

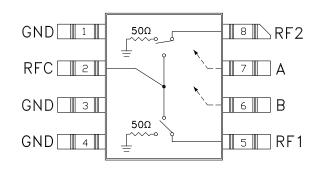
Typical Applications

The HMC234C8 is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military Radios, Radar & ECM
- Test Instrumentation

Features

Isolation: 52 dB @ 2 GHz


40 dB @ 6 GHz

Insertion Loss: 1.6 dB Typical @ 6 GHz

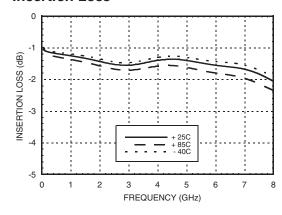
Non-Reflective Design

Surface Mount Ceramic Package

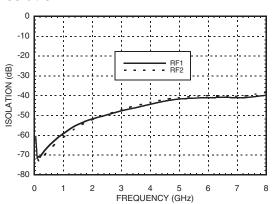
Functional Diagram

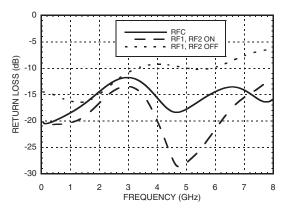
General Description

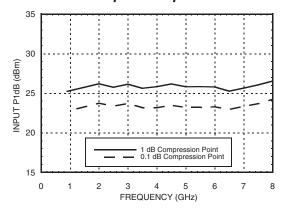
The HMC234C8 is a broadband high isolation non-reflective GaAs MESFET SPDT switch in a non-hermetic surface mount ceramic package. Covering DC to 8 GHz, the switch features >52 dB isolation up to 2 GHz and >38 dB isolation up to 8 GHz. The switch operates using complementary negative control voltage logic lines of -5/0V and requires no bias supply. This product is an excellent pin-for-pin replacement to the SMDI SSW124.

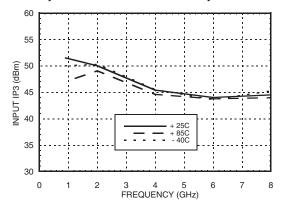

Electrical Specifications, $T_A = +25^{\circ}$ C, With 0/-5V Control, 50 Ohm System

Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 2.0 GHz DC - 6.0 GHz DC - 8.0 GHz		1.4 1.6 2.1	1.7 1.9 2.4	dB dB dB
Isolation	DC - 2.0 GHz DC - 6.0 GHz DC - 8.0 GHz	47 35 33	52 40 38		dB dB dB
Return Loss "On State"	DC - 2.0 GHz DC - 8.0 GHz		15 12		dB dB
Return Loss RF1, RF2 "Off State"	DC - 2.0 GHz DC - 6.0 GHz DC - 8.0 GHz		14 9 6		dB dB dB
Input Power for 1 dB Compression	0.5 - 8.0 GHz	22	26		dBm
Input Third Order Intercept (Two-Tone Input Power= +7 dBm Each Tone, 1 MHz Tone Separation)	0.5 - 8.0 GHz	40	46		dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)	DC - 8.0 GHz		3 5		ns ns




Insertion Loss


Isolation


Return Loss

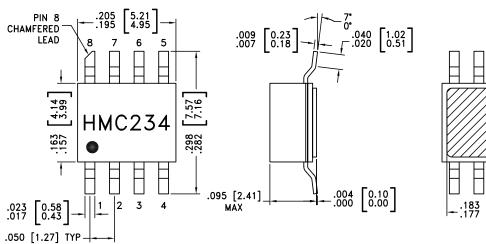
0.1 and 1 dB Input Compression Point

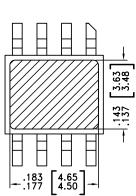
Input Third Order Intercept Point

Absolute Maximum Ratings

RF Input Power (VctI= -5V) (0.5 - 8 GHz)	+30 dBm (@ +50 °C)	
Control Voltage Range (A & B)	+1.0V to -7.5 Vdc	
Channel Temperature	150 °C	
Thermal Resistance	94 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Control Voltages

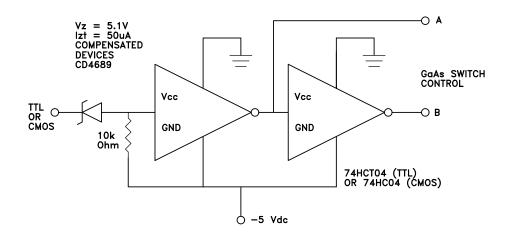

State	Bias Condition
Low	0 to -0.2V @ 10 uA Max.
High	-5V @ 10 uA Typ. to -7V @ 45 uA Typ.


Truth Table

Control Input		Signal Path State		
Α	В	RFC to RF1	RFC to RF2	
High	Low	ON	OFF	
Low	High	OFF	ON	

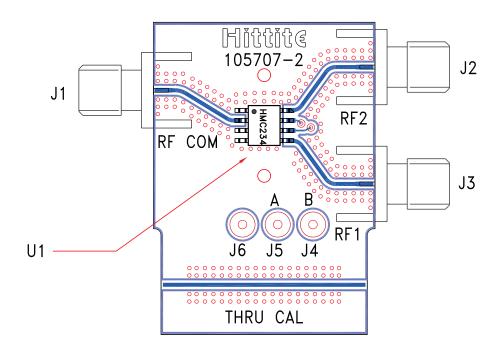
Caution: Do not "Hot Switch" power levels greater than +26 dBm (Vctl = 0/-5 Vdc).

Outline Drawing


NOTES:

- 1. PACKAGE BODY MATERIAL: WHITE ALUMINA 92%
- 2. LEAD, PACKAGE BOTTOM MATERIAL: COPPER
- 3. PLATING: ELECTROLYTIC GOLD 100-200 MICROINCHES, OVER ELECTROLYTIC NICKEL 100-250 MICROINCHES.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. PACKAGE LENGTH AND WIDTH DIMENSIONS DO NOT INCLUDE LID SEAL PROTRUSION .005 PER SIDE.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Suggested Driver Circuit


Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 4	GND	Package bottom must also be connected to PCB RF ground.	○ GND =
2, 5, 8	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V.	
6	В	See truth table and control voltage table.	0—R
7	А	See truth table and control voltage table.	c

Evaluation PCB

List of Materials for Evaluation PCB 105771 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
U1	HMC234C8 SPDT Switch
PCB [2]	105707 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

HSV

GaAs MMIC SMT HIGH ISOLATION SPDT SWITCH, DC - 8 GHz

Notes: