2. The power supply for the brake should by supplied by the customer. Do not use the control power (VDC) for driving the brake.
- 3. Install a surge absorber per the figure above in order to suppress the surge voltage due to the on/off operation of the relay (RY). If you use a diode for surge absorber, note that the start of the servo motor after releasing the brake is delayed.
- 4. Use the recommended surge absorber. See Recommended Parts in page 84.

BRK-OFF Signal

- See Timing Chart describing the timing of issuing BRK-OFF signal, e.g. to release the brake after power-on, and activate the brake in case a servo-off/alarm occurs during the operation of the motor.
- The timing (delay) of deactivating BRK-OFF signal (i.e. activating the brake) after the motor is freed into a non-excited status in case of Servo-OFF or alarm event can be adjusted by using Pr6B (brake output delay time set-up at motor in motion). For details, see Details of Parameters.

<Notes>

- 1. The brake may produce a sound (rattling of brake liner). This is not a problem.
- 2. When energizing the brake coil (when the brake is off), magnetic flux may leak from the end of the axis. If a magnetic sensor or similar device is used near the motor, make sure that the device is not affected by the magnetic flux.

<u> </u>								Allamakia	Allowable
Motor	Capacity	Static friction	Inertia	Absorption	Releasing	Excitation current	Releasing	Allowable thermal	overall
		torque	x 10 ^{Åļ4}	time	time	(DC current (A))	voltage	equivalent of work per	thermal equivalent of
		(N•m)	(kg•m²)	(ms)	(ms) *1	(during cooling)		braking (J)	work(x103 J)
MSMA	30W ~ 100W	0.29 or more	0.003	25 or less	20 or less	0.26	1VDC	39.2	4.9
	200W, 400W	1.27 or more	0.03	50 or less	15 or less	0.36	or more	137	44.1
	750W	2.45 or more	0.09	60 or less		0.43		196	147
MQMA	100W	0.29 or more	0.03	50 or less		0.29		137	44.1
	200W, 400W	1.27 or more	0.09	60 or less		0.41		196	147
MSMA	1kW	4.9 or more	0.25	50 or less		0.74	2VDC	392	196
	1.5kW ~ 2.5kW	7.8 or more	0.33			0.81	or more		490
	3kW, 3.5kW	11.8 or more		80 or less	1				
	4kW ~ 5kW	16.1 or more	1.35	110 or less	50 or less	0.90	1	1470	2156
MDMA	750W	7.8 or more	0.33	50 or less	15 or less	0.81		392	490
	1kW	4.9 or more	1.35	80 or less	70 or less	0.59		588	784
	1.5kW, 2kW	13.7 or more		100 or less	50 or less	0.79		1176	1470
	2.5kW, 3kW	16.1 or more		110 or less	1	0.90		1470	2156
	3.5kW, 4kW	21.5 or more	4.25	90 or less	35 or less	1.10		1078	2450
	4.5kW, 5kW	24.5 or more	4.7	80 or less	25 or less	1.30		1372	2940
MHMA	500W, 1kW	4.9 or more	1.35		70 or less	0.59		588	784
	1.5kW	13.7 or more		100 or less	50 or less	0.79		1176	1470
	2kW ~ 5kW	24.5 or more	4.7	80 or less	25 or less	1.30		1372	2940
MFMA	400W	4.9 or more	1.35		70 or less	0.59		588	784
	750W, 1.5kW	7.8 or more	4.7		35 or less	0.83		1372	2940
	2.5kW, 3.5kW	21.6 or more	8.75	150 or less	100 or less	0.75		1470	1470
	4.5kW	31.4 or more		terp mean field barren					2156
MGMA	300W	4.9 or more	1.35	80 or less	70 or less	0.59	1	588	784
	600W, 900W	11.8 or more			15 or less	0.81	1	392	490
	1.2kW, 2kW	24.5 or more	4.7		25 or less	1.3	1	1372	2940
	3kW, 4.5kW	58.8 or more		150 or less	50 or less	1.4	1		

(Holding Brake Specifications)

Excitation voltage should be 24VDC ± 10%

*1) Delay of DC cutoff in case a surge absorber is used.

The values in this table are representative (except the friction torque, releasing voltage and excitation voltage). The backlash of the brake is factory-set to within ± 1 degree.

Dynamic Brake (DB)

The driver has a dynamic brake for emergency use. Observe the following precautions.

<Notes>

1. The dynamic brake should be used for emergency stop only.

Do not start or stop the motor by switching servo-on signal on or off.

Otherwise the dynamic brake circuit may be broken.

2. The dynamic brake should be on for just a short time for emergency. If the dynamic brake is activated during a high-speed operation, leave the motor stopped for at least three minutes.

The dynamic brake can be used in the following cases.

- A Main power OFF.
- B Servo-OFF
- C One of the protective functions is activated.
- D Over-travel Inhibit (CWL or CCWL) is activated.

In any of four cases above, the dynamic brake can be activated either during deceleration or after stop, or can be made disabled (i.e. allowing the free running of the motor). These features can be set by using the relevant parameters. However, if the control power is OFF, the dynamic brake is kept ON overriding the parameter settings in case the driver is Type 1, 2, 3 or 4; if the driver is type 5, the dynamic brake is not activated overriding the parameter settings.

A Options of the operation through deceleration and stop by turning off the main power (Pr67)

B Options of the operation through deceleration and stop by turning on Servo-OFF (Pr69)

C Options of the operation through deceleration and stop by turning on a protective function (Pr68)

D Options of the operation through deceleration and stop by turning on Over-travel Inhibit (CWL or CCWL) (Pr66) ______

After Power ON	(receiving Servo-ON signal))
Control power		
Control voltage 5V		
lain power		
Dynamic brake	Activated	Released
otor energized	Free (not energized) approx. 50 ms	Energized
rake release BRK-OFF)	Activated (braking) approx. 2 ms	Released
ternal reset	Reset	Released
ervo ready S-RDY)	Not ready	Ready
ervo alarm	Alarm	Not alarm
ervo-ON SRV-ON)	*2 Invalid	Valid
osition/velocity/	No	Yes

<Notes>

- *1. The main power should be turned on at the same time or after turning on the control power.
- *2. This means that SRV-ON signal is entered mechanically, but not accepted actually.

- *1. The value of t1 is the value of Pr6B or the time needed for decreasing the motor speed to approx. 30 r/min, which is shorter.
- *2. For the operation of the dynamic brake following an alarm event, see the explanation of Pr68 in "Details of Parameters".

Timing Chart

After an A	larm is clea	ared (dur	ring Servo	ON-)	
	 	120 ms or m	ore			
Alarm clear (A-CLR)	E	Entry of Clear s	signal			
Dynamic brake	Operation (braking	3)			Released	
Motor energized	Free (not energize	d)	appro <u>x, </u>	50 ms	Energized	
Brake release (BRK-OFF)	Braking		 		Released	
Servo ready (S-RDY)	Not ready			 	Ready	
Servo alarm (ALM)	Alarm			 	Not alarm	
Position/velocity/				No	Yes	
torque command				:-	stannad	
	OFF operat	ion whei	n the mot	oris		
Servo-ON (SRV-ON)	servo-OFF	Serv	ro-ON		Servo-OFF	
Dynamic brake	Braking	approx. 1 to	^{5 ms} Released		← approx. 1 to 5 ms t * 1	braking *2
Motor Free	e (not energized)	approx. 50 ms	Energized	- 	<	Free (not energized)
Brake release (BRK-OFF)	Braking		Released		 	Braking
Motor speed		approx. 30 r/mii	n 			<u></u>

- *1. The value of t depends on the value of Pr6A.
- *2. For the operation of the dynamic brake at Servo-OFF, see the explanation of Pr69 in "Details of Parameters".

Servo-ON/OFF operation when the motor is in operation

With Servo-C	N entered		
Servo-ON (SRV-ON)	Servo-OFF		Servo-ON
Dynamic brake	Braking		Released
Motor	Free (not energize	ed) approx	50 ms Energized
Brake release (BRK-OFF)	Braking	 	Released
Motor speed	api api	prox. 30 r/min	Servo-ON does not become active until the motor speed decreases to about 30 r/min or less.
With Servo-C	OFF entered	:	
Servo-ON (SRV-ON)	Servo-ON	⊣← approx. 1 t	Servo-OFF
Dynamic brake	Released		Braking *3
Motor	Energized		Free (not energized)
Brake release (BRK-OFF) Motor speed A	Released	Set by Pr6	SB - Braking
Motor speed A	approx. 30 r/min		
Brake release (BRK-OFF)	Released	Set by Pr6	
Motor speed B	Bapprox. 30 r/min	' t1 *1	Braking

- *1. The value of t1 is the value of Pr6B or the time needed for decreasing the motor speed to about 30 r/min , which is shorter.
- *2. During deceleration, Servo-ON does not become active until the motor stops, even if you attempt to turn on SRV-ON again.
- *3. For the operation of the dynamic brake at Servo-OFF, see the explanation of Pr69 in "Details of Parameters".

Acceptable Loads on Output Axes

Thrust load (A and B)

Unit: N (1 kgf = 9.8 N)

Motor	Motor capacity		Design		Acceptable du	ring operation
series		Radial load	Thrus	t load	Radial load	Thrust load
			A direction	B direction		(A or B direction)
MSMA	30W	147	88	117.6	4 9	29.4
	50W, 100W				68.6	58.8
	200W, 400W	392	147	196	245	98
	750W	686	294	392	392	147
MQMA	100W	147	88	117.6	68.6	58.8
	200W, 400W	392	147	196	245	98
MSMA	1kW	686	392	490	392	147
	1.5kW ~ 3.5kW	980	588	686	490	196
	4kW ~ 5kW				784	343
MDMA	750W	686	392	490	392	147
	1kW ~ 2kW	980	588	686	490	196
	2.5kW, 3kW				784	343
	3.5kW, 4kW	1666	784	980		
	4.5kW, 5kW					
мнма	500W ~ 1.5kW	980	588	686	490	196
	2kW ~ 5kW	1666	784	980	784	343
MFMA	400W	980	588	686	392	147
	750W, 1.5kW				490	196
	2.5kW ~ 4.5kW	1862	686		784	294
MGMA	300W ~ 900W	980	588		490	196
	1.2kW ~ 3kW	1666	784	980	784	343
	4.5kW	2058	980	1176	1176	490

In the operation of initialization (returning to the home position), if the initialization signal (Z-phase signal from the encoder) is entered before the motor is not substantially decelerated (after the proximity sensor is activated), the motor may not stop at the required position. To avoid this, determine the positions with the proximity sensor on and initialization signal on in consideration of the number of pulses required for successful deceleration. The parameters for setting the acceleration/deceleration time also affect the operation of initialization, so that these parameters should be determined in consideration of both the positioning and initializing operations.

The motor will start to decelerate with the proximity sensor ON, and stop with the first initialization signal (Z-phase).

The motor will start to decelerate with the proximity sensor ON, and stop with the first initialization Z-phase signal after the proximity sensor OFF.

"Absolute" Driver

In case of using an absolute encoder, or in case of using an absolute/incremental encoder as an absolute encoder, connect a battery for operating the absolute encoder, and set Pr0B (absolute encoder set-up) to 0. With this setting, the controller can know the current position of the motor, and the absolute system without any operation of initialization will become available.

Initializing the Encoder

Before using the driver-motor system, it is necessary to clear (initialize) the encoder at the home position. With this operation, the value of the multi-turn counter will become 0. For this operation, use the LED touch panel (auxiliary function: absolute encoder clear mode) or PANATERM (DVOP1950). After this operation, you must turn off the control power and turn it on again to save the data in the encoder.

Absolute Data

The absolute data consist of:Single-turn data that defines the absolute position of the motor, and Multi-turn data that counts the number of turns after the latest clearing operation of the encoder.

Single-turn data —	131071 0,1,2	••• 131071 0,1,2 •••	131071 0,1,
C C	← -1¦0 ←	→ 01 ←	$\longrightarrow 1^{1}_{2} \longrightarrow$
Multi-turn data —			
Motor rotating direction	CW	\longleftrightarrow	CCW

Structure of Absolute Data

The single- and multi-turn data consist of 15-character data (hexadecimal binary code) from the RS232C or RS485 communication interface. For the communication procedure, see pages 23 and 25 in Appendix.

	(0Bh	
		RSW (ID)	Walue of RSW(ID) on the LED touch panel
		D2h	
		03h	
		11h	
		Encoder status (L)	-
Absolute data		Encoder status (H)	
(15 characters) received	{	Single-turn data (L)	⊣ Single-turn data
		Single-turn data (M)	= Single-turn data (H) x 10000h + Single-turn data (M) x 100h + Single-turn data (L)
		Single-turn data (H)	
		Multi-turn data (L)	Multi-turn data
		Multi-turn data (H)	= Multi-turn data (H) x 100h + Multi-turn data (L)
		00h	
		Error code	After communication is executed,
		Checksum	this value is 0. If not 0, read again
	•		the absolute data from the driver.
			App. 20

Encoder status (L)]			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
,			0						
								- Over-speed - Full absolute status - Count error - Counter overflow - Multi-turn counter error - Battery error - Battery alarm	$\begin{array}{l} (absolute over-speed error) \\ \rightarrow & Err47 \\ (absolute status error) \\ \rightarrow & Err44 \\ (absolute single-turn counter error) \\ \rightarrow & Err41 \\ (absolute counter overflow error) \\ \rightarrow & Err45 \\ (absolute multi-turn counter error) \end{array}$
			Encoder	status (H))]	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	-	
0	0			0	0	0	0		
For d	etails	of the		oder s	tatus.	see	Encod		ery alarm, multi-turn counter error, er error, full absolute status or ations.

Encoder status (1 means the occurrence of an error)

• For details of the transfer of absolute data, see Communication Specifications.

• When transferring absolute data, enter Servo-OFF and fix the motor using a brake.

Installing the Battery

The backup battery is used for saving the position data of the absolute encoder when the main power of the driver is off. Use one of the following methods for connecting the battery.

- 1 Install the battery at the controller side.
- 2 Install the battery in the driver.
- 3 Install the battery at the motor side.

If the encoder cable must be removed and then reconnected at the installation site, apply the method 3 (Install the battery at the motor side) so that the encoder can be powered continually.

* For battery connection, see Installing the Battery in the previous page.

Baud rate	2400, 4800, 9600bps
Data length	8 bits
Parity	Nil
Start bit	1 bit
Stop bit	1 bit

The baud rate is determined by Parameter No.0C (Baud rate set-up of RS232C).

RS232C Communication Protocol

For the transfer of commands, see the instructions of the controller. RS232C communication is possible with Servo Ready output ON.

*1 and *2 data depend on the value of RSW(ID) on the LED touch panel.

RSW(ID)	*1 data	*2 data	
0	00h	2Eh	
1	01h	2 D h	
2	02h	2Ch	
3	03h	2 B h	
4	04h	2Ah	
5	05h	29h	
6	06h	28h	
7	07h	27h	
8	08h	26h	
9	09h	25h	
А	0 A h	24h	
В	0 B h	23h	
С	0Ch	22h	
D	0 D h	21h	
E	0Eh	20h	
F	0 F h	1Fh	

Checksum: OK if the value of the lowest 8 bits of the sum of the received absolute data (15 characters) is 0.

The host enters the RSW value (*1 data) of the desired driver into the "axis" field of the command block, and sends the command according to the RS232C communication protocol.

* For battery connection, see Installing the Battery in the previous page.

Baud rate	2400, 4800, 9600 bps
Data length	8 bits
Parity	Nil
Start bit	1 bit
Stop bit	1 bit

The baud rate is determined by Parameter No.0D (Baud rate set-up of RS485).

RS485 Communication Protocol

For the transfer of commands, see the instructions of the controller. RS485 communication is possible with Servo Ready output ON. The following flow chart shows the communication when RSW(ID) = 1.

*1, *2 and *3 data depend on the value of
RSW(ID) on the LED touch panel.

RSW(ID)	*1 data	*2 data	*3 data		
0	RS485 is not available				
1	81h	01h	2 D h		
2	82h	02h	2Ch		
3	83h	03h	2Bh		
4	84h	04h	2Ah		
5	85h	05h	29h		
6	86h	06h	28h		
7	87h	07h	27h		
8	88h	08h	26h		
9	89h	09h	25h		
Α	8Ah	0 A h	24h		
В	8 B h	0 B h	23h		
С	8Ch	0Ch	22h		
D	8 D h	0 D h	21h		
E	8Eh	0Eh	20h		
F	8Fh	0 F h	1Fh		

Checksum : OK if the value of the lowest 8 bits of the sum of the received absolute data (15 characters) is 0.

The host sends the command to the desired driver according to the RS485 communication protocol.

"Absolute" Driver

- App. 26 -

<Notes>

If using two batteries simultaneously, one at the driver and other one at the controller, a loop circuit is made, which may cause troubles.

- 1. Never use a damaged (liquid leaking) battery.
- 2. Make sure that the battery cable is firmly connected. Otherwise electric contact may be lost due to aging.

"Full Close" Driver

Combining a certain type of the driver with an external scale (linear type), you can use the full-close driver for precise positioning.

Drivers available for "full-close" use are the 17-bit absolute driver and 17-bit absolute/incremental driver. details, see Full-Close Specifications.

Wiring of main circuit

For wiring, see page 22.

CN SIG Connector

MSMA (750W or less) and MQMA

MSMA (1kW or more), MDMA, MFMA, MHMA and MGMA

<Note>

Please prepare the electrical power for the external scale.

CN I/F Connector

See Full-Close Specifications. (For wiring,) see page 28.

Parameter Listing

See Full-Close Specifications.

Connection to an external scale

· Relationship between signal from external scale and rotating direction

Param	eters for Func	tion Sele	ection	Default setting	is shown by []		
PrNo.	Parameter	Value		F	unction			
0 0	valu toud driv • The mod	e of RSW ch panel is er as the va value of thi	If multiple axes are used, it is necessary for the river to identify the current axis that is accessed by the host (e.g. PC). You can identify axis address by number with this parameter. power ON, the current ID (0 to F) on the LED is downloaded to the alue of this parameter. is parameter cannot be her means than the ro- SW) ID.					
0 1	Initial LED status	0 ~ 2 [1]		ct the type of i ment LED at p		be displayed initially		
	romation to tomation to tomation tomation tomation tomation tomation to tomation to tomation tomation tomation tomation tomation tomation to to tomation to tomation to tomation to tomation to tomation to to tomation to to tomation to to to to to to to to to to	erates V-torque	<u>Unit</u> + ։ ու	Power ON	Motor torq Unit : % + :gener CCW - : gene	6 rates -torque		

PrNo.	Parameter	Value		Function				
0.2	Control mode	0~	You can set the control mode to be used.					
02	set-up	10						
	Set-up	[1]	Value	Contro				
		[1]		1st mode	2nd mode *2			
			0	Position				
				Velocity				
			2	Torque				
			4	Position	Velocity			
			5	Position	Torque			
			6~10	Velocity *	Torque			
			6~10		1			
	 *1 These are special modes intended for "full-close" operation. For detals, see Full-Close Specifications. *2 If a hybrid mode has been selected (Pr02 = 3, 4, 5, 9 or 10), switch the 1st. and 2nd. mode with the control mode switching input(C-MODE). C-MODE (Open) (On) (Open) 1st 2nd 1st 1st 1st 10 ms ÅÉNotesÅÑ Allow 10ms or longer before entering any commands, after entering C-MODE. 							
03			You can disable the analogue torque limit inp (CCWTL or CWTL). 1ÅFInput disabled 0ÅFInput enabled the torque limit, set Pr03 to 1. With Pr03 = 0 and torque and CWTL) open, the motor does not run.					

PrNo.	Paramet	er	Value		Function				
04	Overtrav	el	0~1	For linear motion	For linear motion or other similar motion, overtraveling of the work may cause mechanical				
	input inhi	bit	[1]	damages. To avoid	d this, it is necessary t	o provide a limit switches at each end so that traveling			
				over the limit swite	ch position can be inhi	ibited.			
				CV	V direction Wor	k CCW direction			
				Servo	J-UJL_ ↑	Driver			
				motor		Limit switch CCWL CWL			
		CC	I WL/CWL						
	Value	inp	ut	Input	Connection to COM-	Operation			
				CCWL	Disabled	Normal with the CCW limit			
				ÅiCN I/F-9Åj		switch not activated			
	0		nabled		Open (H)	Faveling in CCW direction limited, CW			
			liableu	CWL	Connection	Normal with the CW limit			
				ÅiCN I/F-8Åj	(L)	switch not activated			
					Open (H)	Fraveling in CW direction limited, CCW			
	1	ה	sabled	Both the CCWL and CWL inputs are disabled, and traveling					
			Jubicu	in both the CW and CCW directions are allowed.					
				<notes></notes>					
				1. With Pr04	4 = 0 and CCW	/CW off (not connected to COM-), the			
				driver wil	I trip with "over	travel limit input error" assuming that			
				traveling	over the limit of	ccurs simultaneously in both the CCW			
					directions.				
						er or not to use the dynamic brake			
				during deceleration after CCW or CW overtravel lin					
					input (CCWL or CWL) becomes active. For details, see				
				the desc	ription of Pr66	δ (DB inhibition at overtravel limit).			

Parameter	Value			Fund	ction	
Internal speed						
switching						
Example:	4-speed op	peration us	ing the inte	rnal velocity	commands	
To run/sto	p the moto	or, you nee	d zero spee	ed clamp inp	ut(ZEROSP	D) and Servo-ON
input(SRV	-ON) in ad	dition to C	L/INH input.			
SER-ON inpu	ut		Servo-On			
ZEROSPD in	iput	Stop	Ope	eration		
INH input			Off	On	Off	On
CL input			Off	Off	On	On
	Velocity Velocity Up the acceleration/deceleration time, and S-curve acceleration/deceleration time					
				rameters:		
			• /))		
	0~1	You car	switch w	hether to	enable or	disable the zor
selection	[0]	opeca e	.abba	. (2, 011 //	0).
Value		Functi	on of ZE	ROSPD i	nput (Pin	26)
0	The ZER	OSPD in	put is dis	abled, and	d the drive	er assumes that
	he motor	r is alway	ys "not cla	amped to z	zero speed	".
1			•			•
	Internal speed switching • Example: To run/sto input(SRV SER-ON input ZEROSPD in INH input CL input • Notes> You can set-ut individually wit See t Pr58 Pr59 Pr5A ZEROSPD input selection Value 0 t	Internal speed switching	Internal speed switching	Internal speed switching Internal speed switching • Example: 4-speed operation using the inter To run/stop the motor, you need zero speed input(SRV-ON) in addition to CL/INH input. SER-ON input SER-ON input Servo-On ZEROSPD input Stop Ope INH input Off CL input Off Velocity 1st speed You can set-up the acceleration/deceleration time individually with parameters. See the following descriptions of the pa Pr58 (Acceleration time set-up) Pr59 (Deceleration time set-up) Pr59 (Deceleration time set-up) ZEROSPD 0 ~ 1 You can switch w input Input [0] speed clamp input selection Value Function of ZE 0 The ZEROSPD input is dis the motor is always "not clamping"	Internal speed switching • Example: 4-speed operation using the internal velocity. To run/stop the motor, you need zero speed clamp inp input(SRV-ON) in addition to CL/INH input. SER-ON input SER-ON input Stop Operation INH input Off On CL input Off Off Velocity Interspeed 2nd speed Velocity 1st speed 2nd speed Velocity See the following descriptions of the parameters: Pr58 (Acceleration time set-up) Pr59 (Deceleration time set-up) Pr59 (Deceleration time set-up) Pr58 (Acceleration time set-up) Pr59 (Deceleration time set-up) Pr59 (Deceleration time set-up) ZEROSPD 0 ~ 1 You can switch whether to input [0] Value Function of ZEROSPD input is disabled, and the motor is always "not clamped to z 0 The ZEROSPD input is enabled, and the motor is always "not clamped to z	Internal speed switching • Example: 4-speed operation using the internal velocity commands To run/stop the motor, you need zero speed clamp input(ZEROSP input(SRV-ON) in addition to CL/INH input. SER-ON input Servo-On ZEROSPD input Stop Operation INH input Off On CL input Off On Velocity Internet speed 3rd speed Velocity Internet speed 3rd speed Velocity Velocity Servo-On Velocity Internet speed 3rd speed Velocity Velocity Speed Velocity Internet speed 3rd speed See the following descriptions of the parameters: Pr58 (Acceleration time set-up) Pr59 (Deceleration time set-up) Pr59 (Deceleration time set-up) Pr54 (S-shaped accel/decel time set-up) Pr54 (S-shaped accel/decel time set-up) Pr55 (Deceleration time set-up) Pr50 (Deceleration time set-up) Pr54 (S-shaped accel/decel time set-up) Pr55 (Deceleration time set-up) Pr55 (Deceleration time set-up) Pr54 (S-shaped accel/decel time set-up) Pr54 (S-shaped accel/decel time set-up) The ZEROSPD input is disabled, and the

PrNo.	Parameter	Value		Functio	n			
07	Speed monitor(SP) selection	0 ~ 9 [3]	fed-out to the	an select/set-up the relationship between the voltage to be t to the speed monitor signal output (SPM: CN I/F Pin 43) e actual speed (or command velocity) of the motor.				
	Value	SPM signal	Relation	nship between output vol	tage level and velocity			
	0			6V / 47 r/min				
	1	Actual		6V / 187 r/mir	n			
	2	motor speed		6V / 750 r/mir	n			
	3	motor speed		6V / 3000 r/m	iin			
	4			1.5V / 3000 r/m	lin			
	5			6V / 47 r/min				
	6	Commande	d	6V / 187 r/mir				
	7	veloctly	-	6V / 750 r/mi				
	8			6V / 3000 r/m 1.5V / 3000 r/m				
				1.57 / 5000 1/11				
08	Torque monitor (IM)selection	0~5 [0]						
	Value	SPM signal	Relationship bet	tween output voltage and torque or position error pulse counts				
	0	Torque	3V / rated torque (100%)					
	1		3V / 31 Pulse					
	2	Position erro	3V / 125 Pulse					
	3	pulse counts	3V / 500 Pulse					
	4			3V / 2000 Pulse				
	5 6Å`10			3V / 8000 Pulse Enabled at full-close control (see Full-Close Specifications)				
	6A 10		Enabled at ful	I-close control (see Full-C	lose Specifications)			
09	TLC output	0~5	You can def	ine the functions o	f the torque limit output			
	selection	[0]	(TLC: CN I/F	pin 40).				
	Varue	Fur	nction	Signal symbol	Remarks			
	0	Torque in-limit		TLC	For details of these			
	1	Zero speed detection		ZSP	functions, see the			
	2	Alarm sign		WARN ALL	section of CN I/F			
	3	Overregen	eration alarm	WARN REG	Connector.			
	4	Overload a		WARN OL				
	5	Absolute b	attery alarm	WARN BATT				

PrNo.	Parameter	Value	Function				
0 A	ZSP output	0~5	You can define the functions of the zero speed				
	selection	[1]	detection o	output (ZSP: CN I/F pin 12).			
	<u> </u>		output is th	onship between Pr0A value and ZSP ne same as that of Pr09 (TLC).			
0 B	Absolute	0~2		hen using an absolute encoder.			
	encoder	[1]	Value	Description			
	set-up		0	Uses an absolute encoder as an ab-			
				solute encoder.			
			1	Uses an absolute encoder as an in-			
			· · · · · · · · · · · · · · · · · · ·	cremental encoder.			
				Uses an absolute encoder as an ab-			
			2	solute encoder (but ignoring the			
				"multi-turn counter over").			
0 C	Baud rate	0~2	Value	Baud rate			
	set-up of	[2]		2400bps			
	RS232C		1	4800bps			
			2	9600bps			
0 D	Baud rate	0~2	Value	Baud rate			
	set-up of	[2]	0	2400bps			
	RS485		1	4800bps			
			2	9600bps			

<Note>

• For the default values of Pr11 and Pr14, see page 44.

