| REV | | REVISIONS |--|------------|-----------|----------|------|------|-------|-------|---------|-----|---|--------------------------------|----|---|-----|---------|--------|-------|-------|------|------|----| | SHEET | LTR | | | | | | DESCF | RIPTION | ١ | | | | | DA | TE (YI | R-MO-E | DA) | | APPR | OVED | | | SHEET | LTR | | | | | | DESCR | RIPTION | N | | | | | DA | ATE (YI | R-MO-[| DA) | | APPR | OVED | | | REV | REV | REV STATUS OF SHEETS SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | REV SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | | 15 | 16 | 17 | 18 | 19 | | | | | | | | | | | | | | | | | PMIC N/A PREPARED BY Steve Duncan STANDARD MICROCIRCUIT DRAWING Michael Jones APPROVED BY Kendall A. Cottongim DRAWING APPROVAL DATE DEPARTMENT OF DEFENSE AMSC N/A PREPARED BY Steve Duncan CHECKED BY Michael Jones APPROVED BY Kendall A. Cottongim MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SIZE CAGE CODE A 67268 5962-96501 | REV STATUS | | <u> </u> | | REV | , | | | | | | | | | | | | | | | | | STANDARD MICROCIRCUIT DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A Steve Duncan CHECKED BY Michael Jones APPROVED BY Kendall A. Cottongim DRAWING APPROVAL DATE 98-11-16 MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SIZE CAGE CODE A 67268 5962-96501 SHEFT | OF SHEETS | | | | SHE | ET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | STANDARD MICROCIRCUIT DRAWING Michael Jones APPROVED BY Kendall A. Cottongim DRAWING APPROVAL DATE DEPARTMENT OF DEFENSE AMSC N/A REVISION LEVEL CHECKED BY Michael Jones APPROVED BY Kendall A. Cottongim MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SIZE AGGE CODE A 67268 SHEET | PMIC N/A | | | | PREF | PARE | D BY | | | | | | • | | | | | | | | | | STANDARD MICROCIRCUIT DRAWING Michael Jones APPROVED BY Kendall A. Cottongim DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A REVISION LEVEL CHECKED BY Michael Jones APPROVED BY Kendall A. Cottongim MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SIZE CAGE CODE A 67268 5962-96501 | | | | | Stev | e Dun | ıcan | | | | DEFENSE SUPPLY CENTER COLUMBUS | | | | | | | | | | | | MICROCIRCUIT DRAWING Michael Jones APPROVED BY Kendall A. Cottongim DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A REVISION LEVEL MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SINGLE CHANNEL, DC/DC CONVERTER SIZE CAGE CODE A 67268 SHEET | STA | NDAF | RD | | | | | | | | | | | COL | UMBI | JS, O | HIO 4 | 13216 | | | | | THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A APPROVED BY Kendall A. Cottongim DRAWING APPROVAL DATE 98-11-16 MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SINGLE CHANNEL, DC/DC CONVERTER SIZE CAGE CODE A 67268 SHEET | | | | /ING | | | | | | | | | | | | • | | | | | | | THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A REVISION LEVEL Kendall A. Cottongim MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER MICROCIRCUIT, HYBRID, LINEAR, 25 VOLT, SINGLE CHANNEL, DC/DC CONVERTER SINGLE CHANNEL, DC/DC CONVERTER SIZE CAGE CODE A 67268 SHEET | AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A REVISION LEVEL SIZE CAGE CODE A 67268 SHEET | FOR US | SE BY | ALL | BLE | | | | ngim | | | | | | | | | | | | | Т, | | A 67268 5962-96501 | AND AGEN | ICIES (| OF THE | | DRA | WING | | | ATE | | | | | | | | | | | | | | SHEET 1 OF 19 | AMS | SC N/A | | | REVI | SION | LEVEL | | | | | | ı | | | | Į. | 5962- | 9650 | 1 | | | | | | | | | | | | | | SHE | ET | | 1 | OF | 19 | | | | | | $\underline{\text{DISTRIBUTION STATEMENT A}}. \ \ \text{Approved for public release; distribution is unlimited}.