Fast CMOS 16-Bit Registered/Latched Transceivers with Parity December 1996 ### Features - These Devices are High-speed, Low Power Devices with High Current Drive - V_{CC} = 5V ±10% - · Hysteresis on All Inputs - · CD74FCT16511T - High Output Drive: I_{OH} = -32mA; I_{OL} = 64mA - Power Off Disable Outputs Permit "Live Insertion" - Typical V_{OLP} (Output Ground Bounce) < 1.0V at $V_{CC} = 5V$, $T_A = 25^{\circ}C$ - · CD74FCT162511T - Balanced Output Drivers: ±24mA - Open Drain Parity Error Allows Wire-OR - Typical V_{OLP} (Output Ground Bounce) < 1.0V at $V_{CC} = 5V$, $T_A = 25^{\circ}C$ #### **Pinout** CD74FCT16511T, CD74FCT162511T (SSOP, TSSOP) TOP VIEW ## Description Harris' CD74FCT16511T and CD74FCT162511T are produced in an advanced 0.8 micron CMOS technology, achieving industry leading speed grades. The CD74FCT16511T and CD74FCT162511T are high-speed, low-power 16-bit registered/latched transceiver with parity which combines D-type latches and D-type flip-flops to allow data flow in transparent, latched or clocked modes. It has a parity generator/checker in the A-to-B direction and a parity checker in the B-to-A direction. Error checking is done at the byte level with separate parity bits for each byte. One error flag for each direction (A-to-B or B-to-A) exists to indicate an error for either byte in either direction. The parity error flags which are open drain outputs, can be tied together and/or tied with flags from other devices to form a single error flag or interrupt. To disable the error flag during combinational transitions, a designer can disable the parity error flag by the \overline{OEXX} control pins. The operation in A-to-B direction is controlled by LEAB, CLKAB and OEAB control pins, and the operation in B-to-A direction is controlled by LEBA, CLKBA and OEBA control pins. GEN/CHK is used to select the operation of A-to-B direction, while B-to-A direction is always in checking mode. The ODD/EVEN select is common between the two directions. Independent operation can be achieved between the two directions by using the corresponding control lines except for the ODD/EVEN control. # Ordering Information | PART NUMBER | TEMP.
RANGE
(°C) | PACKAGE | PKG.
NO. | |-------------------|------------------------|-------------|-------------| | CD74FCT16511ATSM | -40 to 85 | 56 Ld SSOP | M56.300-P | | CD74FCT16511TSM | -40 to 85 | 56 Ld SSOP | M56.300-P | | CD74FCT162511ATMT | -40 to 85 | 56 Ld TSSOP | M56.240-P | | CD74FCT162511ATSM | -40 to 85 | 56 Ld SSOP | M56.300-P | | CD74FCT162511TMT | -40 to 85 | 56 Ld TSSOP | M56.240-P | | CD74FCT162511TSM | -40 to 85 | 56 Ld SSOP | M56.300-P | NOTE: When ordering, use the entire part number. Add the suffix 96 to obtain the varient in the tape and reel. # Simplified Functional Block Diagram #### TRUTH TABLE (NOTES 1, 2) | | INP | итѕ | | OUTPUT
BUFFERS | |------|------|-------|----|-------------------| | OEAB | LEAB | CLKAB | Вχ | | | Н | Х | Х | Х | Z | | L | Н | Х | L | L | | L | Н | Х | Н | Н | | L | L | 1 | L | L | | L | L | 1 | Н | Н | | Ĺ | L | L | Х | B (Note 3) | | L | L | Н | Х | B (Note 4) | ## NOTES: - 1. H = High Voltage Level - L = Low Voltage Level - X = Don't Care or Irrelevant - Z = High Impedance - ↑ = LOW-to-HIGH Transition - A-to-B data flow is shown. B-to-A flow control is the same, except using OEBA, LEBA, and CLKBA. - Output level before the indicated steady-state input conditions were established. - Output level before the indicated steady-state input conditions were established, assuming CLKAB was HIGH before LEAB went LOW. #### TRUTH TABLE (PARITY GENERATION) (NOTES 5, 6, 7, 8, 9) | TOTAL NUMBER OF INPUTS THAT ARE HIGH, A ₀ - A ₇ | ODD/EVEN | PB ₁ | |---|----------|-----------------| | 1, 3, 5 or 7 | L | Н | | 1, 3, 5 or 7 | Н | L | | 0, 2, 4, 6 or 8 | L | L | | 0, 2, 4, 6 or 8 | Н | Н | #### NOTES: - 5. Conditions shown are for $\overline{GEN}/CHK = L$, $\overline{OEAB} = L$, $\overline{OEBA} = H$. - A-to-B parity generation is shown. B-to-A can check parity while A-to-B is performing generation. B-to-A will not generate parity. - 7. The response shown is for LEAB = H. If LEAB = L, then CLKAB will control as an edge triggered clock. - 8. Conditions shown are for the byte A0-A7. The byte A8-A15 is similar but will output the parity on PB2. - 9. The error flag PERB will remain in a high state during parity generation #### TRUTH TABLE (PARITY CHECKING) (NOTES 10, 11, 12, 13) | TOTAL NUMBER OF INPUTS THAT ARE HIGH, A ₀ - A ₇ AND PA ₁ (NOTE 14) | ODD/