Parameters for Time Constants of Gains and Filters: Related to Real Time Auto Tuning

PrNo.	Parameter	Value	Unit	Function
10	1st position loop gain	10 ~ 2000 [50]	1/s	 You can define the response characteristics of position control. Higher the gain you set, quicker the in-position time you can obtain.
11	1st velocity loop gain	1 ~ 3500	Hz *	 To obtain the overall response of the servo system to- gether with the above position gain, set this gain as large as possible.
1 2	1st velocity loop integration time constant	1 ~ 1000 [50}	ms	 Integration element of the velocity loop. The smaller the setting, the quicker you can reduce the velocity er- ror to 0, after stopping.
1 3	1st speed detection filter	0 ~ 5 [4]	%	 The integration is disabled by setting this to 1,000. You can set-up the time constant of low-pass filter(LPF) in 6 stages(0 to 5), which is inserted after the block , and which converts the encoder signal to the velocity signal. The higher the value you set-up, the smaller the noise you can obtain, however, it is usually recommended to use the default value (4).
14	1st torque filter time constant	0 ~ 2500	0.01ms	 You can set-up the time constant of the primary delay filter that is inserted to the torque command portion. Use this function to suppress the oscillation caused by torsion resonance.
15	Velocity feed forward	0 ~ 100 [0]	%	You can set-up the amount of velocity feed forward at posi- tion control. Position error becomes almost 0 while the mo- tor runs at a constant speed, by setting this to 100%. The higher the setting you make, the quicker the response you can obtain with smaller position error, however, it may cause overshoot.
16	Feed forward filter time constant (Reserved)	0 ~ 6400 [0]	0.01ms	 You can set-up the time constant of the primary delay filter that is inserted to the velocity feed forward portion. Use this function to reduce the over and undershoot of the speed, chattering of the in-position signal.

* See page 38 in Appendix.

Appendixes

PrNo.	Parameter	Value	Unit	Function
18	2nd position loop gain	10 ~ 2000 [50]	1/s	 This driver provides 2(two) sets (1st. and 2nd.) of gain and time constant for position loop, velocity loop, velocity detection filter and torque command
19	2nd velocity loop gain	1 ~ 3500	Hz *	filter. • The functions and meanings of these 2nd gains or time
1 A	2nd velocity loop integration time constant	1 ~ 1000 [50]	ms	constants are the same as those of the 1st ones mentioned in the previous page.For switching between the 1st and 2nd gains or
1 B	2nd speed detection filter	0 ~ 5 [4]	Å[constants, see Adjustment. * If Pr20 (inertia ratio) has been set correctly, the unit of
1 C	2nd torque filter time constant	0 ~ 2500	0.01ms	the values of Pr11 and Pr19 is Hz.
1 D	Notch frequency	100 ~ 500 [1500]	Hz	 You can set-up the frequency of the resonance suppression notch filter. You can set-up the resonance frequency of the machine system which you can obtain by the frequency characteristics analysis program contained in PANATERM. This notch filter function will be disabled by setting this parameter to 1500.
1 E	Notch width selection	0 ~ 4 [2]		 You can set-up the width (five options) of the resonance suppression notch filter in 5 steps. The higher the setting is, the wider the width you can obtain. In normal cases, the default value should be used.
1 F	Disturbance torque observer	0~8 [8]		 You can set-up the time constant (eight options) of the primary delay filter inserted in the Distulbance torque observer. Value of Pr1F 0 Å ` 7 8 The smaller the setting is, the larger the suppression you can expect. *1
	sion of the Di see the actua • For the calcul load inertia is	sturbance f Il response ation of Dis s known, ca	torque). It is and increas sturbance to ilculate the i	tor becomes larger, with a smaller value of Pr1F(better suppres- recommended that you start from the smaller value of Pr1F to e the value. rque in the observer, the inertia ratio (Pr20) is necessary. If the nertia ratio and set the value of Pr20 to the inertia ratio calcu- perform the auto gain tuning that automatically enters the value

<Note>

• For the default values of Pr19, Pr1C and Pr20, see page 44.

Parameters for real time gain tuning

PrNo.	Parameter	Value	Unit	Function
2 0	Inertia ratio	0 ~ 10000	%	You can set-up the ratio of load inertia to the motor's rotor inertia.
				Pr20 =(Load inertia)/(Rotor inertia) x100%
				 The load inertia can be estimated by executing the auto gain tuning, and this result will be reflected in this parameter. If Pr20 (inertia ratio) is set correctly, the unit of the values of Pr11 and Pr19 becomes Hz. If the value of Pr20 is larger than the actual load inertia, the unit of the value of these parameters becomes larger. If the value of Pr20 is smaller than the actual load inertia, the unit of the value of these parameters becomes smaller.
2 1	Real time	0~3		You can define the operating mode of the real
	auto tuning set-up	[0]		time auto tuning.
	· · · · · · · · · · · · · · · · · · ·	Real tim	e auto t	uning Fluctuation of load inertia during operation
		Not use		
	1			Rarely fluctuates
	2 l	Jsed		Fluctuates slowly
	3			Fluctuates quickly
				 With a larger value of Pr21, a quicker response to the change in load inertia can be obtained, though the operation may become unstable depending on the operating pattern. In normal cases, the value of this parameter should be 1 or 2.
2 2	Machine	0~9		You can set-up the machine stiffness (from 10 options) that is
	stiffness at	[2]		used at the real time auto gain tuning.
	auto tuning			Low ← Machine stiffness → High Low ← Servo gain → High Pr22 0 • 1 8 • 9 Low ← Response → High • Large impact shock might be given to the machine, when you suddenly set this parameter to a larger value. Start from the smaller value while monitoring the machine movement.

Parameters for Switching to 2nd Gains

PrNo.	Parameter description	Range	Unit		Fund	ction	
3 0	2nd gain	0~1		• You can sele	ct the switching betwee	n Pland Poperations, and switch-	
	action set-up	[0]		ing between	the 1st and 2nd ga	ins.	
				Value	Gain sele	ction and switching	
				0	Fixed to the 1s	5	
						etween PI and P possible)	
				1	Switching betw and 2nd gains		
						h the gain switching input (GAIN:	
				CN I/F Pin 2	7).		
				G/	AIN input	Operation of the position loop	
				COM-	disconnected	PI operation	
				COM	- connected	P operation	
				*2 See Adjus 1st and 2nd		tions for switching be tween the	
3 1	Position control switching mode			100.000	can select the cond nd gains at the posi	ditions for switching between the ition control mode.	
	Value			Conditions	s for gain switch	ing	
	0	Fixed to th	e 1st gair	า			
	1	Fixed to th	e 2nd gai	n			
	2	2nd gain s	election w	ith the gain	switching input	(GAIN) ON/	
		(Pr30 must	t be set to	o 1)			
	3	2nd gain s	election w	rith a larger	torque command	l change	
	4	Fixed to the 1st gain					
	5	2nd gain selection with a larger velocity command					
		2nd gain s	election w	ith a larger	position error		
		2nd gain s	election w	ith the posi	tion command is	sued	
	8	2nd gain s	election w	ith no in-po	sition		

PrNo.	Parameter	Range	Unit	Function
	description	_		
32	Position control	0~	x 166 µs	• You can set-up the delay time when switching from the 2nd. to
	switching delay	10000		the 1st. gain when the actual status shifts out of the preset
	time	[0]		condition with Pr31.(see page 62)
33	Position control	0~		This parameter is enabled when Pr31 is set to 3, 5 and 6, and
	switching level	10000		you can define the level of judgement fo switch from the 1st.
		[0]		to the 2nd. gain.
34	Position control	0~		•You can set-up the width of the hysteresis to be defined at the
	switching	10000		top and bottom of the level of judgement set with Pr33.
	hysteresis	[0]		• The figure below shows the definitions of Pr32 (delay time),
				Pr33 (switching level) and Pr34 (hysteresis).
				$Pr33 \rightarrow Pr34$
				1 100 <u>Pr34</u>
				0 1st gain 2nd gain 1st gain
				<u>→ Pr3</u> 2
				<notes></notes>
				The settings of Pr33 (level) and Pr34 (hysteresis) are enabled
0.5		0	0/1 . 4	as absolute values.
35	Position loop gain switching	0~	(Value + 1)	You can set-up a phased switching time of the gain applied to
	time	10000	x 166 µs	the position loop alone, while the 2nd. gain switching function
		[0]		is enabled.
				(Example) → 166 166µs Kp1(Pr10) <kp2(pr18)< td=""></kp2(pr18)<>
				$Kp2(Pr10) \rightarrow 100$ [100 [100 [100 [100 [100 [100 [100
				Pr35= 0 3 1
				Image: 1 Image: 1
				Kp1(Pr18)→
				1st gain 2nd gain 1st gain
				Use this parameter only for switching from a smaller position loop gain to a larger position loop gain (from _ Kp1 to Kp2) (in
				loop gain to a larger position loop gain (from Kp1 to Kp2) (in order to reduce the impact forces caused by a large change
				in gain).
				Set the smaller value than the difference between KP2 and
				KP1.

PrNo.	Parameter description	Range	Unit	Function
36	Volocity control	0~5		You can select the conditions for switching between the 1st and
	switching mode	[0]		2nd gains at position control.
				Pr36 is same as Pr31(Position control switching mode) except
				for the position control portion.
	Value			Gain switching
	0	Fixed to tl	he 1nd ga	ain
	1	Fixed to tl	he 2nd ga	ain
	2	2nd gain sel	ection with	the gain switching input (GAIN) ON (Pr30 must be set to 1)
	3	2nd gain se	election wi	th a large torque command change
	4	2nd gain se	election wi	th a large velocity command change (acceleration)
	5	2nd gain s	election w	ith a large velocity command
37	Velocity control	0~10000	x 166 µs	Same as
57	switching delay time	[0]	x 100 µ5	Pr32 (switching delay time),
38	Valacity control	0~100000		Pr33 (switching level) and
50	Velocity control switching level	[0]		Pr34 (switching hysteresis) for position control.
39	Velocity control	0~10000		
	switching hysteresis	[0]		
3 A	Torque control	0~3		You can select the conditions for switching between the 1st and
	switching mode	[0]		2nd gains at torque control.
				Pr3A is same as Pr31 except position control and velocity con-
				trol portion.
	Value			Gain switching
	0	Fixed to tl	he 1nd ga	ain
	1	Fixed to tl	he 2nd ga	ain
	2	2nd gain sel	ection with	the gain switching input (GAIN) ON (Pr30 must be set to 1)
	3	2nd gain s	election w	ith a large torque command change
3 B	Torque control	0~10000	x 166 µs	
	switching delay time	[0]		• Same as Pr32 (switching delay time),
3 C	Torque control	0~100000		Pr32 (switching level) and
	switching level	[0]		Pr34 (switching hysteresis) for position control.
3 D	Torque control	0~100000		
	switching hysteresis	[0]		

Parameters for Position Control

PrNo.	Paramete descriptio				Function	
4 0	Command puls	ie 1~4	You c	You can set-up the multiplication when [quadrature pulse inpu		
	multiplier set-u	ıp [4]	is sele	is selected with Pr42(Command pulse input mode set-up).		
			V	alue	Multiplication at qua	adrature pulse input
				1	х	1
				2	х	2
			3	or 4	х	4
4 1	Command puls					of 2-series of pulse com-
	logic inversio	n [0]	mand	inputs (P	ULSE and SIGN).	
			V	alue	Logic of PULSE signal	Logic of SIGN signal
				0	Non-inversion	Non-inversion
				1	Inversion	Non-inversion
				2	Non-inversion	Inversion
				3	Inversion	Inversion
4 2	Command pulse input mode set-		driver as sho	You can set-up the type of command pulse to be given driver from the controller. There are three types of comman as shown in the table below. Select an appropriate type ing to the controller.		
	Value	Type of commar	ıd pulse	Signal	CCW command	CW command
	0 or 2	Quadrature pulse comm mode	and	PULS		t1 t1 t1 t1 t1 t1 B-phase delays from A-phase by 90 degrees
	1	CW/CCW pulse comn mode	ulse command			
	3	Pulse/Sign command m				

Appendixes

PrNo.	-	Parameter escription	Range	Function								
4 2 (continued)		Maximum permis	Maximum permissible frequency and minimum required time width of command pulse inputs									
		I/F for inputt PULSE/SIGN		Maximum permissible fr			1	m require		idth [µs]		
		Interface for	Ũ	permissible in	equency	t 1	t 2	t ₃	t 4	t 5	t 6	
		line drivers		500	cps	2	1	1	1	1	1	
		Interface for open collect	ors	200kpps		5	2.5	2.5	2.5	2.5	2.5	
		Make both of t	he rising and	d tailing time 0.	1 µs or sh	orter.						
4 3	in	ommand pulse hibit input validation	0 ~ 1 [1]	You can select enabled or disabled of the command pulse inhibit input (INH: CN I/F Pin 33).								
				Value INH input								
				0 enabled								
				1 disabled]	
		Command pu	lse input i	s disabled by	opening	the c	onnect	ion bet	ween	NH ing	out and	
		COM If you	ı do not us	e INH inputs,	set Pr43	to 1. V	Vith this	s setting	g, you	do not	have to	
		externally con	nect betwe	een INH (CN	/F Pin_3	3) and	COM-	(Pin 41).			
4 4	_	utput pulses	1~	You can set-		or pul		te nor	singlo	turn w	ubich is t	-
		er single turn	16384	be fed-out to					U	,		
		[2500] counts per single turn in [Pulse/rev] unit directly. Note that										
		set-up of the larger counts than the encoder pulses is disable										

PrNo.	Parameter description	Range	Function
4 5	Pulse output logic inversion	0 ~ 1 [0]	When the motor runs CW, the B-phase pulse advances the A-phase pulse (when the motor runs CCW, the B-phase pulse delays from the A-phase pulse).
			phase relation between A and B phases by inverting the logic of this parameter.
	Value	A-pha	ase (OA),
	0		ase (OB),
	1		ase (OB), version
	Pa		or Pulse Command Scaler (Pr46 through Pr4B)
4 6	Numerator of 1st	1 ~	Pulse command scaling function (electronic gear) • Purpose
4 7	Numerator of 2st command pulse ratio	1~	 You can set-up any motor speed or work travel amount per input command pulse(unit). You can increase the nominal command pulse frequency with scaling,
4 8	Numerator of 3st command pulse ratio	1 ~ 10000	when your required speed can't be obtained due to the capacity of the pulse generator of the controller(maximum available frequency).
49	Numerator of 4st command pulse ratio	1 ~ 10000	Block diagram of the scaling function
4 A	Multiplier of numerator of command pulse ratio	0 ~ 17	Command pulse 2 Unweater of 3t command pulse ratio (P4) - 1 Unweater of 3t command pulse ratio (P4) - 2 Unweater of 3t command pulse ratio (P4) - 4 Command - 2 Unweater of 3t command pulse ratio (P4) - 5 Command - 5
4 B	Denominator of command pulse ratio	1 ~ 10000	 f <u>Denominator of pulse command pulse raito (Pr48)</u> F Feedback pulse The calculated numerator is max. 2621440. Set-up of larger value than this is disabled, and automatically substituted by 2621440.

