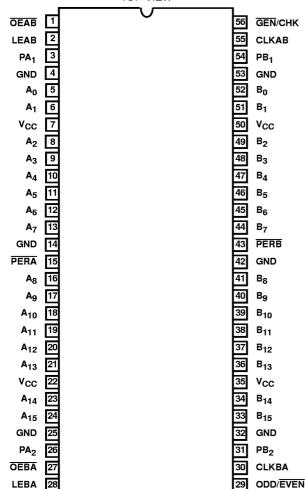


Fast CMOS 16-Bit Registered/Latched Transceivers with Parity


December 1996

Features

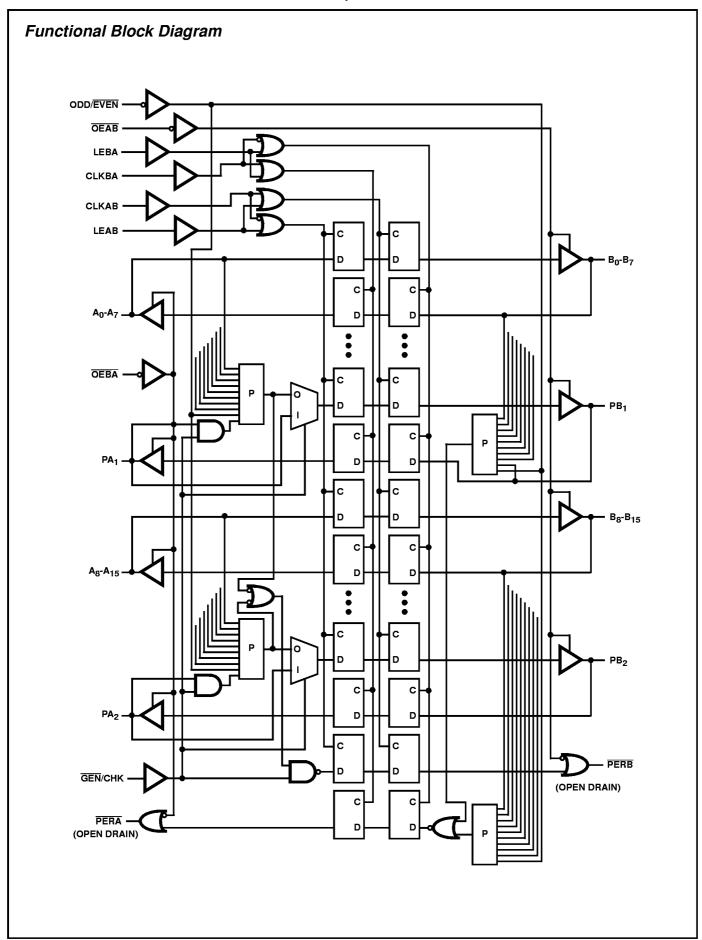
- These Devices are High-speed, Low Power Devices with High Current Drive
- V_{CC} = 5V ±10%
- · Hysteresis on All Inputs
- · CD74FCT16511T
 - High Output Drive: I_{OH} = -32mA; I_{OL} = 64mA
 - Power Off Disable Outputs Permit "Live Insertion"
 - Typical V_{OLP} (Output Ground Bounce) < 1.0V at $V_{CC} = 5V$, $T_A = 25^{\circ}C$
- · CD74FCT162511T
 - Balanced Output Drivers: ±24mA
 - Open Drain Parity Error Allows Wire-OR
 - Typical V_{OLP} (Output Ground Bounce) < 1.0V at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Pinout

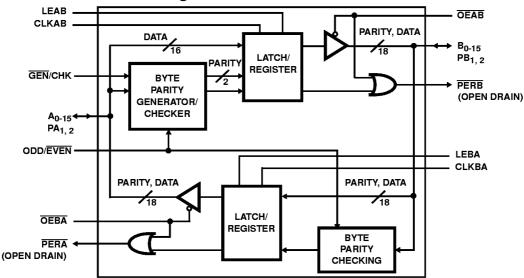
CD74FCT16511T, CD74FCT162511T (SSOP, TSSOP)
TOP VIEW

Description

Harris' CD74FCT16511T and CD74FCT162511T are produced in an advanced 0.8 micron CMOS technology, achieving industry leading speed grades.