$ 5962-E052-99 ### 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents five product assurance classes, class D (lowest reliability), class E, (exceptions), class G (lowest high reliability), class H (high reliability), and class K, (highest reliability) and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN. - 1.2 PIN. The PIN shall be as shown in the following example: | 5962 | - 96501 | _01_ | <u>H</u> _ | X | X | |------------------------|-------------------|----------------|---------------------------|-----------------|----------------| | * | * | * | * | * | * | | * | * | * | * | * | * | | * | * | * | * | * | * | | Federal
stock class | RHA
designator | Device
type | Device
class | Case
outline | Lead
finish | | designator
\ | (see 1.2.1)
/ | (see 1.2.2) | designator
(see 1.2.3) | (see 1.2.4) | (see 1.2.5) | | | Drawing number | | | | | - 1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. Device classes H and K RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|-------------------------------------| | 01 | AFL27025S/CH | DC/DC converter, 100 W, 25 V output | 1.2.3 <u>Device class designator</u>. This device class designator shall be a single letter identifying the product assurance level as follows: Device class Device performance documentation D, E, G, H, or K Certification and qualification to MIL-PRF-38534 1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|--| | U | See figure 1 | 12 | Y case configuration with leads bent upwards | | X | See figure 1 | 12 | Straight leads with end mounting thru holes | | Υ | See figure 1 | 12 | Straight leads with side mounting thru holes | | Z | See figure 1 | 12 | Y case configuration with leads bent downwards | 1.2.5 Lead finish. The lead finish shall be as specified in MIL-PRF-38534. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET 2 | | 1.3 Absolute maximum ratings. 1 | | _ | | | A1 1 . | | |---------------------------------|---|-----|----------|---------|----------|-----| | | / | - 1 | ratings. | maximum | Absolute | 1.3 | Input voltage range -0.5 V dc to +500 V dc Lead temperature (soldering, 10 seconds) +300°C Storage temperature range -65°C to +135°C 1.4 Recommended operating conditions. ### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbook</u>. The following specification, standards, and handbook form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation. ## **SPECIFICATION** ### DEPARTMENT OF DEFENSE MIL-PRF-38534 - Hybrid Microcircuits, General Specification for. ## **STANDARDS** ## DEPARTMENT OF DEFENSE MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. ### **HANDBOOK** #### DEPARTMENT OF DEFENSE MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbook are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ^{2/}Derate output power linearly above case temperature +125°C to 0 at +135°C. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
3 | ^{1/}Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. ### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. Therefore, the tests and inspections herein may not be performed for the applicable device class (see MIL-PRF-38534). Furthermore, the manufacturers may take exceptions or use alternate methods to the tests and inspections herein and not perform them. However, the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein. - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2. - 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking of Device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked as listed in QML-38534. - 3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request. - 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein. - 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing. - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
4 | | Test | Symbol | Conditions
-55°C ≤ T _C ≤+125°C | Group A
Subgroups | Device
type | e Limits | | Unit | |----------------------------------|--------------------|--|----------------------|----------------|----------|-------|--------| | | | $V_{IN} = 270 \text{ V dc} \pm 5 \%, C_L = 0$
Unless otherwise specified | | | Min | Max | | | Output voltage | V _{OUT} | lout = 0 | 1 | 01 | 24.75 | 25.25 | V | | | | | 2,3 | | 24.50 | 25.50 | | | Output current <u>1</u> / | Іоит | V _{IN} = 160, 270, and 400 V dc | 1,2,3 | 01 | | 4.0 | Α | | Output ripple voltage <u>2</u> / | V _{RIP} | V _{IN} = 160, 270, and 400 V dc,
B.W. = 20 Hz to 10 MHz | 1,2,3 | 01 | | 80 | mV p-p | | Line regulation 3/ | VR _{LINE} | V _{IN} = 160, 270, and 400 V dc,
l _{OUT} = 0, 2, and 4 A | 1,2,3 | 01 | | ±60 | mV | | Load regulation 3/ | VR _{LOAD} | V _{IN} = 160, 270, and 400 V dc,
l _{OUT} = 0, 2, and 4 A | 1,2,3 | 01 | | ±250 | mV | | Input current | I _{IN} | l _{OUT} = no load | 1 | 01 | | 15 | mA | | | | | 2,3 | | | 17 | | | | | Enable 1, (pin 4) shorted to Input return (pin 2) | 1,2,3 | | | 3 | | | | | Enable 2, (pin 12) shorted to
Output return (pin 8) | 1,2,3 | | | 5 | | | Input ripple current 2/ | I _{RIP} | l _{OUT} = 4 A,
B.W. = 20 Hz to 10 MHz | 1,2,3 | 01 | | 80 | mA p-p | | Efficiency | E _{FF} | I _{OUT} = 4 A | 1 | 01 | 82 | | % | | | | | 2,3 | | 82 | | | | Isolation | ISO | Input to output or any pin to case (except pin 3) at 500 V dc, T _C =+25°C | 1 | 01 | 100 | | ΜΩ | SIZE Α REVISION LEVEL 5962-96501 5 SHEET DSCC FORM 2234 APR 97 STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 | | TABLE I. | Electrical performance | characte | <u>eristics</u> - Co | ntinued. | | | | |--|---------------------|---|--------------------|----------------------|-------------|--------|-------|--------| | Test | Symbol | Conditions $-55^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq +125$ | 5°C | Group A
Subgroup | | Lim | nits | Unit | | | | $V_{IN} = 270 \text{ V dc} \pm 5 \%$, unless otherwise spec | C _L = 0 | | | Min | Max | | | Maximum Capacitive Load 5/ | CL | No effect on dc performance, $T_C = +2$ | 25°C | 4 | 01 | 10,000 | | μF | | Power dissipation load fault | P _D | Overload <u>6</u> / | | 1,2,3 | 01 | | 30 | w | | | | Short circuit | | | | | 30 | | | Current limit point 4/ | I _{CL} | V _{OUT} = 90 % V _{NOM} | | 1 | 01 | 4.6 | 5.0 | А | | | | | | | | 4.2 | 4.6 | - | | | | | | 3 | | 5.0 | 5.6 | | | Switching frequency | Fs | I _{OUT} = 4 A | | 4,5,6 | 01 | 500 | 600 | kHz | | Sync frequency range | F _{SYNC} | I _{OUT} = 4 A | | 4,5,6 | 01 | 500 | 700 | kHz | | Output response to step transient load changes 7/ | VO _{TLOAD} | 50% to/from 100% | | 4,5,6 | 01 | -1200 | +1200 | mV pk | | | | 10% to/from 50% | | | | -1200 | +1200 | | | Recovery time, step transient load changes 7/8/ | TT _{LOAD} | 50% to/from 100% | | 4,5,6 | 01 | | 400 | μs | | | | 10% to/from 50% | | | | | 400 | | | Output response to transient step line changes <u>5</u> / <u>9</u> / | VOTLINE | Input step 160 V to/from
400 V dc, I _{OUT} = 4 A | | 4,5,6 | 01 | -500 | +500 | mV pk | | Recovery time transient step line changes <u>5</u> / <u>8</u> / <u>9</u> / | TT _{LINE} | Input step, 160 V to/fr
400 V dc, I _{OUT} = 4 A | om | 4,5,6 | 01 | | 500 | μs | | Turn on overshoot | VTonos | Enable 1 and 2 on. (P
and 12 high or open) | Pins 4 | 4,5,6 | 01 | | 250 | mV pk | | Turn on delay 10/ | Ton _D | Enable 1 and 2 on. (P
and 12 high or open) | Pins 4 | 4,5,6 | 01 | | 140 | ms | | Load fault recovery 5/ | Tr _{LF} | 17 | | 4,5,6 | 01 | | 140 | ms | | See footnotes at top of next p | oage. | | | | | | | | | STAI
MICROCIRO | NDARD
:UIT DRA | WING | | IZE
A | | | 5962 | -96501 | | DEFENSE SUPPLY
COLUMBUS, (| CENTER C | COLUMBUS | | | REVISION LE | VEL | SHEET | 6 | ## TABLE I. <u>Electrical performance characteristics</u> - Continued. - 1/ Parameter guaranteed by line and load regulation tests. - 2/ Bandwidth guaranteed by design. Tested for 20 kHz to 10 MHz. - 3/ All electrical tests are performed with remote sense leads connected to the output lead at the output load. - 4/ Current limit point is that condition of excess load causing output voltage to drop 90% of nominal. - 5/ Parameter shall be tested as part of design characterization and after design or process changes. Thereafter, parameters shall be guaranteed to the limits specified in table I. - 6/ An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation. - $\underline{7}$ / Load step transition time \geq 10 microseconds. - 8/ Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within \pm 1 percent of V_{OUT} at 50 percent load. - $\underline{9}$ / Input step transition time ≥ 100 microseconds. - 10/ Turn on delay is measured with an input voltage rise time of between 100 and 500 volts per millisecond. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
7 | ## Case U - Continued | | Millim | neters | Inc | hes | |--------|--------|--------|-------|-------| | Symbol | Min | Max | Min | Max | | Α | | 9.65 | | .380 | | D | 71.00 | 71.25 | 2.795 | 2.805 | | D1 | 63.37 | 63.63 | 2.495 | 2.505 | | D2 | 13.21 | 13.46 | .520 | .530 | | E | 37.97 | 38.23 | 1.495 | 1.505 | | e1 | 50.6 | 51.1 | 1.99 | 2.01 | | e2 | 25.27 | 25.53 | .995 | 1.005 | | F | 1.14 | 1.40 | .045 | .055 | | L | 10.4 | 10.9 | .41 | .43 | | L1 | 5.46 | 5.72 | .215 | .225 | | q | 44.32 | 44.58 | 1.745 | 1.755 | | q1 | 29.08 | 29.34 | 1.145 | 1.155 | | q2 | 44.32 | 44.58 | 1.745 | 1.755 | | q3 | 6.1 | 6.6 | .24 | .26 | | q4 | 7.49 | 7.75 | .295 | .305 | | q5 | 9.40 | 9.65 | .370 | .380 | | S | 6.22 | 6.48 | .245 | .255 | | фЬ | 0.89 | 1.14 | .035 | .045 | | фр | 3.43 | 3.68 | .135 | .145 | # NOTES: - 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule. - 2. Lead identification for reference only. - 3. Case outline weight: 92 grams maximum. FIGURE 1. Case outline(s) - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
9 | ## Case X - Continued | | Millimeters | | Inches | | |--------|-------------|-------|--------|-------| | Symbol | Min | Max | Min | Max | | Α | | 9.65 | | .380 | | D | 76.07 | 76.33 | 2.995 | 3.005 | | D1 | 63.37 | 63.63 | 2.495 | 2.505 | | D2 | | 75.57 | | 2.975 | | E | 37.97 | 38.23 | 1.495 | 1.505 | | e1 | 4.95 | 5.21 | .195 | .205 | | F | 1.14 | 1.40 | .045 | .055 | | L | | 6.05 | | .238 | | L1 | 5.46 | 5.72 | .215 | .225 | | q | 69.98 | 70.23 | 2.755 | 2.765 | | q1 | 31.88 | 32.13 | 1.255 | 1.265 | | S | 6.22 | 6.48 | .245 | .255 | | фЬ | 0.89 | 1.14 | .035 | .045 | | фр | 3.12 | 3.38 | .123 | .133 | ## NOTES: - 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule. - 2. Lead identification for reference only. - 3. Case outline weight: 92 grams maximum. FIGURE 1. Case outline(s) - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