<Note>

For the default values of Pr46 through Pr4B, see page 46.

PrNo.	Parameter description	Range			Function				
46 ~ 4B				or 2nd. nume	of the command scalar. erator with scalar input switching				
(continued)			DIV off DIV on	DIV off 1st numerator (Pr46) selection					
					and scalars only for special operations such For details, see FullClose Specifications.				
			<example> • Basic relation is defined so as the motor runs one revolution with the command input of encoder resolution(f), when the scale ratio is 1. Therefore, when the encoder resolution is 10000 P/r, it is necessary to enter f=5000 pulses in case of scale ratio of 2, and f=40000 pulse in case of scale ratio of 1/4 to turn the motor one revolution. • Set-up the Pr46, Pr4A and Pr4B so that the post-scaling internal command (F) equals the resolution (10000 or 217) of the encoder. F = f x (Pr46 x 2^{Pr4A})/Pr4B = 10000 or 2¹⁷</example>						
					counts required for motor one revolution required for motor one revolution				
Resolut	ion of encoder		2 ¹⁷ (131072)		10000(2500P/r x 4)				
Comman 5000 p	and revolution		461x2 485000	Pr 4A 17	Pr 4A Pr 46 10000 x 2 Pr 4B 5000				
Comman 4000 p			Pr 4A 461x2 48 10000		Pr 4A Pr 46 2500 x 2 Pr 4B 10000				

PrNo.	Parameter description	Range		Function			
4 C	Smoothing	0~7	This filter is a pri	This filter is a primary delay filter that is inserted after the scaling function in			
	filter set-up	[1]	the command pulse input portion.				
	• The command 1) The scale ra	epwise moti l input may itio is large	er wise motion of the motor that may appear when the command input is rough. nput may become rough when: o is large (10 times or greater) frequency is low.				
			• You can set-up 8 steps with Pr	the time constant of the smoothing filter in r4C.			
			Value	Time constant			
			0	No filtering function			
			1	\downarrow			
			~	Large time constant			
			7	\downarrow			
4 D	Counter clear input	0 ~ 1 [0]		he conditions for clearing the position error counter, i.e. for ter clear signal (CL: CN I/F Pin 30).			
			Value	Conditions			
			0	Cleared with level (*1)			
			1	Cleared with edge (rising part)			
			*1 : Minimum tim	e width of the CL signal			
			CL (pin 30)				

Para	meters fo	r Velc	ocity Con	trol			
PrNo.	Parameter description	Range		Function			
50	Velocity command input gain	10 ~ 2000 [500]	You can set-up the relationship between the motor speed and the volta applied to the velocity command input (SPR: CN I/F Pin 14).				
	 The default o [(r/min)/V], e <notes></notes> 1. Don't apply 2. If the position 	f Pr50 is 50 .g. 6V with 3 more than ? on loop is co	3000 r/min. 210V to the veloci	speed Rated speed Gradient (default) -10 -6 Voltage of command input Rated speed CW ty command input (SPR).			
5 1	Velocity command input logic inversion	0 ~ 1 [1]	parameter in suc	he polarity of the velocity command input (SPR). Use this the case as you want to change the motor rotating direction g the polarity of the command signals from the controller.			
			Value	Rotating direction			
			0	CCW with (+) command (viewed from the shaft end)			
			1	CW with (+) command (viewed from the shaft end)			
				is parameter is 1, i.e. CW rotation with (+) command. Note ional versions of MINAS series drivers have the same de-			
	pay extra atter	ntion to the	case when the p	node, in combination with the external positioning unit, olarity of this parameter does not match to that of the s could cause the motor malfunction.			
	L						

PrNo.	Parameter description	Range	Function						
5 2	2 Velocity command offset		 You can adjust the offset of the external analogue velocity command sy tem including that the controller. The offset is about 0.3mV per unit of this parameter. There are two ways for adjusting the offset : (1) manual adjustment and (a automatic adjustment. 						
	the motor ma • when the posi that the error 2) Automatic ad • For detailed po	g the adjust ay not run, a tion loop is pulse may justment rocedure, se	ustment with the driver alone,. Set-up the value with this parameter so that n, after entering 0V exactly to the velocity command input (SPR). is composed at the controller side, set-up the value with this parameter so ay become to 0 at Servo-lock status. , see Details of Operation in Appendix. natic adjustment will be automatically entered as the value of this parameter.						
5 3	1st internal speed	-10000 ~ 10000 [0]	You can set-up the internal command velocity of 1st to 4th speed to Pr53 to 56 respectively in [r/min] unit, when the internal velocity set-up is enabled with the parameter Pr05 (Switching of internal and external velocity set-up). <note> The polarity (+/- sign) of the set values shows the polarity of internal</note>						
54	2nd internal speed	-10000 ~ 10000	command velocities.						
		[0]	– CW run						
5 5	3rd internal speed	-10000 ~ 10000 [0]	Pr56 defines the velocity limit at the torque control mode.						
56	4th internal speed	-10000 ~ 10000 [0]							
5 7	JOD speed set-up	0 ~ 500 [300]	You can set-up the JOG speed in [r/min] at JOG trial run mode. For details of JOG functions, see Trail run.						

PrNo.	Parameter description	Range	Function				
58	Acceleration time set-up	0 ~ 5000 [0]	You can control the speed while applying the acceleration/ deceleration to the velocity commands in the driver, at velocity control mode. You can obtain soft-start/soft-down action of the motor when the				
59	Deceleration time set-up	0~ 5000 [0]	phased velocity command is entered, or when the internal veloc- ity set-up is selected.				
	Velocity command Speed	td	ta Pr58 x 2ms/1000r/min td Pr59 x 2ms/1000r/min				
			<notes> Don't use these parameters if the driver is used in combination with the external position loop. (Both Pr58 and Pr59 should be set to 0).</notes>				
5 A	S-shaped accel/decel time set-up	0 ~ 500 [0]	You can add a quasi S-shaped acceleration/deceleration to the velocity command, so that smooth operation can be obtained in such a case as a large impact shock will be given at starting or stopping with a linear acceleration/deceleration.				
	Speed		1. Set the basic acceleration/deceleration time for the linear regions with Pr58 and Pr59. 2. Set the time of the S-shaped portion, cen tering the acceleration/deceleration changing regions with Pr5A. Unit in 2 ms. td ÅFPr58 td ÅFPr59 td tsÅFPr5A				
5 C	Torque command input gain	10 ~ 100 [30]	You can set-up the relationship between the motor torque and the voltage applied to the torque command input (TRQR: CN I/F pin 14).				

Parameters for Torque Control Parameter PrNo. Range Function description 5 C • The unit of the set-up is [0.1V/100%]. Enter the required volt-CCW Toraue (continued) age for producing the rated torque. Default The default value of 30 corresponds to 3V/100%. 200 Rated torque -10) 8 101/ Voltage of command input 200 CW Torque 5 D 0~1 You can invert the polarity of the torque command input signal command [0] (TRQR: CN I/F Pin 14) when Pr02 = 5. input inversion When the driver has been configured for torque control, the torque command signal input uses CN I/F Pin 16. Value Direction of motor torque 0 CCW torque with (+) commands CW torque with (+) commands 1 É You can limit the max. motor torque with this parameter. 5 E 0~ Torque limit É In normal specifications, the driver can produce 300 % of the 500 set-up A@ rated torque for a short duration(peak-torque). Use this limiting [300] Å@ function when 300% torque may cause the trouble to the Å@ machine. • Set-up the value in % against the rated torgue. Torque[%] CCW . The right figure shows an example that the maxi-300 With Pr5E (maximum) mum torque is limited to 150% of the rated torque. =150200 · This parameter limits the maximum torque in both 100 CW and CCW directions. Rated torque) Velocity 100 (Rated (maximum) torque) -200 300 CW <Notes> You can't set-up a greater value with this parameter than default value (300%), which is defined by the system parameter (Max. torque output).

PrNo. Parameter description Range Function 6 0 In-position 0 ~ 32767 You can set-up the output timing of the in-position signal (COIN: CN I/ F Pin 39), completing the travel of the motor (work), after the command pulse entry. • The unit of position error pulses is the "resolution" of the encoder. It differs depending on the type of encoder. Position 1) 17-bit encoder: 217 = 131072 2) 2500 P/rev encoder: 4 x 2500 Position Notes> 1. Hy ou set-up too small value to Pr60, time to feed-out COIN signal gets longer, or causes a chattering. 2. The value of this parameter does not affect the accuracy in positioning. • You can set-up the output timing of the zero speed detection signal (ZSP: CN I/F pin 12). Unit in f/min]. 6 1 Zero speed 0 ~ 10000 • You can set-up the output timing of the zero speed becomes lower than this setting. Pr61 affects both CW and CCW directions regardless of the actual rotating direction. Speed CCW/ Pr61 Pr61 affects both CW and CCW directions Speed CCW/ Pr61 CCW/ Pr61	Para	meters fo	r vario	ous sequences					
 arange 32767 F Pin 39), completing the travel of the motor (work), after the command pulse entry. The unit of position error pulses is the "resolution" of the encoder. It differs depending on the type of encoder. 17-bit encoder: 217 = 131072 2) 2500 P/rev encoder: 4 x 2500 Notes> If you set-up too small value to Pr60, time to feed-out COIN signal gets longer, or causes a chattering. The value of this parameter does not affect the accuracy in positioning. 6 1 Zero speed You can set-up the output timing of the zero speed detection signal (ZSP: CN I/F pin 12). Unit in [r/min]. The 2F signal will be fed-out when the motor speed becomes lower than this setting. Pr61 affects both CW and CCW directions regardless of the actual rotating direction. 	PrNo.	description	Range	Function					
 *resolution" of the encoder. It differs depending on the type of encoder. 1) 17-bit encoder: 217 = 131072 2) 2500 P/rev encoder: 4 x 2500 Notes> 1. If you set-up too small value to Pr60, time to feed-out COIN signal gets longer, or causes a chattering. The value of this parameter does not affect the accuracy in positioning. 6 1 Zero speed 0 ~ You can set-up the output timing of the zero speed detection signal (ZSP: CN I/F pin 12). Unit in [r/min]. The ZSP signal will be fed-out when the motor speed becomes lower than this setting. Pr61 affects both CW and CCW directions regardless of the actual rotating direction. 	60		32767 F Pin 39), completing the travel of the motor (work), after the community pulse entry. • The in-position (positioning complete) signal (COIN) will be fed-out to the second						
CN I/F pin 12). Unit in [r/min]. 10000 [50] Pr61 affects both CW and CCW directions regardless of the actual rotating direction. Speed Pr61 CW Pr61 CW Pr61 CW Pr61 CW Pr61 CW Pr61		"resolution" depending of 1) 17-bit enco 2) 2500 P/rev <notes> 1. If you set-up a chattering.</notes>	of the encod on the type der: 217 = 1 encoder: 4	der. It differs of encoder. I31072 x 2500 value to Pr60, time to feed-out COIN signal gets longer, or causes					
	6 1	Pr61 affects	10000 [50] both CW	CN I/F pin 12). Unit in [r/min]. • The ZSP signal will be fed-out when the motor speed becomes lower than this setting. and CCW directions al rotating direction. Speed Pr61 CCW Pr61					

<Note>

D

For the default values of Pr60 and Pr63, see page 46.

PrNo.	Parameter description	Range	Function					
62	At-speed	0 ~ 10000 [1000]	 You can set-up the output timing of the at-speed signal (COIN : CN I/F pin 39) at velocity and torque control mode. Unit in [r/min]. The at-speed (COIN) signal will be fed-out when the motor speed exceeds the preset value by this parameter. 					
			and CCW rotation al rotating direction.					
63	Position error	0~	You can set-up the detection level for the position error limit at [Position					
	set-up	32767	error limit protection], with error counter pulses.					
			Inis parameter using the following formula. [Position error limit level (pulses)]/256					
	1 I · ·	•	to low value, and set this Pr63 value too small, the position error limit ed, even though no error is to be found.					
64	Position error 0 ~ 1 You can disable the position error limit protection. invalidation [0]							
	Value	Position error limit protection						
	0		Enabled					
			Enabled sabled. The motor continues to run, even though the pulse counts ex- eds the level set by Pr63, judging that no error is found.					