The CD74FCT16511T and CD74FCT162511T are high-speed, low-power 16-bit registered/latched transceiver with parity which combines D-type latches and D-type flip-flops to allow data flow in transparent, latched or clocked modes. It has a parity generator/checker in the A-to-B direction and a parity checker in the B-to-A direction. Error checking is done at the byte level with separate parity bits for each byte. One error flag for each direction (A-to-B or B-to-A) exists to indicate an error for either byte in either direction. The parity error flags which are open drain outputs, can be tied together and/or tied with flags from other devices to form a single error flag or interrupt. To disable the error flag during combinational transitions, a designer can disable the parity error flag by the \overline{OEXX} control pins.

The operation in A-to-B direction is controlled by LEAB, CLKAB and OEAB control pins, and the operation in B-to-A direction is controlled by LEBA, CLKBA and OEBA control pins. GEN/CHK is used to select the operation of A-to-B direction, while B-to-A direction is always in checking mode. The ODD/EVEN select is common between the two directions. Independent operation can be achieved between the two directions by using the corresponding control lines except for the ODD/EVEN control.


Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74FCT16511ATSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT16511TSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162511ATMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162511ATSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162511TMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162511TSM	-40 to 85	56 Ld SSOP	M56.300-P

NOTE: When ordering, use the entire part number. Add the suffix 96 to obtain the varient in the tape and reel.

Simplified Functional Block Diagram

TRUTH TABLE (NOTES 1, 2)

	INP	итѕ		OUTPUT BUFFERS
OEAB	LEAB	CLKAB	Вχ	
Н	Х	Х	Х	Z
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	1	L	L
L	L	1	Н	Н
Ĺ	L	L	Х	B (Note 3)
L	L	Н	Х	B (Note 4)

NOTES:

- 1. H = High Voltage Level
 - L = Low Voltage Level
 - X = Don't Care or Irrelevant
 - Z = High Impedance
 - ↑ = LOW-to-HIGH Transition
- A-to-B data flow is shown. B-to-A flow control is the same, except using OEBA, LEBA, and CLKBA.
- Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, assuming CLKAB was HIGH before LEAB went LOW.

TRUTH TABLE (PARITY GENERATION) (NOTES 5, 6, 7, 8, 9)

TOTAL NUMBER OF INPUTS THAT ARE HIGH, A ₀ - A ₇	ODD/EVEN	PB ₁
1, 3, 5 or 7	L	Н
1, 3, 5 or 7	Н	L
0, 2, 4, 6 or 8	L	L
0, 2, 4, 6 or 8	Н	Н

NOTES:

- 5. Conditions shown are for $\overline{GEN}/CHK = L$, $\overline{OEAB} = L$, $\overline{OEBA} = H$.
- A-to-B parity generation is shown. B-to-A can check parity while A-to-B is performing generation. B-to-A will not generate parity.
- 7. The response shown is for LEAB = H. If LEAB = L, then CLKAB will control as an edge triggered clock.
- 8. Conditions shown are for the byte A0-A7. The byte A8-A15 is similar but will output the parity on PB2.
- 9. The error flag PERB will remain in a high state during parity generation

TRUTH TABLE (PARITY CHECKING) (NOTES 10, 11, 12, 13)

TOTAL NUMBER OF INPUTS THAT ARE HIGH, A ₀ - A ₇ AND PA ₁ (NOTE 14)	ODD/ EVEN	PB ₁
1, 3, 5, 7 or 9	L	L
1, 3, 5, 7 or 9	Н	H (Note 15)
0, 2, 4, 6 or 8	L	H (Note 15)
0, 2, 4, 6 or 8	Η	L

- 10. Conditions shown are for $\overline{GEN}/CHK = H$, $\overline{OEAB} = L$, $\overline{OEBA} = H$.
- A-to-B parity checking is shown. B-to-A parity checking is same but uses OEBA = L, OEAB = H and errors will be indicated on PERA.
- In parity checking mode the parity bits will be transmitted unchanged along with the corresponding data regardless of parity errors. (PB₁ = PA₁)
- 13. The response shown is for LEAB = H. If LEAB = L, then CLK-AB will control as an edge triggered clock.
- 14. Conditions shown are for the byte $\rm A_0\text{-}A_7$ and $\rm PA_1$. The byte $\rm A_8\text{-}A_{15}$ and $\rm PA_2$ is same.
- 15. The parity error flag \overline{PERB} is a combined flag for both bytes A_0 A_7 and A_8 - A_{15} . If a parity error occurs on either byte \overline{PERB} will go low.