EVEN | PB ₁ | |---|--------------|-----------------| | 1, 3, 5, 7 or 9 | L | L | | 1, 3, 5, 7 or 9 | Н | H (Note 15) | | 0, 2, 4, 6 or 8 | L | H (Note 15) | | 0, 2, 4, 6 or 8 | Η | L | - 10. Conditions shown are for $\overline{GEN}/CHK = H$, $\overline{OEAB} = L$, $\overline{OEBA} = H$. - A-to-B parity checking is shown. B-to-A parity checking is same but uses OEBA = L, OEAB = H and errors will be indicated on PERA. - In parity checking mode the parity bits will be transmitted unchanged along with the corresponding data regardless of parity errors. (PB₁ = PA₁) - 13. The response shown is for LEAB = H. If LEAB = L, then CLK-AB will control as an edge triggered clock. - 14. Conditions shown are for the byte $\rm A_0\text{-}A_7$ and $\rm PA_1$. The byte $\rm A_8\text{-}A_{15}$ and $\rm PA_2$ is same. - 15. The parity error flag \overline{PERB} is a combined flag for both bytes A_0 A_7 and A_8 - A_{15} . If a parity error occurs on either byte \overline{PERB} will go low. # Pin Descriptions | PIN NAME | DESCRIPTION | |---------------------------|--| | OEAB | A-to-B Output Enable Input (Active LOW) | | OEBA | B-to-A Output Enable Input (Active LOW) | | CLKAB | A-to-B Clock Input | | CLKBA | B-to-A Clock Input | | LEAB | A-to-B Latch Enable Input | | LEBA | B-to-A Latch Enable Input | | PERA | Parity Error (Open Drain) on A Outputs | | PERB | Parity Error (Open Drain) on B Outputs | | A _X | A-to-B Data Inputs or B-to-A Three State Outputs | | ВХ | B-to-A Data Inputs or B-to-A Three State Outputs | | ODD/EVEN
(Note 16) | Parity Mode Selection Input | | GEN/CHK
(Note 16) | A-to-B Port Generate or Check Mode Input | | PA _X (Note 17) | A-to-B Parity Input, B-to-A Parity Output | | PBX | B-to-A Parity Input, A-to-B Parity Output | | GND | Ground | | V _{CC} | Power | #### NOTES: - 16. ODD/ $\overline{\text{EVEN}}$ and $\overline{\text{GEN}}/\text{CHK}$ should be tied to V_{CC} or GND with no resistor for optimum results. - 17. The PA_X pin input is internally disabled during parity generation. This means that when generating parity in the A-to-B direction, there is no need to add a pull-up resistor to guarantee state. The pin will still function properly as the parity output for the B-to-A direction. #### **Absolute Maximum Ratings Thermal Information** θ_{JA} (°C/W) DC Input Voltage-0.5V to 7.0V Thermal Resistance (Typical, Note 18) TSSOP Package 85 **Operating Conditions** Operating Temperature Range -40°C to 85°C Maximum Storage Temperature Range $\,\ldots\,$ -65°C to 150°C Supply Voltage to Ground Potential Maximum Lead Temperature (Soldering 10s).....300°C Inputs and V_{CC} Only.....-0.5V to 7.0V (Lead Tips Only) Supply Voltage to Ground Potential Outputs and D/O Only.....-0.5V to 7.0V CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 18. θ_{JA} is measured with the component mounted on an evaluation PC board in free air. ## **Electrical Specifications** | PARAMETER | SYMBOL | (NOTE 19) | ONS | MIN | (NOTE 20) | MAX | UNITS | |--|------------------|--|-----------------------------------|---------------------------------------|---------------------------|--------|-------| | DC ELECTRICAL SPE | CIFICATIO | IS Over the Operating Range, T _A | = -40°C to 85°C, V _C | C = 5.0V ±10 | 0% | | ı | | Input HIGH Voltage | V _{IH} | Guaranteed Logic HIGH Level | | 2.0 | - | - | V | | Input LOW Voltage | V _{IL} | Guaranteed Logic LOW Level | | - | - | 0.8 | V | | Input HIGH Current