PrNo.	Parameter description	Range		Funct	ion	
65	UVtrip selection at	0~1	You can sele	ct whether or not to activat	e the under-voltage trip in case the	
	main power-off	[1]	main power i	s shut-off.		
	Value	•	Ur	nder-voltage protective function		
	0		ip). After this	•	vo-OFF get active (the motor is on, Servo-ON will be made	
	1			et during Servo-ON, the ed, and the motor trips.	under-voltage protective func-	
			See "Timing	chart for the mains and cor	ntrol power shut off" in Appendix.	
66	DB inhibition at overtravel limit	0 ~ 1 [0]			rating the motor after the over-travel : CN I/F Pin 8) is made active.	
	Value		Motor ope	eration from deceleration t	o and after stop	
		-	ic brake (DE c brake is re		motor is stopped. After stop,	
	1	-		the motor stops after emains free.	coasting.	
6 7	Sequence at main power-off	0 ~ 7 [0]	off. 1) Decelerati	up the conditions of the foll ng and halting the motor he position error counter	lowing operations after main power	
			Operating	conditions	Content of the position	
	Value	During de	celeration	After stop	error counter	
	0	D	В	DB	Cleared	
	1	Free run	(coasting)	DB	\uparrow	
	2	D	В	Free (DB not engaged)	\uparrow	
	3	Free run (coasting)		Free (DB not engaged)	\uparrow	
	4	D	В	DB	Held	
	5	Free run	(coasting)	DB	\uparrow	
	6	D	В	Free (DB not engaged)	\uparrow	
	7	Free run	(coasting)	Free (DB not engaged)	\uparrow	
			(DB: Dynami	c brake engaged)		

PrNo.	Parameter description	Range		Fun	ction		
68	Sequence at alarm	0 ~ 3 [0]	the motor	Defines the conditions for decelerating the motor and keep the motor stopped after one of the driver's protective function (alarms) is activated.			
			Operating	conditions	Content of the position		
	Value	During de	celeration	After stop	error counter		
	0	D	В	DB	Cleared		
	1	Free run	(coasting)	DB	\uparrow		
	2	D	В	Free (DB not engaged)	\uparrow		
	3	Free run	(coasting)	Free (DB not engaged)	\uparrow		
				nic brake engaged) Timing chart for alarn	ns" in Appendix.		
69	Sequence at servo-off	0 ~ 7 [0]	Pin 29). 1) Operating 2) Process f The function are the sam	g conditions during decel for clearing the position e ns of this parameter and e as those of Pr67.	-		
6 A		e of tb (delay minute mov	OFF) (i.e. I free) in tra	orake engaged) to the ensition to Servo-OFF eless SRV-ON order of the BRK-OFF Actual braking Motor	of the brake release signal (BRK- shutdown of motor current (servo during the halt of the motor.		
			See also motor" in <i>I</i>		rvo-ON/OFF during the halt of		

Parameter description	Range	Function				
Mechanical brake action set-up at motor in motion	0 ~ 100 [0]) OFF) (i.e. brake engaged) to the shutdown of motor cu free) in transition to Serve OFF during the motor in				
 This parameter i dation of the bra The value of TI needed for decre 30 rpm, whiche Pr6B = (Entry) x 	ake due to the state of the sta	he rotation of th ue of Pr6B or t notor revolution t	e motor On Off			
		See also "Tin the motor" in	ming chart for Serve-ON/OFF during the operation of Appendix.			
External regenerative discharge resistor selection	0 ~ 2 [0]	Defines whether the internal regenerative discharge resistor is used, or an external regenerative discharge resistor is installed (between P and B2 terminals on the terminal block) with the inter- nal resistor disconnected.				
Value	Regenerative o	lischarge resistor	Over-regenerative power protection			
0	Internal resistor		The protection operates for the internal resistor.			
1	Externa	I resistor	The protection operates for the external resistor whose operating limit is 10% of the duty.			
2	External resistor		No protection			

Motor Mode

Operation

1) Turn on the mains power (driver).

2) Open the Monitor mode

(see Parameter Setting and MODE's Structure).

3) Select a mode that you want to view.

Note) With power on, the indication starts with the indication items marked with *.

Motor speed

Select thisdisplay.

dP_000

(initial display)

Details of Monitor Mode

Display of I/O signals status

Display the status of control (input) and output signals via the CN I/F connectors. Use this information for checking the wiring connections.

Pressing LEFT button will move the decimal point in blinking.

ın - Ü,	R
\otimes /	
, n []	R

(Decimal point placed on the right side: Signal selection mode)

(Decimal point placed on the left side: Input/output selection mode)

1) Input/output selection mode

2) Signal selection mode

Pressing UP button will scroll downward (in the arrow direction).

The lowest No. of input signal

The highest No. of input signal

The lowest No. of output signal

The highest No. of output signal

Signal Numbers and Names

Input signals				Output signals			
No.	Signal description	Symbol	Pin No.			Symbol	Pin No.
0	Servo-ON	SRV-ON	29	0	Servo-ready	S-RDY	35 (34)
1	Alarm clear	A-CLR	31	1	Servo alarm	ALM	37 (36)
2	CW overtravel inhibit	CWL	8	2	In-position	COIN	39 (38)
3	CCW overtravel inhibit	CCWL	9	3	Mechanical brake release	BRK-OFF	11 (10)
4	Control mode switching	C-MODE	32	4	Zero speed detection	ZSP	12
5	Speed zero clamp	ZEROSPD	26	5	Torque in-limit	TLC	40
6	Command pulse scaler switch 1	DIV	28	6	Internal use		
7	Internal use			7	Internal use		
8	Command pulse input inhibit	INH	33	8	Internal use		
9	Gain switching	GAIN	27	9	At-speed	COIN	39 (38)
Α	Counter clear	CL	30	Α	Internal use		
В	Internal use			В	Internal use		
С	Internal vel.cmnd. select 1	ĪNH	33	С	Internal use		
D	Internal vel.cmnd. select 2	CL	30	D	Dynamic brake action	DBRK	Internal signal
E	Internal use			Е	Internal use		
F	Internal use			F	Internal use		
10	Internal use			10	Internal use		
1 1	Internal use			11	Internal use		
12	Internal use			12	Internal use		
13	Internal use			13	Internal use		
14	Internal use			14	Internal use		
15	Internal use			15	Internal use		
16	Internal use			16	Internal use		
17	Internal use			17	Internal use		
18	Internal use			18	Internal use		
19	Internal use			19	Internal use		
1 A	Internal use			1 A	Internal use		
1 B	Internal use			1 B	Internal use		
1 C	Internal use			1 C	Internal use		
1 D	Internal use			1 D	Internal use		
1 E	Internal use			1 E	Internal use		
1 F	Internal use			1 F	Internal use		

<Note>

The signals with symbol marked with are active with L (on).

Image: To select any alarm event you wanted, press UP or DOWN button for access to the desired alarm No.
 Image: Pressing DOWN will move to older alarms.)

<Notes>

1. If an alarm which is stored in the history memory is occurring, the alarm is given E-0 (Error-0).

2. The alarm history cannot be deleted.

Alarm	Function	Alarm	Function	
Code No.	Function	Code No.	Function	
1 1	Undervoltage, control power	2 7	Command pulse saler error	
1 2	Overvoltage	28	External scale error	
1 3	Undervoltage, main power	29	Error counter over flow	
1 4	Overcurrent	35	External scale disconnection error	
1 5	Overheat	36	EEPROM parameter error	
1 6	Overload	37	EEPROM check code error	
1 8	Regenerative discharge	38	Overtravel inhibit input error	
2 0	Encoder A/B phase error	4 0	Absolute system down error	
2 1	Encoder communication error	4 1	Absolute counter over flow error	
2 2	Encoder connection error	4 2	Absolute over-speed error	
23	Encoder communication data error	44	Absolute single-turn counter error	
24	Position error	4 5	Absolute multi-turn counter error	
2 5	Hybrid error	4 7	Absolute status error	
2 6	Overspeed	Other than the above	Other errors	

Alarm Numbers and Functions

Details of Operation (Monitor Mode)

<Notes>

- The battery alarm is kept active until the control power is turned off.
- Other alarms are kept displayed at least one second after the alarm event occurs.
- Alarming criteria cannot be changed.

Display of the load factor of the regenerative discharge resistor

• Display the load factor of the regenerative discharge resistor as a percentage of the protective operation level (100%).

-----Acceptable load factor of the regenerative discharge resistor (unit : %)

• For an external regenerative discharge resistor, Pr6C should be 0 or 1 to display the load factor.

Display of the load factor

• Display the load factor as a percentage of the rated load (100%).

Load factor (unit : %)

• See "Overload Protection: Time Limiting Characteristic" in Appendix.

Operation in the Parameter Setting Mode

Operation in the Mode Selection mode

2) Press 🔘 UP or 🔘 DOWN button to select a desired value.

<Note>

Pressing () UP will increase the value. Pressing () DOWN will decrease the value. This setting (modification) of value will immediately affect the control.

Automatic Offset Adjustment Mode

This mode is to set the voltage of analogue velocity (or torque) commands to 0V, measure the offset during Servo-OFF, and correct the offset so that small motions (rotation) can be eliminated. This automatic offset adjustment mode should be started by the following procedure.

Procedure

1) Select the automatic offset adjustment mode using the procedure mentioned above.

<Notes>

1. The automatic offset adjustment mode is not effective for the position control mode.

2. If the input voltage is over the adjustment range (±25% of the maximum input voltage), the mode cannot work (an error occurs). Make sure that the input voltage is 0V.

3. If the value of Pr52 produced by the mode (i.e. the result of the offset adjustment) is not downloaded to EEPROM before turning off the power, the value will be lost (the previous value remains). If you want to continue to use the new value, download it to EEPROM before turning off the power.

Alarm Clear Mode

Clearing an alarm using the LED touch panel is the same as removing the trip status by using the alarm clear signal (A-CLR).

Procedure

1) Select the alarm clear mode (re Press SET button to displ	
 2) The mode is ready for execution. Weep pressing UP button (for about three seconds). The number of short bars (-) will increase. The mode is started. 	<u>Act</u> <u>Act</u> <u></u> <u>5</u> <u></u>
The clearing operation will complete instanta-	F_{10} , 5b Error.

Clearing completed

<Notes>

neously.

If one of the errors shown below is occurring, the trip status is not removed, and

Error. | appears.

In this case, remove the error by turning off the power, removing the cause and turning on the power again.

Error

Over-current, overheat, encoder A/B phase error, encoder communication error, encoder disconnection, encoder communication data error, EEPROM parameter error, EEPROM check code error, absolute single-turn counter error, absolute multi-turn counter error and Other error

Absolute Encoder C	lear Mode
This mode is to clear the multi-turn	data of the absolute encoder, and clear the alarms regarding the encoder.
Procedure	
1) Select the absolute encoder clea	ar mode (refer to page 39 in Appendix). 🛛 🕂 🗜 👝 с.
will appear. Press SET 🔘 butto	on to display Enc.
 The mode is ready for execution. 	<u>Enc</u> .
Keep pressing UP button	$E \cap c$]
(for about three seconds). The number of short bars (-) will in-	
crease.	
The mode is started.	<u>Start</u>
The clearing operation	Finish_Error.
will complete instanta- neously.	Clearing completed Error
<notes></notes>	

If you execute this mode for a driver with an incremental encoder,

Error. will appear.

After executing the absolute encoder clear mode, turn off the power of the driver, and then turn it on again.

How to Connect

Installing PANATERM on a hard disc

<Notes>

1. The memory capacity of the hard disc should be 15MB or more.

2.Install PANATERM with setup discs, otherwise the software does not work.

(Installation Procedure

1) Turn on your personal computer. Start Windows95 (or 98). (Note: if there is any application program on, close all of them.)

2) Insert the PANATERM Setup Disc 1 into the floppy disc drive.

3) Start Explorer, and switch to (select) the floppy disc drive. (For the procedure for starting the Explorer program, see the instructions for Windows.)

- 4) Double click on "Setup.exe" (PANATERM Setup program will start).
- 5) Click on OK to start the setup program.
- 6) Keep the operation according to the guide of the setup program.
- 7) Click on Start installing? to start the setup routine.
- 8) Confirm an message "Setup completed". Then click on OK .
- 9) Close all the applications. Then restart Windows. PANATERM will be added to the program menu.

Starting PANATERM

<Notes>

- 1. Once you install PANATERM on your hard disc, you do not have to install it again for next use.
- 2. Before using PANATERM, the driver, power supply, motor and encoder should be connected. For the proce-

dure for starting PANATERM, see the Windows manual.

Procedure

- 1) Turn on your personal computer. Start Windows95 (or 98).
- 2) Turn on the driver.
- 3) Click on the start button of Windows (see the Windows manual).
- 4) Select (click on) PANATERM from the program menu.
- 5) An opening splash will be displayed for two seconds, and then PANATERM screen will appear.

For the operation, functions and other details about PANATERM, see the Instructions for the PANATERM program.

MINAS-A series Cables

Dwg. No.	Motor type	Cable	Part No.	Remarks
1-1	MSMA30 ~ 750W	Encoder cable (17 bits, 7 wires)	MFECAO**OLAA	
	MQMA100 ~ 400W	for absolute/incremental encoders		
2 - 1		Encoder cable (2500 pulses, 11 wires),	MFECAO**OEAA	
		incremental encoders		
3 - 1		Motor cable	MFMCAO**OEET	
4 - 1		Brake cable	MFMCBO**OGET	
1-2	MSMA1.0 ~ 2.5kW	Encoder cable (17 bits, 7 wires)	MFECAO**OLSA	
	MDMA750W ~ 2.5kW	for absolute/incremental encoders		
2-2	MHMA500W ~ 1.5kW	Encoder cable (2500 pulses, 11 wires),	MFECAO**OESA	
	MGMA300 ~ 900W	incremental encoders		
3-2		Motor cable	MFMCDO**2ECT	
4 - 2		Brake cable(With brake)	MFMCAO**2FCT	
1-2	MSMA3.0 ~ 5.0kW	Encoder cable (17 bits, 7 wires)	MFECAO**OLSA	
	MDMA3.0 ~ 5.0kW	for absolute/incremental encoders		
2-2	MHMA2.0 ~ 5.0kW	Encoder cable (2500 pulses, 11 wires),	MFECAO**OESA	
	MGMA1.2 ~ 4.5kW	incremental encoders		
3-3		Motor cable	MFMCAO**3ECT	
4 - 3		Brake cable(With brake)	MFMCAO**3FCT	
1-2	MFMA400W ~ 1.5kW	Encoder cable (17 bits, 7 wires)	MFECAO**OLSA	
		for absolute/incremental encoders		
2-2		Encoder cable (2500 pulses, 11 wires),	MFECAO**OESA	
		incremental encoders		
3 - 4		Motor cable	MFMCAO**2ECT	
4 - 2		Brake cable(With brake)	MFMCAO**2FCT	
1-2	MFMA2.5 ~ 4.5kW	Encoder cable (17 bits, 7 wires)	MFECAO**OLSA	
		for absolute/incremental encoders		
2-2		Encoder cable (2500 pulses, 11 wires),	MFECAO**OESA	
		incremental encoders		
3 - 5		Motor cable	MFMCDO**3ECT	
4 - 3		Brake cable(With brake)	MFMCAO**3FCT	

Optional Parts

Encoder Cables

L (m)	Part No.
3	MFECA0030LAA
5	MFECA0050LAA
10	MFECA0100LAA
20	MFECA0200LAA

fig1-2 (MFECA0**0LSA)

L (m)	Part No.
3	MFECA0030LSA
5	MFECA0050LSA
10	MFECA0100LSA
20	MFECA0200LSA

fig2-2 MFECAO**OESA

L (m)	Part No.
3	MFECAO030ESA
5	MFECAO050ESA
10	MFECAO100ESA
20	MFECAO200ESA

Motor Cables (RobotopR, 600V DP)

Robotop is the trademark of Sumitomo Denso.

L (m)	Part No.
3	MFMCA0030EET
5	MFMCA0050EET
10	MFMCA0100EET
20	MFMCA0200EET

L (m)	Part No.
3	MFMCD0032ECT
5	MFMCD0052ECT
10	MFMCD0102ECT
2 0	MFMCD0202ECT

fig 3-4	MFMCA	40**2ECT	. 1.	(50)
ø37.3				

fig 3-5	MFMCD0**3ECT
---------	--------------

L (m)	Part No.
3	MFMCA0033ECT
5	MFMCA0053ECT
10	MFMCA0103ECT
20	MFMCA0203ECT

L (m)	Part No.
3	MFMCA0032ECT
5	MFMCA0052ECT
10	MFMCA0102ECT
20	MFMCA0202ECT

L (m)	Part No.
3	MFMD0033ECT
5	MFMD0053ECT
10	MFMD0103ECT
20	MFMD0203ECT

Motor (with Brake) Cables (Robotop_® , 600 \∕_DP)

L (m)	Part No.		
3	3 MFMCA0032FCT		
5	MFMCA0052FCT		
10	MFMCA0102FCT		
2 0	MFMCA0202FCT		

L (m)	Part No.			
3	MFMCA0033FCT			
5	MFMCA0053FCT			
10	MFMCA0103FCT			
2 0	MFMCA0203FCT			

Connector Kits for External Equipment

1) Part No. DV0P0980

2) Components

ltem	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10150-3000VE	1	SUMITOMO	For CN I/F
Shell	10350-52A0-008	1	3 M	(50 pins)

3) Alignment of CN I/F (50 pins) (Looking from where the plug is soldered)

<Notes>

1.Before making connections, check the Pin Numbers stamped on the plugs.

2.For the symbols and functions of the pins, see the section "CN I/F Connector" in the main part of this manual.

3.Pins marked with NC should be left unconnected.

Connector Kits for Motor and Encoder

Used for: MSMA 30W to 750W

with a17-bit absolute encoder

- MQMA 100w to 400W
- 1) Part No. DVOP2110
- 2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks	
Plug	10120-3000VE	1 Sumitomo		For CN I/SIG	
Shell	10320-52A0-008	1	3M	(20pin)	
Сар	172161-1	1	AMP	For encoder cable	
Socket	170365-1	9		(9 pins)	
Сар	172159-1	1	AMP	For motor cable	
Socket	170366-1	4		(4 pins)	

Used for: MSMA 30W to 750W

MQMA 100w to 400W

with a 2500-pulse, 11-wire incremental encoder

- 1) Part No. DVOP0490
- 2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1 Sumitomo		For CN I/SIG
Shell	10320-52A0-008	1	3M	(20pin)
Сар	172163-1	1	AMP	For encoder cable
Socket	170365-1	15		(15 pins)
Сар	172159-1	1	AMP	For motor cable
Socket	170366-1	4		(4 pins)

 Used for : MSMA 1.0kW to 2.5kW MDMA 0.75kW to 2.5kW MHMA 0.5kW to 1.5kW MGMA 300W to 900kW

with a 17-bit absolute/incremental encoder or 2500-pulse incremental encoder

without brake

- 1) Part No. DVOP0960
- 2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo	For CN I/SIG
Shell	10320-52A0-008	1	3M	(20pin)
Straight plug	MS3106B20-29S	1	Japan Aviation	For encoder cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	
Straight plug	MS3106B20-4S	1	Japan Aviation	For motor cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	

 Used for : MSMA 3.0kW to 5.0kW MDMA 3.0kW to 5.0kW MHMA 2.0kW to 5.0kW MGMA 1.2kW to 4.5kW

with a 17-bit absolute/incremental encoder or 2500-pulse incremental encoder

without brake

- 1) Part No. DVOP1510
- 2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo	For CN I/SIG
Shell	10320-52A0-008	1	3M	(20pin)
Straight plug	MS3106B-20-29S	1	Japan Aviation	For encoder cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	
Straight plug	MS3106B22-22S	1	Japan Aviation	For motor cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	

Optional Parts

• Used for : MSMA 1.0kW to 2.5kW MDMA 0.75kW to 2.5kW MHMA 0.5kW to 1.5kW MGMA 300W to 900W MFM 0.4kW to 1.5kW MFM 0.4kW to 1.5kW

without brake with brake

1) Part No. DVOP0690

2) Components

Item	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo	For CN I/SIG
Shell	10320-52AO-008	1	3M	(20pin)
Straight plug	MS3106B20-29S	1	apan Aviation	For encoder cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	
Straight plug	MS3106B20-18S	1	Japan Aviation	For motor cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	

 Used for : MSMA 3.0kW to 5.0kW MDMA 3.0kW to 5.0kW MHMA 2.0kW to 5.0kW MGMA 1.2kW to 4.5kW

MFM 2.5kW to 4.5kW

with a 17-bit absolute/incremental encoder or 2500-pulse incremental encoder

with brake

with a 17-bit absolute/incremental encoder or 2500-pulse incremental encoder

> without brake with brake

1) Part No. DVOP0970

2) Components

ltem	Manufacturer's Part No.	Quantity	Manufacturer	Remarks
Plug	10120-3000VE	1	Sumitomo	For CN I/SIG
Shell	10320-52AO-008	1	3 M	Åi20pin)
Straight plug	MS3106B20-29S	1	apan Aviation	For encoder cable
Cable clamp	MS3057-12A	1	Electronics Industry, Ltd.	
Straight plug	MS3106B24-11S	1	Japan Aviation	For motor cable
Cable clamp	MS3057-16A	1	Electronics Industry, Ltd.	

<Notes>

- 1. Plugs, shells and other parts may be equivalents of other manufacturer's make.
- 2. Alignment of CN SIG pins

<Notes>

- 1. The tables above show the pins alignment, looking from where the plugs are soldered.
- 2. The pin 20 (FG) should be connected to the shield of the shielded wire. Pins marked with NC should be left unconnected.
- 3. For the use of these pins, see the section "CN SIG Connector (for Encoder)" in the main part of this manual.

Interface Cables

1) Part No. DVOP2190

3) Wire table

Pin No.	Wire color	Pin No.	Wire color	Pin No.	Wire color	Pin No.	Wire color	Pin No.	Wire color
1	Orange (Red 1)	11	Orange (Brack 2)	2 1	Orange (Red 3)	31	Orange (Red 4)	4 1	Orange (Red 5)
2	Orange (Brack1)	12	Yellow (Brack 1)	22	Orange (Brack3)	32	Orange (Brack4)	42	Orange (Brack5)
3	Gray (Red 1)	13	Gray (Red 2)	23	Gray (Red 3)	33	Gray (Red 4)	43	Gray (Red 5)
4	Gray (Brack 1)	14	Gray (Brack 2)	24	Gray (Brack 3)	34	White(Red 4)	44	White(Red 5)
5	White (Red 1)	15	White (Red 2)	25	White (Red 3)	35	White (Brack4)	45	White((Brack5)
6	White (Brack 1)	16	Yellow (Red 2)	26	White (Brack3)	36	Yellow (Red 4)	46	Yellow (Red 5)
7	Yellow (Red 1)	17	Yellow (Brack 1)ÅEPink(Brack 2)	27	Yellow (Red 3)	37	Yellow (Brack4)	47	Yellow (Brack5)
8	Pink (Red 1)	18	Pink (Red 2)	28	Yellow (Brack3)	38	Pink (Red 4)	48	Pink (Red 5)
9	Pink (Brack 1)	19	White (Brack2)	29	Pink (Red 3)	39	Pink (Brack 4)	49	Pink (Brack 5)
10	Orange (Red2)	20		30	Pink (Brack 3)	40	Gray (Brack 4)	50	Gray (Brack 5)

<Notes>

For example, Orange (Red 1) for Pin No.1 means that the lead wire is colored in orange with one dot mark in red.

Communication Cables (for connection to personal computer)

1) Part No. DVOP1160 (for PC98 series)

2) Part No. DVOP1960 (for DOS/V)

Communication Cables (for RS485)

Part No.	L [mm]
DVOP1970	200
DVOP1971	500
DVOP1972	1000

Communication Control Software PANATERM

1) Part No. DVOP2320

2) 3.5 inch floppy disc

<Note>

For the operating environment and other details, see the Instructions for PANATERM.

Brackets for Mounting the Driver

Driver type	Part No.	Screws *1	Outer dimension
Type 1	DVOP 2100	M3 x 8 pan head screw x 4 pcs.	Upper and lower brackets (each 1) for front panel mounting
Туре 2 • 3	DVOP 2101	M3 x 8 pan head screw x 4 pcs.	2-M3 pan head screw
Type 4-2 4-3	DVOP 2102	M4x 6 pan head screw x 4 pcs.	Brackets (2) for back panel mounting

*1 The mounting screws are supplied together with the brackets.

<Notes>

Type-5 drivers can be secured in either way of front panel mounting or back panel mounting. To change the mounting method, change the L-shape brackets supplied.

External Regenerative Discharge Resistor

	Product	Model			
Part.No.	number	Spesifications	Resistance		
DV0P1980	RH150M	50Ω	90W		
DV0P1981	RH150M	100Ω	90W		
DV0P1982	RH220M	30Ω	120W		
DV0P1983	RH500M	20Ω	300W		

Manufacturer: IWAKI MUSEN KENKYUSHO CO., LTD.

Recommended combination between driver and external regenerative discharge resistor

		Power supply				
Driver	Single-phase 100V	Three-phase 200V				
type	Single-pilase 100V					
1	DVOP1980	DVOP1981				
2						
3	x 1	x 1				
4 - 2	/	DVOP1982 x 2 (in parallel)				
		or				
4 - 3		DVOP1983 x 1				
		DVOP1982 x2Å`3(in parallel)				
5		or				
		DVOP1983 x1or2(in parallel)				

For driver types, see pages 10 and 11 (main part) and pages 7 and 8 (Appendix).

RH150M, RH220M

RH500M

Appendixes

Optional Parts

Battery and Battery Holder for Absolute Encoder

Battery (for driver types 1 to 5)

- A Part No. DVOP2060
- B Lithium battery, Toshiba Battery make ER6V, 3.6V, 2000mAh

A Part No. DVOP2061

<Notes>

Driver types 4-2, 4-3 and 5 do not need the battery holder.

Absolute Driver (with battery): Outer Dimension

Driver Types 1 through 3

Driver type	L	LL
1Å`2	130	147
3	170	187

<Notes>

Absolute drivers of types 4-2, 4-3 and 5 have the same dimension as the standard type.