Pin Descriptions

PIN NAME	DESCRIPTION
OEAB	A-to-B Output Enable Input (Active LOW)
OEBA	B-to-A Output Enable Input (Active LOW)
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
PERA	Parity Error (Open Drain) on A Outputs
PERB	Parity Error (Open Drain) on B Outputs
A _X	A-to-B Data Inputs or B-to-A Three State Outputs
ВХ	B-to-A Data Inputs or B-to-A Three State Outputs
ODD/EVEN (Note 16)	Parity Mode Selection Input
GEN/CHK (Note 16)	A-to-B Port Generate or Check Mode Input
PA _X (Note 17)	A-to-B Parity Input, B-to-A Parity Output
PBX	B-to-A Parity Input, A-to-B Parity Output
GND	Ground
V _{CC}	Power

NOTES:

- 16. ODD/ $\overline{\text{EVEN}}$ and $\overline{\text{GEN}}/\text{CHK}$ should be tied to V_{CC} or GND with no resistor for optimum results.
- 17. The PA_X pin input is internally disabled during parity generation. This means that when generating parity in the A-to-B direction, there is no need to add a pull-up resistor to guarantee state. The pin will still function properly as the parity output for the B-to-A direction.

Absolute Maximum Ratings Thermal Information θ_{JA} (°C/W) DC Input Voltage-0.5V to 7.0V Thermal Resistance (Typical, Note 18) TSSOP Package 85 **Operating Conditions** Operating Temperature Range -40°C to 85°C Maximum Storage Temperature Range $\,\ldots\,$ -65°C to 150°C Supply Voltage to Ground Potential Maximum Lead Temperature (Soldering 10s).....300°C Inputs and V_{CC} Only.....-0.5V to 7.0V (Lead Tips Only) Supply Voltage to Ground Potential Outputs and D/O Only.....-0.5V to 7.0V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

18. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

PARAMETER	SYMBOL	(NOTE 19)	ONS	MIN	(NOTE 20)	MAX	UNITS
DC ELECTRICAL SPE	CIFICATIO	IS Over the Operating Range, T _A	= -40°C to 85°C, V _C	C = 5.0V ±10	0%		ı
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH Level		2.0	-	-	V
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW Level		-	-	0.8	V
Input HIGH Current (Input Pins)	lн	V _{CC} = Max	V _{IN} = Vcc	-	-	1	μΑ
Input HIGH Current (I/O Pins)	lн	V _{CC} = Max	V _{IN} = Vcc	-	-	-1	μΑ
Input LOW Current (Input Pins)	I _{IL}	V _{CC} = Max	V _{IN} = GND	-	-	1	μΑ
Input LOW Current (I/O Pins)	I _{IL}	V _{CC} = Max	V _{IN} = GND	-	-	-1	μА
High Impedance	lozh	V _{CC} = Max	V _{OUT} = 2.7V	-	-	1	μА
Output Current	lozL	V _{CC} = Max	V _{OUT} = 0.5V	-	-	-1	μА
Clamp Diode Voltage	V _{IK}	V _{CC} = Min, I _{IN} = -18mA		-	-0.7	-1.2	V
Short Circuit Current (I/O Pins)	los	V _{CC} = Max (Note 21), V _{OUT} = G	GND	-80	-140	-225	mA
Output Drive Current (I/O Pins)	lo	V _{CC} = Max (Note 21), V _{OUT} = 2	5V	-50	-	-180	mA
Output Leakage Current (Open Drain)	l _{OFF}	$V_{CC} = Max, V_{OUT} = 4.5V$		-	-	±100	μΑ
Input Hysteresis	V _H			-	100	-	mV
CD74FCT16511T OUT	PUT DRIVE	SPECIFICATIONS Over the Ope	rating Range, T _A = -4	0°C to 85°C	C, V _{CC} = 5.0V	±10%	•
Output HIGH Voltage	V _{OH}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OH} = -3.0mA	2.5	3.5	-	V
			I _{OH} = -15.0mA	2.4	3.5	-	V
			I _{OH} = -32.0mA	2.0	3.0	-	V
Output LOW Voltage	V _{OL}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OL} = 64mA	-	0.2	0.55	V
Power Down Disable	loff	$V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 4.5V$		-	-	±100	μΑ
CD74FCT162511T OU	TPUT DRIV	E SPECIFICATIONS Over the Op	erating Range, T _A = -	-40 ^o C to 85 ^c	^{0}C , $V_{CC} = 5.0$	V ±10%	
Output HIGH Voltage	V _{OH}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OH} = -24.0mA	2.4	3.3	-	V
Output LOW Voltage	V _{OL}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OL} = 24mA	-	0.3	0.55	٧
Output LOW Current	lodl	$V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , V_{OL}	T = 1.5V (Note 21)	60	115	150	mA
Output HIGH Current	lodh	$V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , V_{OL}	_T = 1.5V (Note 21)	-60	-115	-150	mA

Electrical Specifications (Continued)

PARAMETER	SYMBOL	(NOTE 19 TEST CONDIT	MIN	(NOTE 20)	MAX	UNITS	
CAPACITANCE TA = 2	25 ⁰ C, f = 1Mł	- Iz					
Input Capacitance (Note 22)	C _{IN}	V _{IN} = 0V		-	4.5	6.0	pF
I/O Capacitance (Note 22)	C _{I/O}	V _{OUT} = 0V		-	5.5	8.0	pF
Open Drain Capacitance (Note 22)	CO	V _{OUT} = 0V		-	4.5	6.0	рF
POWER SUPPLY SPE	CIFICATION	is					
Quiescent Power Supply Current	I _{CCL} , I _{CCH} , I _{CCZ}	V _{CC} = Max	V _{IN} = GND or V _{CC}	-	0.1	500	μΑ
Supply Current per Input at TTL HIGH	Δl _{CC}	V _{CC} = Max	V _{IN} = 3.4V (Note 23)	-	0.5	1.5	mA
Supply Current per Input per MHz (Note 24)	ICCD	V _{CC} = Max, Outputs Open OEAB = GND OEBA = VCC One Bit Toggling 50% Duty Cycle	V _{IN} = V _{CC} V _{IN} = GND	-	75	120	μΑ/ MHz
Total Power Supply Current (Note 26)	lc	V _{CC} = Max, Outputs Open f _{CP} = 10MHz (CLKAB)	V _{IN} = V _{CC} V _{IN} = GND	-	0.8	1.7 (Note 25)	mA
		50% Duty Cycle LEAB = OEAB = GND OEBA = V _{CC} f _I = 5MHz One Bit Toggling	V _{IN} = 3.4V V _{IN} = GND	-	1.3	3.2 (Note 25)	mA
		V _{CC} = Max, Outputs Open f _{CP} = 10MHz (CLKAB)	$V_{IN} = V_{CC}$ $V_{IN} = GND$	-	3.8	6.5 (Note 25)	mA
		50% Duty Cycle LEAB = OEAB = GND OEBA = V _{CC} f _I = 2.5MHz 18 Bits Toggling	V _{IN} = 3.4V V _{IN} = GND	-	9.0	21.8 (Note 25)	mA

Switching Specifications Over Operating Range (Propagation Delays)

		(NOTE 27)	7		A.	Т	
PARAMETER	SYMBOL	TEST CONDITIONS	(NOTE 28) MIN	MAX	(NOTE 28) MIN	мах	UNITS
Propagation Delay PA_X to PB_X	t _{PLH} t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	6.5	1.5	5.7	ns
Propagation Delay A_X to B_X or B_X to A_X , PB_X to PA_X	t _{PLH} t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	6.5	1.5	5.0	ns
Propagation Delay A_X to PB_X	t _{PLH} t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	9.0	1.5	7.5	ns
Propagation Delay	t _{PLH} C _L = 50pF		1.5	10.5	1.5	9.0	ns
A _X to PERB, PA _X to PERB	(Note 29) t _{PHL}	$R_L = 500\Omega$	1.5	9.5	1.5	8.0	ns
Propagation Delay	t _{PLH}	C _L = 50pF	1.5	10.5	1.5	9.0	ns
B _X to PERA, PB _X to PERA	(Note 29) t _{PHL}	$R_L = 500\Omega$	1.5	9.5	1.5	8.0	ns
Propagation Delay LEBA to A_X and PA_X , LEAB to B_X and PB_X	t _{PLH} t _{PHL}			6.0	1.5	5.6	ns
Propagation Delay	t _{PLH}	C _L = 50pF	1.5	7.5	1.5	7.0	ns
LEBA to PERA, LEAB to PERB	(Note 29) t _{PHL}	$R_L = 500\Omega$	1.5	6.5	1.5	6.0	ns

Switching Specifications Over Operating Range (Propagation Delays) (Continued)