11 | # Case Y - Continued | | Millimeters | | Inc | hes | |--------|-------------|-------|-------|-------| | Symbol | Min | Max | Min | Max | | Α | | 9.65 | | .380 | | D | | 75.57 | | 2.975 | | D1 | 63.37 | 63.63 | 2.495 | 2.505 | | E | 37.97 | 38.23 | 1.495 | 1.505 | | e1 | 50.6 | 51.1 | 1.99 | 2.01 | | e2 | 4.95 | 5.21 | .195 | .205 | | F | 1.14 | 1.40 | .045 | .055 | | L | | 6.05 | | .238 | | L1 | 5.46 | 5.72 | .215 | .225 | | q | 44.32 | 44.58 | 1.745 | 1.755 | | q1 | 29.08 | 29.34 | 1.145 | 1.155 | | q2 | 44.32 | 44.58 | 1.745 | 1.755 | | q3 | 6.1 | 6.6 | .24 | .26 | | q4 | 7.49 | 7.75 | .295 | .305 | | q5 | 9.40 | 9.65 | .370 | .380 | | S | 6.22 | 6.48 | .245 | .255 | | фЬ | 0.89 | 1.14 | .035 | .045 | | фр | 3.43 | 3.68 | .135 | .145 | # NOTES: - 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule. - 2. Lead identification for reference only. - 3. Case outline weight: 92 grams maximum. FIGURE 1. Case outline(s) - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
13 | ## Case Z - Continued | | Millimeters | | Inches | | |--------|-------------|-------|--------|-------| | Symbol | Min | Max | Min | Max | | Α | | 9.65 | | .380 | | D | 71.00 | 71.25 | 2.795 | 2.805 | | D1 | 63.37 | 63.63 | 2.495 | 2.505 | | D2 | 13.21 | 13.46 | .520 | .530 | | E | 37.97 | 38.23 | 1.495 | 1.505 | | e1 | 50.6 | 51.1 | 1.99 | 2.01 | | e2 | 25.27 | 25.53 | .995 | 1.005 | | F | 1.14 | 1.40 | .045 | .055 | | L | 8.9 | 9.4 | .35 | .37 | | L1 | 5.46 | 5.72 | .215 | .225 | | q | 44.32 | 44.58 | 1.745 | 1.755 | | q1 | 29.08 | 29.34 | 1.145 | 1.155 | | q2 | 44.32 | 44.58 | 1.745 | 1.755 | | q3 | 6.1 | 6.6 | .24 | .26 | | q4 | 7.49 | 7.75 | .295 | .305 | | q5 | 9.40 | 9.65 | .370 | .380 | | S | 6.22 | 6.48 | .245 | .255 | | φb | 0.89 | 1.14 | .035 | .045 | | фр | 3.43 | 3.68 | .135 | .145 | # NOTES: - 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule. - 2. Lead identification for reference only. - 3. Case outline weight: 92 grams maximum. FIGURE 1. Case outline(s) - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
15 | | Device type | 01 | | | |-----------------|-----------------|--|--| | Case outlines | U,X,Y,Z | | | | Terminal number | Terminal symbol | | | | 1 | Positive Input | | | | 2 | Input Return | | | | 3 | Case | | | | 4 | Enable 1 | | | | 5 | Sync Output | | | | 6 | Sync Input | | | | 7 | Positive Output | | | | 8 | Output Return | | | | 9 | Return Sense | | | | 10 | Positive Sense | | | | 11 | Share | | | | 12 | Enable 2 | | | FIGURE 2. <u>Terminal connections</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
16 | TABLE II. Electrical test requirements. | MIL-PRF-38534 test requirements | Subgroups
(in accordance with
MIL-PRF-38534, group A test
table) | |--|---| | Interim electrical parameters | | | Final electrical parameters | 1*, 2, 3, 4, 5, 6 | | Group A test requirements | 1, 2, 3, 4, 5, 6 | | Group C end-point electrical parameters | 1, 4 | | MIL-STD-883, group E end-point electrical parameters for RHA devices | Subgroups**
(in accordance with method
5005, group A test table) | - * PDA applies to subgroup 1. - ** When applicable to this standard microcircuit drawing, the subgroups shall be defined. - 4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply: - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - (2) TA as specified in accordance with table I of method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer. - 4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein. - 4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows: - a. Tests shall be as specified in table II herein. - b. Subgroups 7, 8, 9, 10, and 11 shall be omitted. - 4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