Reactre

Driver series	Voltage	Rated output	Reactor Part No.	Driver series	Voltage	Rated output	Reactor Part No.
MSDA	100V	30W ~ 100W		MSDA	200V	2.0kW	DVOP223
MQDA		100W	DVOP222	MDDA			
MSDA		200W ~ 400W		MHDA			
MQDA			DVOP220	MGDA		2.0kW	DVOP224
MSDA	200V	30W ~ 400W		MSDA		2.5kW	
MQDA		100W ~ 400W		MDDA			
MGDA		300W		MFDA			
MFDA		400W		MSDA		3.0kW	
MHDA		500W	DVOP221	MDDA			
MGDA		600W		MHDA			
MSDA		750W		MGDA			
MDDA				MSDA		3.5kW	
MFDA			DVOP222	MDDA			
MGDA		900W, 1.2kW		MFDA			
MSDA		1.0kW		MSDA		4.0kW	DVOP225
MDDA		1.5kW		MDDA			
MHDA				MFDA			
MFDA		1.5kW					

Surge Absorber for Motor Brake

motor	Surge absorber for brake
MSMA30W ~ 1.0kW	• C-5A2 or Z15D151
MQMA100W ~ 400W	Ishizuka.co.
MHMA2.0kW ~ 5.0kW	
MGMA600W ~ 2.0kW	
MSMA1.5kW ~ 5.0kW	• C-5A3 or Z15D151
MDMA750W	Ishizuka.co.
MDMA3.5kW ~ 5.0kW	
MFMA750W ~ 1.5kW	
MGMA3.0kW ~ 4.5kW	
MDMA1.0kW ~ 3.0kW	• TNR9G820K
MFMA400W	NIPPON CHEMI _{Åľ} CON CO.
MFMA2.5kW ~ 4.5kW	·
MHMA500W ~ 1.5kW	
MGMA300W	

Peripheral Equipment Manufacturers

3.1999.present

Manufacturer/agent		Tel	Equipment
Matsushita Electric Works, Ltd.	06-6908-1	131	No-fuse breaker, magnetic contact and surge absorber
IWAKI MUSEN KENKYUSHO CO., LTD.	044-833-43	311	Regenerative discharge resistor
NIPPON CHEMI_CON CORPORATION	Chub Area	03-5436-7608 052-772-8551 06-6338-2331	
Ishizuka Electronics Corporation	Chub Area	03-3621-2703 052-777-5070 06-6391-6491	Surge absorber for Brake
Tokin Corporation	Chub Area	03-3475-6814 052-581-9336 06-6263-6781	Noise Filter
TDK Corporation	Kantou Area Chub Area Kansai Ares	03-5201-7229 052-971-1712 06-6245-7333	Noise filter for signal line
Okaya Electric Industries Co., Ltd.		03-3424-8120 06-6392-1781	Surge absorber / Noise filter
Japan Aviation Electronics Industry, Ltd.	Chub Area	03-3780-2717 052-953-9520 06-6447-5259	
Sumitomo 3M	Chub Area	03-5716-7290 052-322-9652 06-6447-3944	Connector
AMP (JAPAN), LTD.	Kantou Area Chub Area Kansai Ares	044-844-8111 0565-29-0890 06-6251-4961	

MSMA Series 30W ~ 750W

 \bigcirc Encoder wire dimension LH

○ Encoder specifications

 30W ~ 100W
 230mm

 200W ~ 750W
 220mm

 A□2500 P/r incremental encoder
 C□ 17 bits absolute encoder

		Model	Output(W)	LL	S	LA	LB	LC	LF
		MSMA3AZA1	30	65	7	45	30	38	6
		MSMA5ZA1	50	73	8				
	With	MSMA01 A1	100	103					
		MSMA02 A1	200	94	11	70	50	60	7
	E S	MSMA04 A1	400	123.5	14				
	ou	MSMA082A1	750	142.5	19	90	70	80	8
	σ	MSMA3AZC1	30	82	7	45	30	38	6
	โล	MSMA5AZC1	50	90	8				
	бe	MSMA01 C1	100	120					
		MSMA02□C1□	200	109	11	70	50	60	7
М		MSMA04 C1	400	138.5	14				
S		MSMA082C1	750	157.5	19	90	70	80	8
M		MSMA3AZA1	30	97	7	45	30	38	6
A		MSMA5AZA1	50	105	8				
		MSMA01	100	135					
	<	MSMA02 A1	200	127	11	70	50	60	7
	With	MSMA04	400	156.5	14				
		MSMA082A1	750	177.5	19	90	70	80	8
	þ	MSMA3AZC1	30	114	7	4 5	30	38	6
	ak	MSMA5AZC1	50	122	8				
	e	MSMA01 C1	100	152					
		MSMA02 C1	200	142	11	70	50	60	7
		MSMA04 C1	400	171.5	14				
		MSMA082C1	750	192.5	19	90	70	80	8

"D" cut type

	-			-			-					
		LR	LZ	LW	LK	KW	КН	RH	LN	LO	LP	Weight (kg)
		25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.27
				14	12.5	3	3	6.2		7.5	7.5	0.34
												0.56
	Without	30	4.5	20	18	4	4	8.5	22	10	10	1.0
	5			25	22.5	5	5	11		12.5	12.5	1.6
		35	6		22	6	6	15.5	25	17.5	17.5	3.2
		25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.33
	เริ่			14	12.5	3	3	6.2		7.5	7.5	0.40
	brake											0.62
		30	4.5	20	18	4	4	8.5	22	10	10	1.1
м				25	22.5	5	5	11		12.5	12.5	1.7
M S		35	6		22	6	6	15.5	25	17.5	17.5	3.3
М		25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.47
A				14	12.5	3	3	6.2		7.5	7.5	0.53
												0.76
	_	30	4.5	20	18	4	4	8.5	22	10	10	1.4
	With			25	22.5	5	5	11		12.5	12.5	2.0
		35	6		22	6	6	15.5	25	17.5	17.5	3.9
	brake	25	3.4	13	12	2	2	5.8	20	6.5	6.5	0.53
	읒			14	12.5	3	3	6.2		7.5	7.5	0.59
	Ð											0.82
		30	4.5	20	18	4	4	8.5	22	10	10	1.5
				25	22.5	5	5	11		12.5	12.5	2.1
		35	6		2 2	6	6	15.5	25	17.5	17.5	4.0

O Encoder specifications

A1 \Box 2500 P/r incremental encoder D1 \Box 17 bits absolute encoder

		Model	Output(W)	LL	S	LA	LB	LC	LD	LE
		MSMA102A1	1.0	172	19	100	80	90	120	3
		MSMA152A1	1.5	177		115	95	100	135	
		MSMA202A1	2.0	202						
		MSMA252A1	2.5	227						
		MSMA302A1	3.0	214	22	Å١	110	120	162	
		M S M A 3 5 2 A 1 🗆	3.5	234		an Bahathan Ala				
	≦	M S M A 4 0 2 A 1 🗌	4.0	237	24	145		130	165	6
	Without	M S M A 4 5 2 A 1 🗌	4.5	257						
	ů.	MSMA502A1 🗌	5.0	277						
		MSMA102D1	1.0	172	19	100	80	90	120	3
	brake	MSMA152D1	1.5	177		115	95	100	135	
	Г.	MSMA202D1	2.0	202						
		MSMA252D1	2.5	227						
		MSMA302D1	3.0	214	22	Å١	110	120	162	
		M S M A 3 5 2 D 1 🗌	3.5	234						
		MSMA402D1	4.0	237	24	145		130	165	6
М		MSMA452D1	4.5	257						
S		MSMA502D1	5.0	277						
M		MSMA102A1	1.0	197	19	100	80	90	120	3
A		MSMA152A1 🗌	1.5	202		115	95	100	135	
		MSMA202A1 🗌	2.0	227						
		MSMA252A1 🗌	2.5	252						
		MSMA302A1 🗌	3.0	239	22	Å١	110	120	162	
		M S M A 3 5 2 A 1 🗌	3.5	259						
	\leq	MSMA402A1 🛛	4.0	262	24	145		130	165	6
	With	M S M A 4 5 2 A 1 🗌	4.5	282						
		MSMA502A1 🗌	5.0	302						
	bra	MSMA102D1	1.0	197	19	100	8 0	90	120	3
	ake	MSMA152D1 🗌	1.5	202		115	95	100	135	
	Ŵ	MSMA202D1	2.0	227						
		MSMA252D1	2.5	252						
		MSMA302D1	3.0	239	22	Å١	110	120	162	
		MSMA352D1	3.5	259						
		MSMA402D1	4.0	262	24	145		130	165	6
		MSMA452D1 🗌	4.5	282						
		MSMA502D1	5.0	302						

	1	LF	LP	LQ	LR	LZ	LW	LK	КW	КН	RH	Weight (kg)
		7	LF	LQ	55	6.6	4 5	4 2	6	6	15.5	4.5
		10			55	9	4.5	42	0		13.5	5.1
						5						6.5
												7.5
		1 2	130	145	1	wide 9		4 1	8	7	18	9.3
		12	100	145		wide 5	No. of Concession, Name and Name of Concession, Name of Concession	⁻ '	U U	· ·		10.9
	٤				65	9	55	51	•		2 0	12.9
	without											15.1
	0 L											17.3
	1	7			55	6.6	45	4 2	6	6	15.5	4.5
	brake	10				9						5.1
	- Ke											6.5
	"											7.5
		12	130	145	1	wide 9		4 1	8	7	18	9.3
									-			10.9
					65	9	55	51			2 0	12.9
м												15.1
M S M												17.3
М		7	1		55	6.6	45	4 2	6	6	15.5	5.1
Α		10	1			9						6.5
												7.9
												8.9
		12	130	145		wide 9		4 1	8	7	18	11.0
												12.6
	5		—	—	65	9	55	51			2 0	14.8
	with											17.0
												19.2
	brake	7	1		55	6.6	45	4 2	6	6	15.5	5.1
	Ke	10				9						6.5
	–											7.9
												8.9
		12	130	145		wide 9		4 1	8	7	18	11.0
									-			12.6
			-		65	9	55	51			2 0	14.8
												17.0
												19.2

Appendixes

MQMA Series 100W ~ 400W

○ Encoder specifications

A1 \Box 2500 P/r incremental encoder D1 \Box 17 bits absolute encoder

		Model	Output(W)	LL	S	LA	LB	LC	LE
	With	M Q M A 0 1 🗆 A 1 🗆	100	60	8	70	50	60	3
		M Q M A 0 2 🗆 A 1 🗆	200	67	11	90	70	80	5
	out	M Q M A 0 4 🗆 A 1 🗆	400	82	14				
	t brake	M Q M A 0 1 🗆 C 1 🗆	100	87	8	70	50	60	3
М		M Q M A 0 2 🗆 C 1 🗆	200	94	11	90	70	80	5
Q		M Q M A 0 4 🗆 C 1 🗆	400	109	14				
M	_	$MQMA01\BoxA1\Box$	100	84	8	70	50	60	3
A	N	M Q M A 0 2 🗆 A 1 🗆	200	99.5	11	90	70	80	5
	Ŧ	M Q M A 0 4 🗆 A 1 🗆	400	114.5	14				
	bra	M Q M A 0 1 🗆 C 1🗆	100	111	8	70	50	60	3
	ke	M Q M A 0 2 🗆 C 1 🗆	200	126.5	11	90	70	80	5
		M Q M A 0 4 🗆 C 1🗆	400	141.5	14				

"D" cut type

		LF	LR	LW	LK	ΚW	КH	RH	LN	LO	LP	Weight (kg)
	5	7	25	14	12.5	3	3	6.2	20	7.5	7.5	0.65
	Ē	8	30	20	18	4	4	8.5	22	10	10	1.3
	Without			25	22.5	5	5	11		12.5	12.5	1.8
		7	25	14	12.5	3	3	6.2	20	7.5	7.5	0.75
м	brake	8	30	20	18	4	4	8.5	22	10	10	1.4
Q	Ð			25	22.5	5	5	11		12.5	12.5	1.9
Μ	_	7	25	14	12.5	3	3	6.2	20	7.5	7.5	0.9
A	×	8	30	20	18	4	4	8.5	22	10	10	2.0
	5			25	22.5	5	5	11		12.5	12.5	2.5
	5	7	25	14	12.5	3	3	6.2	20	7.5	7.5	1.0
	ake	8	30	20	18	4	4	8.5	22	10	10	2.1
	0			25	22.5	5	5	11		12.5	12.5	2.6

	[LF	LP	LQ	LR	LZ	LW	LK	KW	КН	RH	Weight (kg)
		1 2	130	145	5 5	wide 9	4 5	4 2	6	6	15.5	4.8
			-			9		4 1	8	7	18	6.8
												8.5
												10.6
					65	1	55	51			2 0	12.8
												14.6
		18				11					24	16.2
	≥		_									18.8
	5				70	13.5		50	10	8	30	21.5
	Ĕ											25.0
	5	12	130	145	55	wide 9	45	42	6	6	15.5	4.8
	Without brake					9		4 1	8	7	18	6.8
	[8.5
												10.6
					65		55	51			20	12.8
												14.6
		18				11					24	16.2
												18.8
М					70	13.5		50	10	8	30	21.5
D												25.0
M		12	130	145	55	wide 9	45	42	6	6 7	15.5	6.5
						9		4 1	8	7	18	8.7
												10.1
						-						12.5
					65		55	51			20	14.7
												16.5
		18				11					24	18.7
	5											21.3
	Ē				70	13.5		50	10	8	30	25.0
	With brake	1.0					4.5	4.0			45.5	28.5
	a l	12	130	145	55	wide 9	4 5	4 2	6	6	15.5	6.5
	ê					9		4 1	8	7	18	8.7
												10.1
					0.5	-						12.5
					65		55	51			20	14.7
		4.0										16.5
		18				11					24	18.7
					7.0	10 5		5.0	10	0	2.0	21.3
					70	13.5		50	10	8	30	25.0
												28.5

MHMA Series 500W ~ 5.0kW

○ Encoder specifications

A1 \Box 2500 P/r incremental encoder D1 \Box 17 bits absolute encoder

	1	Madal	0	LL	S	LA	LB	LC	LD
_	_	Model	Output(W)		-				
		MHMA052A1	0.5	147	22	145	110	130	165
		MHMA102A1	1.0	172					
		MHMA152A1D	1.5	197					
	<	MHMA202A1	2.0	187	35	200	114.3	176	233
	≧	MHMA302A1	3.0	202					
	5	MHMA402A1	4.0	227					
	Without	MHMA502A1	5.0	252					
	5	MHMA052D1	0.5	147	22	145	110	130	165
	ิล	MHMA102D1	1.0	172					
	ke	MHMA152D1	1.5	197					
		MHMA202D1□	2.0	187	35	200	114.3	176	233
		MHMA302D1□	3.0	202					
М		MHMA402D1□	4.0	227					
H		MHMA502D1□	5.0	252					
M		MHMA052A1	0.5	172	22	145	110	130	165
A		MHMA102A1	1.0	197					
		MHMA152A1□	1.5	222					
		MHMA202A1□	2.0	212	35	200	114.3	176	233
		MHMA302A1	3.0	227					
	With	MHMA402A1	4.0	252					
		MHMA502A1	5.0	277					
	brake	MHMA052D1□	0.5	172	22	145	110	130	165
	문	MHMA102D1	1.0	197					
	l a	MHMA152D1	1.5	222					
		MHMA202D1	2.0	212	35	200	114.3	176	233
		MHMA302D1	3.0	227				-	
		MHMA402D1D	4.0	252					
		MHMA502D1	5.0	277					
L			0.0	211		I	-		