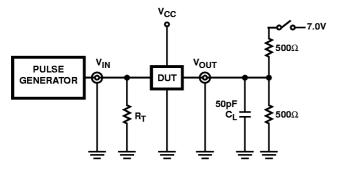
		(NOTE 27)	7	Г	A	Т	
PARAMETER	SYMBOL	TEST CONDITIONS	(NOTE 28) MIN	MAX	(NOTE 28) MIN	MAX	UNITS
Propagation Delay CLKBA to A_X and PA_X CLKAB to B_X and PB_X	tPLH tPHL	$C_L = 50pF$ $R_L = 500\Omega$	1.5	6.0	1.5	5.6	ns
Propagation Delay	t _{PLH}	C _L = 50pF	1.5	7.5	1.5	7.0	ns
CLKBA to PERA CLKAB to PERB	(Note 29) t _{PHL}	$R_L = 500\Omega$	1.5	6.5	1.5	6.0	ns
Output Enable Time $\overline{\text{OEBA}}$ to A_X and PA_X $\overline{\text{OEAB}}$ to B_X and PB_X	t _{PZH} t _{PZL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	7.0	1.5	6.0	ns
Output Disable Time (Note 30) OEBA to Ax and PAx OEAB to Bx and PBx	t _{PHZ} t _{PLZ}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	7.0	1.5	5.6	ns
Parity ERROR Enable	t _{PLZ}	C _L = 50pF	1.5	6.0	1.5	6.0	ns
OEBA to PERA, OEAB to PERB	(Note 29) t _{PZL}	$R_L = 500\Omega$	1.5	6.0	1.5	6.0	ns
ODD/EVEN to PERB	t _{PLH}	C _L = 50pF	1.5	10.0	1.5	10.0	ns
	tPHL	$R_L = 500\Omega$	1.5	10.0	1.5	10.0	ns
ODD/EVEN to PBX	t _{PLH} t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	1.5	10.0	1.5	10.0	ns

Switching Specifications Over Operating Range (Setup Times)

		,,	NOTES 27, 31)			Т	Α	λT	
DESCRIPTION	SYMBOL		CONDITIONS			МАХ	MIN	MAX	UNITS
Setup Time	t _{SU}	GEN/CHK LOW	PB _X valid	C _L = 50pF	6.5	-	4	-	ns
HIGH or LOW A_X to CLKAB			PB _X not valid	$R_L = 500\Omega$	3	-	3	-	ns
		GEN/CHK HIGH	PERB valid	C _L = 50pF	6.5	-	4	-	ns
			PERB not valid	$R_L = 500\Omega$	3	-	3	-	ns
Setup Time	t _{SU}	GEN/CHK HIGH	PERB valid	C _L = 50pF	6.5	-	4	-	ns
PA _X to CLKAB			PERB not valid	$R_L = 500\Omega$	3	-	3	-	ns
Setup Time	t _{SU}		PERA valid	C _L = 50pF	6.5	-	4	-	ns
B_X to CLKBA PB_X to CLKBA			PERA not valid	$R_L = 500\Omega$	3	-	3	-	ns
Setup Time	tsu	CLKAB LOW	PB _X valid	C _L = 50pF	6.5	-	3.5	-	ns
A_X to LEAB		GEN/CHK LOW	PB _X not valid	$R_L = 500\Omega$	3	-	3	-	ns
		CLKAB LOW	PERB valid	C _L = 50pF	6.5	-	3.5	-	ns
		GEN/CHK HIGH	PERB not valid	$R_L = 500\Omega$	3	-	3	-	ns
		CLKAB HIGH	PB _X valid	C _L = 50pF	6.5	-	3.5	-	ns
		GEN/CHK LOW	PB _X not valid	$R_L = 500\Omega$	3	-	3	-	ns
		CLKAB HIGH	PERB valid	C _L = 50pF	6.5	-	3.5	-	ns
		GEN/CHK HIGH	PERB not valid	$R_L = 500\Omega$	3	-	3	-	ns

Switching Specifications Over Operating Range (Setup Times) (Continued)

