

QUICKSWITCH[®] PRODUCTS HIGH-SPEED CMOS QUICKSWITCH 8-BIT LOW RESISTANCE BUS SWITCH

FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 2.5Ω bidirectional switches connect inputs to outputs
- Pin compatible with 74F245, 74FCT245, and 74FCT245T
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- TTL-compatible control inputs
- Available in SOIC and QSOP Packages

APPLICATIONS

- Hot-swapping and hot-docking (low resistance for PCI and Compact PCI applications)
- Bus switching and isolation
- Voltage translation (5V to 3.3V)
- Capacitance reduction and isolation
- Power conservation
- Logic replacement (data processing)
- Clock gating

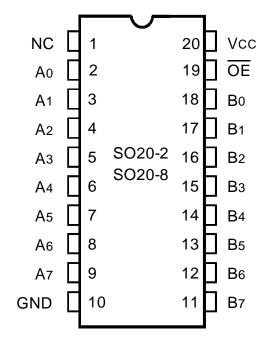
FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The QS3R245 provides a set of eight high-speed CMOS TTL-compatible bus switches in a pinout compatible with 74FCT245, 74F245, 74ALS/AS/ LS245 8-bit transceivers. The low ON resistance of the QS3R245 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Output Enable (OE) signal turns the switches on similar to the OE signal of the 74'245. The low ON resistance of QS3R245 makes it ideal for PCI hot docking applications.

QuickSwitch devices provide an order of magnitude faster speed than conventional logic devices.

The QS3R245 is characterized for operation at -40°C to +85°C.



1

INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 1999

PIN CONFIGURATION

SOIC/ QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	– 0.5 to +7	V
Vterm ⁽³⁾	DC Switch Voltage Vs	– 0.5 to +7	V
Vterm ⁽³⁾	DC Input Voltage VIN	– 0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
Ιουτ	DC Output Current	120	mA
Рмах	Maximum Power Dissipation	.5	W
Tstg	Storage Temperature	- 65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc Terminals.
- 3. All terminals except Vcc.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0MHz, VIN = 0V, VOUT = 0V)$

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Inputs	3	4	pF
Quickswitch Channels (Switch OFF)	5	6	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output Enable
An	Data I/Os
Bn	Data I/Os

FUNCTION TABLE(1)

OE	Function
Н	Disconnected
L	An = Bn

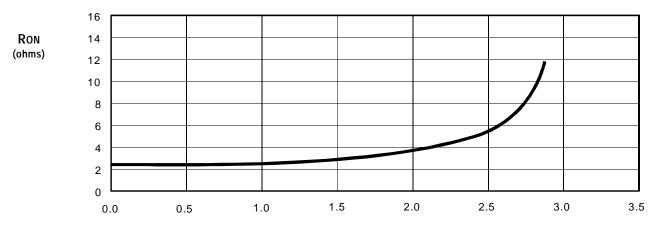
NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40°C to +85°C, Vcc = $5.0V \pm 10\%$


Symbol	Parameter	Test Conditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	-	_	0.8	V
lin	Input Leakage Current (Control Inputs)	$0V \le V_{IN} \le V_{CC}$	_	_	±1	μA
loz	Off-State Current (Hi-Z)	$0V \le VOUT \le Vcc$, Switches OFF	_	±0.001	±1	μA
Ron	Switch ON Resistance	Vcc = Min., VIN = 0V, ION = 30mA	—	2.5	5	Ω
Ron	Switch ON Resistance	Vcc = Min., VIN = 2.4V, ION = 15mA	—	4	8.5	Ω
Vp	Pass Voltage ⁽²⁾	$V_{IN} = V_{CC} = 5V$, $I_{OUT} = -5\mu A$	3.7	4	4.3	V

NOTES:

1. Typical values are at Vcc = 5.0V, TA = $25^{\circ}C$.

2. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

VIN (Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Max.	Unit
lcco	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0	3	μA
ΔΙcc	Power Supply Current per Control Input HIGH ⁽²⁾	Vcc = Max., VIN = 3.4V, f = 0	2.5	mA
Ісср	Dynamic Power Supply Current per MHz (3)	Vcc = Max., A and B pins open	0.25	mA/MHz
		Control Input Toggling at 50% Duty Cycle		

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per TLL driven input (VIN = 3.4V, control inputs only). A and B pins do not contribute to Δ Icc.

3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

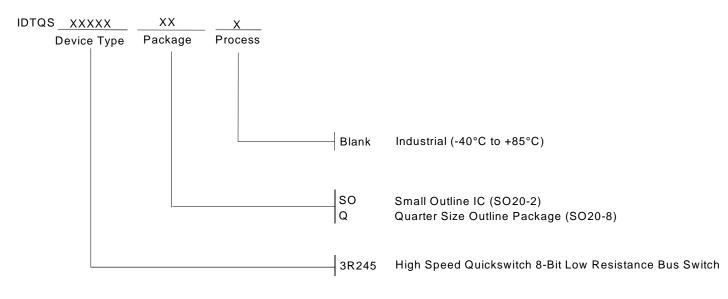
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$TA = -40^{\circ}C \text{ to } +85^{\circ}C, Vcc = 5.0V \pm 10\%$

CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
t PLH	Data Propagation Delay ^(2,3)			0.12 ⁽³⁾	
t PHL	An to/from Bn	—	—	0.12 (9)	ns
tpzl	Switch Turn-on Delay	0.5		Γ./	
tрzн	OE to An/Bn	0.5		5.6	ns
tPLZ	Switch Turn-off Delay ⁽²⁾	0.5		4 6	
t PHZ	OE to An/Bn	0.5		4.5	ns

NOTES:


1. Minimums are guaranteed but not production tested.

2. This parameter is guaranteed but not production tested.

3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.12ns for CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

INDUSTRIAL TEMPERATURE RANGE

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo, QuickSwitch, and SynchroSwitch are registered trademarks of Integrated Device Technology, Inc.