		LE	LF	LR	LZ	LW	LK	KW	КН	RH	Weight (kg)
		6	12	70	9	45	4 1	8	7	18	5.3
											8.9
											10.0
		3.2	18	80	13.5	55	50	10	8	30	16.0
	≤										18.2
	Ŧ										22.0
	Without										26.7
		6	1 2	70	9	45	4 1	8	7	18	5.3
	5	-	. –		-			-			8.9
	brake										10.0
	w i	3.2	18	80	13.5	55	50	10	8	30	16.0
									-		18.2
м											22.0
Ĥ											26.7
м		6	1 2	70	9	45	4 1	8	7	18	6.9
A		Ŭ		10	Ŭ	- 0		Ŭ	'		9.5
											11.6
		3.2	18	8 0	13.5	55	50	10	8	30	19.5
		0.2	10	00	10.0	0.0	00				21.7
	≶										25.5
	With										30.2
		6	1 2	70	9	45	4 1	8	7	18	6.9
	brake	U	12	10	3	40		0	· ·		9.5
	ê										11.6
		3.2	18	8 0	13.5	55	50	10	8	3.0	19.5
		з.Z	18	00	13.5	55	50		Ó	30	
											21.7
											25.5
											30.2

Appendixes

MFMA Series 400W ~ 4.5kW

 \bigcirc Encoder specifications

A1 \Box 2500 P/r incremental encoder D1 \Box 17 bits absolute encoder

	[Model	Output(W)	LL	S	LA	LB	LC	LD
		MFMA042A1	0.4	117	19	145	110	130	165
		MFMA082A1	0.75	124	22	200	114.3	176	233
		MFMA152A1 🗆	1.5	142	35				
	≧	MFMA252A1 🗆	2.5	136		235	200	220	268
	5	MFMA352A1	3.5	144					
	Without	MFMA452A1 🗆	4.5	160					
	5	MFMA042D1□	0.4	117	19	145	110	130	165
	ลิ	MFMA082D1□	0.75	124	22	200	114.3	176	233
	6	MFMA152D1□	1.5	142	35				
		MFMA252D1□	2.5	136		235	200	220	268
М		MFMA352D1□	3.5	144					
F		MFMA452D1□	4.5	160					
M		MFMA042A1D	0.4	142	19	145	110	130	165
A		MFMA082A1	0.75	149	22	200	114.3	176	233
		MFMA152A1 🗆	1.5	167	35				
		MFMA252A1 🗆	2.5	163		235	200	220	268
	With	MFMA352A1 🗆	3.5	171					
		MFMA452A1 🗆	4.5	191					
	brake	MFMA042D1□	0.4	142	19	145	110	130	165
	k	MFMA082D1□	0.75	149	22	200	114.3	176	233
		MFMA152D1□	1.5	167	35				
		MFMA252D1□	2.5	163		235	200	220	268
		MFMA352D1□	3.5	171					
		MFMA452D1□	4.5	191					

MFMA400W ~ 1.5kW

MFMA2.5 ~ 4.5kW

	[LE	LF	LR	LZ	LW	LK	KW	КН	RH	Weight (kg)
		6	12	55	9	45	42	6	6	15.5	4.7
		3.2	18		13.5		4 1	8	7	18	8.6
	_			65		55	50	10	8	30	11.0
	Without	4	16								14.8
	5										15.5
	Ĕ			70							19.9
		6	12	55	9	45	4 2	6	6	15.5	4.7
	brake	3.2	18		13.5		4 1	8	7	18	8.6
	ê			65		55	50	10	8	30	11.0
		4	16								14.8
F											15.5
			4.0	70			1.0				19.9
M		6	12	55	9	45	4 2	6	6	15.5	6.7
		3.2	18		13.5		4 1	8	7	18	10.6
		4	1.0	65		55	50	10	8	30	14.0
	5	4	16								17.5
	With			7 0							19.2
		6	1 2	55	9	4 5	4 2	6	6	1 5 5	24.3 6.7
	brake	3.2	18	55	9 13.5	4 5	42	8	7	15.5 18	10.6
	ê	3.Z	10	65	13.5	55	50	0 10	8	30	14.0
		4	16	0.0		55	50	10	0	50	17.5
		7	10								19.2
				70							24.3
				10							27.5

MGMA Series 300W ~ 4.5kW

O Encoder specifications

A1 \Box 2500 P/r incremental encoder C1 \Box 17 bits absolute encoder

	ſ	Model	Output(W)	LL	S	LA	LB	LC	LD
			0.3	122	2 2	145	110	130	165
			0.6	147		140		100	100
		MGMA092A1	0.9	172					
			1.2	162	3 5	200	114.3	176	233
	≶	MGMA202A1D	2.0	182		200			200
	Witho	MGMA302A1D	3.0	222					
	out	MGMA452A1D	4.5	300.5	4 2				
		MGMA032D1	0.3	122	2 2	145	110	130	165
	bra	MGMA062D1D	0.6	147					
	Ke	MGMA092D1	0.9	172					
		MGMA122D1	1.2	162	35	200	114.3	176	233
		MGMA202D1□	2.0	182					
м		MGMA302D1□	3.0	222					
G		MGMA452D1□	4.5	300.5	42				
M		MGMA032A1□	0.3	147	22	145	110	130	165
A		MGMA062A1□	0.6	172					
		MGMA092A1□	0.9	197					
		MGMA122A1□	1.2	187	35	200	114.3	176	233
		MGMA202A1□	2.0	207					
	With	MGMA302A1□	3.0	247					
		MGMA452A1□	4.5	345.5	42				
	bra	MGMA032D1□	0.3	147	22	145	110	130	165
	Ke	MGMA062D1□	0.6	172					
		MGMA092D1□	0.9	197					
		MGMA122D1□	1.2	187	35	200	114.3	176	233
		MGMA202D1□	2.0	207					
		MGMA302D1□	3.0	247					
		MGMA452D1□	4.5	345.5	42				

4-øLZ	MGMA 4.5kW	HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ H
		<u>ک</u>

MGMA 300W ~ 3.0kW

□LC

۲

Ret a

oll

		LE	LF	LR	LZ	LW	LK	KW	КН	RH	Weight (kg)
		6	12	70	9	45	4 1	8	7	18	5.1
											6.8
											8.5
		3.2	18	80	13.5	55	50	10	8	30	15.5
	≦										17.5
	5										25.0
	Without		24	113	1	96	90	12		37	34.0
		6	12	70	9	45	4 1	8	7	18	5.1
	1										6.8
	brake										8.5
	1 1	3.2	18	80	13.5	55	50	10	8	30	15.5
											17.5
м											25.0
G			24	113	1	96	90	12		37	34.0
М		6	12	70	9	45	4 1	8	7	18	6.7
A											8.4
											10.0
		3.2	18	80	13.5	55	50	10	8	30	19.0
											21.0
	With										28.5
			24	113	1	96	90	12		37	39.5
	brake	6	12	70	9	4 5	4 1	8	7	18	6.7
	문							-			8.4
	œ										10.0
		3.2	18	8.0	13.5	55	50	10	8	30	19.0
		. –	_					-			21.0
											38.5
			24	113		96	90	1 2		37	39.5
L			- 1						1		00.0

Appendixes

- App. 99 -

Driver Type 1 Approximate weight : 1.0 kg

Front panel mount type (front panel mounting is optional)

Driver Type 2 Approximate weight : 1.1 kg

Appendixes

Driver Type 3 Approximate weight : 1.4 kg

Back panel mount type

(Standard)

Front panel mount type (front panel mounting is optional)

୭

Driver Type 4-3 Approximate weight : 4.2 kg

Driver Type 5 Approximate weight : 8 kg

Time(sec)

⁻ App. 106 -

Gain Switching Conditions

Position Control Mode (O: the parameter valid, -: invalid)

	Gain switching conditions	Parameters for position control			
	3 • • • • •	Delay time ^{* 1}	Level	Hysteresis ^{*2}	
Pr31	Switching conditions	Figure	Pr32	Pr33	Pr34
0	Fixed to 1st gain		—	_	—
1	Fixed to 2nd gain		—	—	
2	Gain switching input, 2nd gain			_	_
	selected with GAIN On				
3	2nd gain selected with a large A		0	0	0
	torque command differential				
4	Fixed to 1st gain			_	_
5	Large target velocity commanded	С	0	0	0
6	Large position error D		0	0	0
7	Position command existing	E	0	_	
8	Positioning incomplete	F	0		

Velocity Control Mode

	Gain switching conditions	Parameters for velocity control			
		Delay time ^{* 1}	Level	Hysteresis ^{*2}	
Pr36	Switching conditions	Figure	Pr37	Pr38	Pr39
0	Fixed to 1st gain		_	_	_
1	Fixed to 2nd gain	_	_	_	
2	Gain switching input, 2nd gain		_	-	_
	selected with GAIN On				
3	2nd gain selected with a large	A	0	0	0
	torque command differential)	0	0
4	2nd gain selected with a large	В	0		0
	speed command differential)		\cup
5	Large speed command	0	0	0	

· Gain switching conditions

	Gain switching conditions	Torque Control Mode			
			Delay time ^{* 1}	Level	Hysteresis ^{*2}
Pr3A	Switching conditions	Figure	Pr3B	Pr3C	Pr3D
0	Fixed to 1st gain		—	_	—
1	Fixed to 2nd gain		_	_	—
2	Gain switching input, 2nd gain			_	—
	selected with GAIN On				
3	2nd gain selected with a large	A	0	0	0
	torque command differential				

Specifications

- *1 Delay time (parameters Pr32, Pr37 and Pr3B) become effective when returning from 2nd gain to 1st gain.
- *2 For the definitions of hysteresis parameters (Pr34, Pr39 and Pr3D), see the right figure.
- Figures A through F are shown in the next page.

delayed -2nd Gain

1st

<Notes>

1st

The figures above do not reflect the gain switching timing delay caused by hysteresis (parameters Pr34, Pr39 and Pr3D).

1st

2nd Gain

1st

Control Block Diagram

	Power	100V system	Main powe	er supply	Single-phase, AC100 ~ 115V	+ 10% - 15% 50/60Hz	
			Control pow	er supply	Single-phase, AC100 ~ 115V	+ 10% - 15% 50/60Hz	
		200V system	Main powe	er supply	3-phase, AC200 ~ 230V	+ 10% – 15% 50/60Hz	
			Control pow		Single-phase, AC200 ~ 230V	+ 10% – 15% 50/60Hz	
			e frequency	variation	Max. ± 5%		
	Control s	ntrol system			IGBT PWM control (sine wave control)		
-	Encoder	Rotary encoder		Incremental encoder, 11 wires, 2500 P/r Absolute encoder, 7 wires, 17 bits			
	Built-in	Regenerative discharge			Regenerative discharge resistor incorporated (external regenerative discharge resistor connectable)		
	functions	Dynamic brake			Active after Main Power-Off, Servo-Off, protective function and limit switch.		
		Auto gain tuning			Normal and Real time		
		Electronic gear			1 to 10	000	
		(command pulse ratio)			Calculated as $\frac{1 \text{ to } 10000}{1 \text{ to } 10000} \times 2^{0 \text{ to } 17}$		
		-	feedback p	-	11-wire incremental end		
					7-wire absolute encoder: 1 to 16384 P/r		
	Protective	Stores pa	ast14 errors	s includ-	Undervoltage, Overvoltage, Overcurrent, Overheat, OverLoad, Regenerative		
	functions	ing curre			discharge,Encoder error,Position error,Over speed,command pulse scaler		
					error,Error counter over flow,EEPROM data error,Overtravel inhibit input		
					error.Absolute system down error etc		
	Monitor	Digital display			6digitsÅ\7 Segmment LED		
	Monitor	Analogue output (check pins and connector pins)			Velocity monitor: 6V/3000r/min (rated revolution, default)		
Drive		Selects the items to be measured by using a param-			Torque monitor: 3V/100% (rated		
e		eter, and measuring range (output impedance of $1k\dot{\epsilon}\partial$)			Position error pulse number		
	Setting Communication		RS232C and RS485, m	ax 16 axes			
	octing	touch panel keys		5 switches (MODE, SET, UP, DOWN and LEFT)			
	Position Control Max. input puls		,	allency	Line driver 500 kpps, O	, ,	
		Type			Line driver and open co		
		Command type			Quadrature pulse command, CW/CCW pulse command and Pulse/direction command		
	Velocity control	Velocity control range			Analogue velocity (external) command 1:5000		
	volotity control	volocity control range			Internal velocity command 1:5000		
		Acceleration/deceleration time setting Analogue velocity (external) command input			0 to 10s/1000rpm, individual set-up of acceleration and deceleration, S-		
					shaped acceleration/deceleration		
		Internal velocity command			4 speeds set-up		
	Torque						
	control	Torque limit command			Torque limiting individually in CW and CCW		
		Torque command			Shared by speed command - torque or position/torque control : 3V/ rated torque (default)		
				Share by CCW torque limit - velocity/torque control: 3V/rated torque (default)			
	Rotary	Rotary en	icoder	A/B phase	Line driver output		
	encoder			Output from line driver and open collector			
	Input of control signal				See "System Configuration and Wiring".		
	Physical structure				Front or back panel mounting (mounting plate optional)		
	Approximate weight				See "Outer Views and Dimensions".		
	Working environment				See "Installation".		
	Frequency response				500Hz (Motor rotor inertia JM = Load inertia JL)		

Repair)

Ask the seller where the product was purchased for details of repair work.

When the product is installed in a machine or device, consult first the manufacturer of the machine or device.

Information)

Customer Service TEL : 072-870-3057·3110 Operating hours : 9:00 to 17:00, Monday to Saturday (except Sunday, National holiday and the end/biginning of the year)

Memorandum(Fill in the blanks for convenience in case of inquiry or repair)

Date of purchase	Date:	Model No.	MUDS
			MUMS
Place of purchase			
	T L N /	``	
	Telephone No.()	_

Industrial and Appliance Motor Division, Motor Co., Matsushita Electric Industrial Co., Ltd.

1-1, Morofuku 7-chome, Daito, Osaka, Japan 574-0044 TEL:(072)871-1212

IMB29 M0699-0