		(1)	(NOTES 27, 31)		-	Г	Α	·Τ	
DESCRIPTION	SYMBOL	,	CONDITIONS		MIN	MAX	MIN	MAX	UNITS
Setup Time	tsu	CLKAB LOW	PERB valid	C _L = 50pF	6.5	-	3.5	-	ns
PAx to LEAB		GEN/CHK HIGH	PERB not valid	$R_L = 500\Omega$	3	-	3	-	ns
		CLKAB HIGH	PERB valid	C _L = 50pF	6.5	-	3.5	-	ns
		GEN/CHK HIGH	PERB not valid	$R_L = 500\Omega$	3	-	3	-	ns
Setup Time	tsu	CLKBA LOW	PERA valid	C _L = 50pF	6.5	-	3.5	-	ns
B_X to LEBA PB_X to LEBA			PERA not valid	$R_L = 500\Omega$	3	-	3	-	ns
		CLKAB HIGH	PERA valid	C _L = 50pF	6.5	-	3.5	-	ns
			PERA not valid	$R_L = 500\Omega$	3	-	3	-	ns


Switching Specifications Over Operating Range (Hold Times)

		(NOTE 27)	T 77)		Α	Т	
DESCRIPTION	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Hold Time HIGH or LOW A_X to LEAB, B_X to LEBA	t _H	C _L = 50pF	1	-	1	-	ns
Hold Time HIGH or LOW PA _X to LEAB	t _H	$R_L = 500\Omega$	1	-	1	-	ns
Hold Time HIGH or LOW PB _X to LEBA	t _H		1	-	1	-	ns
Hold Time A_X to CLKAB, PA_X to CLKAB	t _H		1	-	1	-	ns
Hold Time B_X to CLKBA, PB_X to CLKBA	t _H		1	-	1	-	ns
LEAB or LEBA Pulse Width HIGH (Note 30)	t _W		3	-	3	-	ns
CLKAB or CLKBA Pulse Width HIGH or LOW (Note 30)	tW		3	-	3	-	ns

NOTES:

- 19. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type.
- 20. Typical values are at $V_{CC} = 5.0V$, 25° C ambient and maximum loading.
- 21. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 22. This parameter is determined by device characterization but is not production tested.
- 23. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.
- 24. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 25. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.
- 26. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$
 - $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$
 - I_{CC} = Quiescent Current
 - $\Delta I_{\hbox{\footnotesize CC}}$ = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)
 - D_H = Duty Cycle for TTL Inputs High
 - N_T = Number of TTL Inputs at D_H
 - I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - f_I = Input Frequency
 - N_I = Number of Inputs at f_I
 - All currents are in milliamps and all frequencies are in megahertz.
- 27. See test circuit and wave forms.
- 28. Minimum limits are guaranteed but not tested on Propagation Delays.
- 29. On Open Drain Outputs t_{PLH} is measured up to V_{OUT} = V_{OL} + 0.3V.
- 30. This parameter is guaranteed but not production tested.
- 31. "Not Valid" means the setup time indicated is not sufficient to assure proper funtioning of this output; however, the set-up time indicated will assure proper functioning of the A-to-B or B-to-A port respective to the indicated direction.

Test Circuits and Waveforms

NOTE:

32. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq$ 50 $\!\Omega$; $t_f,\,t_r \leq$ 2.5ns.

FIGURE 1. TEST CIRCUIT

SWITCH POSITION

TEST	SWITCH
t _{PLZ} , t _{PZL}	Closed
tPHZ, tPZH, tPLH, tPHL	Open

DEFINITIONS:

C_L = Load capacitance, includes jig and probe capacitance.

 R_T = Termination resistance, should be equal to Z_{OUT} of the Pulse Generator.

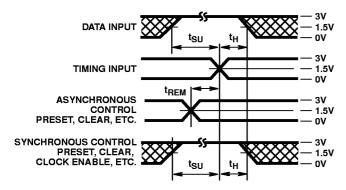


FIGURE 2. SETUP, HOLD, AND RELEASE TIMING

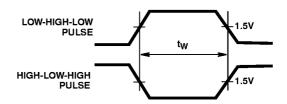


FIGURE 3. PULSE WIDTH

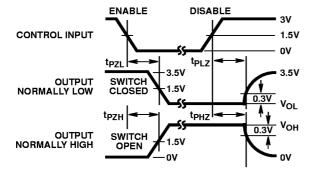


FIGURE 4. ENABLE AND DISABLE TIMING

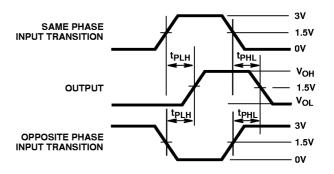


FIGURE 5. PROPAGATION DELAY