17 | - 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows: - a. End-point electrical parameters shall be as specified in table II herein. - b. Steady-state life test, method 1005 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883. - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534. - 4.3.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels shall be M, D, R, and H. RHA quality conformance inspection sample tests shall be performed at the RHA level specified in the acquisition document. - a. RHA tests for levels M, D, R, and H shall be performed through each level to determine at what levels the devices meet the RHA requirements. These RHA tests shall be performed for initial qualification and after design or process changes which may affect the RHA performance of the device. - b. End-point electrical parameters shall be as specified in table II herein. - c. Prior to total dose irradiation, each selected sample shall be assembled in its qualified package. It shall pass the specified group A electrical parameters in table I for subgroups specified in table II herein. - d. The devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38534 for RHA level being tested, and meet the postirradiation end-point electrical parameter limits as defined in table I at $T_A = +25$ °C ± 5 percent, after exposure. - e. Prior to and during total dose irradiation testing, the devices shall be biased to establish a worst case condition as specified in the radiation exposure circuit. - f. For device classes H and K, subgroups 1 and 2 in table V, method 5005 of MIL-STD-883 shall be tested as appropriate for device construction. - g. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. - 5. PACKAGING - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-96501 | |---|------------------|----------------|-------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL | SHEET
18 | | 6.3 <u>Configuration control of SMD's</u> . All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. | | | | | |---|------------------|----------------|-------------|--| | 6.4 <u>Record of users</u> . Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0526. | | | | | | 6.5 <u>Comments</u> . Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0512. | | | | | | 6.6 Sources of supply. Sources of supply are listed in QML-38534. The vendors listed in QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing. | STANDARD | SIZE
A | | 5962-96501 | | | MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS | 7. | REVISION LEVEL | SHEET
19 | | | COLUMBUS, OHIO 43216-5000 | | | | | ### STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 98-11-16 Approved sources of supply for SMD 5962-96501 are listed below for immediate acquisition information only and shall be added to QML-38534 during the next revision. QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of QML-38534. | Standard | Vendor | Vendor | |----------------------|--------|----------------| | microcircuit drawing | CAGE | Similar | | PIN <u>1</u> / | number | PIN <u>2</u> / | | 5962-9650101HUA | 52467 | AFL27025SW/CH | | 5962-9650101HUC | 52467 | AFL27025SW/CH | | 5962-9650101HXA | 52467 | AFL27025SX/CH | | 5962-9650101HXC | 52467 | AFL27025SX/CH | | 5962-9650101HYA | 52467 | AFL27025SY/CH | | 5962-9650101HYC | 52467 | AFL27025SY/CH | | 5962-9650101HZA | 52467 | AFL27025SZ/CH | | 5962-9650101HZC | 52467 | AFL27025SZ/CH | - 1/ The lead finish shown for each PIN representing hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability. - <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. Vendor CAGE <u>number</u> Vendor name and address 52467 Lambda Advanced Analog Incorporated 2270 Martin Avenue Santa Clara, CA 95050-2781 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.