(Input Pins) | lн | V _{CC} = Max | V _{IN} = Vcc | - | - | 1 | μΑ | | Input HIGH Current
(I/O Pins) | lн | V _{CC} = Max | V _{IN} = Vcc | - | - | -1 | μΑ | | Input LOW Current
(Input Pins) | I _{IL} | V _{CC} = Max | V _{IN} = GND | - | - | 1 | μΑ | | Input LOW Current
(I/O Pins) | I _{IL} | V _{CC} = Max | V _{IN} = GND | - | - | -1 | μА | | High Impedance | lozh | V _{CC} = Max | V _{OUT} = 2.7V | - | - | 1 | μА | | Output Current | lozL | V _{CC} = Max | V _{OUT} = 0.5V | - | - | -1 | μА | | Clamp Diode Voltage | V _{IK} | V _{CC} = Min, I _{IN} = -18mA | | - | -0.7 | -1.2 | V | | Short Circuit Current (I/O Pins) | los | V _{CC} = Max (Note 21), V _{OUT} = G | GND | -80 | -140 | -225 | mA | | Output Drive Current
(I/O Pins) | lo | V _{CC} = Max (Note 21), V _{OUT} = 2 | 5V | -50 | - | -180 | mA | | Output Leakage
Current (Open Drain) | l _{OFF} | $V_{CC} = Max, V_{OUT} = 4.5V$ | | - | - | ±100 | μΑ | | Input Hysteresis | V _H | | | - | 100 | - | mV | | CD74FCT16511T OUT | PUT DRIVE | SPECIFICATIONS Over the Ope | rating Range, T _A = -4 | 0°C to 85°C | C, V _{CC} = 5.0V | ±10% | • | | Output HIGH Voltage | V _{OH} | V_{CC} = Min, V_{IN} = V_{IH} or V_{IL} | I _{OH} = -3.0mA | 2.5 | 3.5 | - | V | | | | | I _{OH} = -15.0mA | 2.4 | 3.5 | - | V | | | | | I _{OH} = -32.0mA | 2.0 | 3.0 | - | V | | Output LOW Voltage | V _{OL} | V_{CC} = Min, V_{IN} = V_{IH} or V_{IL} | I _{OL} = 64mA | - | 0.2 | 0.55 | V | | Power Down Disable | loff | $V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 4.5V$ | | - | - | ±100 | μΑ | | CD74FCT162511T OU | TPUT DRIV | E SPECIFICATIONS Over the Op | erating Range, T _A = - | -40 ^o C to 85 ^c | ^{0}C , $V_{CC} = 5.0$ | V ±10% | | | Output HIGH Voltage | V _{OH} | V_{CC} = Min, V_{IN} = V_{IH} or V_{IL} | I _{OH} = -24.0mA | 2.4 | 3.3 | - | V | | Output LOW Voltage | V _{OL} | V_{CC} = Min, V_{IN} = V_{IH} or V_{IL} | I _{OL} = 24mA | - | 0.3 | 0.55 | ٧ | | Output LOW Current | lodl | $V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , V_{OL} | T = 1.5V (Note 21) | 60 | 115 | 150 | mA | | Output HIGH Current | lodh | $V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , V_{OL} | _T = 1.5V (Note 21) | -60 | -115 | -150 | mA | # **Electrical Specifications (Continued)** | PARAMETER | SYMBOL | (NOTE 19
TEST CONDIT | MIN | (NOTE 20) | MAX | UNITS | | |--|---|---|--|-----------|-----|-------------------|------------| | CAPACITANCE TA = 2 | 25 ⁰ C, f = 1Mł | -
Iz | | | | | | | Input Capacitance
(Note 22) | C _{IN} | V _{IN} = 0V | | - | 4.5 | 6.0 | pF | | I/O Capacitance
(Note 22) | C _{I/O} | V _{OUT} = 0V | | - | 5.5 | 8.0 | pF | | Open Drain
Capacitance (Note 22) | CO | V _{OUT} = 0V | | - | 4.5 | 6.0 | рF | | POWER SUPPLY SPE | CIFICATION | is | | | | | | | Quiescent Power
Supply Current | I _{CCL} ,
I _{CCH} , I _{CCZ} | V _{CC} = Max | V _{IN} = GND
or V _{CC} | - | 0.1 | 500 | μΑ | | Supply Current per Input at TTL HIGH | Δl _{CC} | V _{CC} = Max | V _{IN} = 3.4V
(Note 23) | - | 0.5 | 1.5 | mA | | Supply Current per
Input per MHz
(Note 24) | ICCD | V _{CC} = Max, Outputs Open OEAB = GND OEBA = VCC One Bit Toggling 50% Duty Cycle | V _{IN} = V _{CC}
V _{IN} = GND | - | 75 | 120 | μΑ/
MHz | | Total Power Supply
Current (Note 26) | lc | V _{CC} = Max, Outputs Open
f _{CP} = 10MHz (CLKAB) | V _{IN} = V _{CC}
V _{IN} = GND | - | 0.8 | 1.7
(Note 25) | mA | | | | 50% Duty Cycle LEAB = OEAB = GND OEBA = V _{CC} f _I = 5MHz One Bit Toggling | V _{IN} = 3.4V
V _{IN} = GND | - | 1.3 | 3.2
(Note 25) | mA | | | | V _{CC} = Max, Outputs Open
f _{CP} = 10MHz (CLKAB) | $V_{IN} = V_{CC}$
$V_{IN} = GND$ | - | 3.8 | 6.5
(Note 25) | mA | | | | 50% Duty Cycle LEAB = OEAB = GND OEBA = V _{CC} f _I = 2.5MHz 18 Bits Toggling | V _{IN} = 3.4V
V _{IN} = GND | - | 9.0 | 21.8
(Note 25) | mA | # **Switching Specifications Over Operating Range** (Propagation Delays) | | | (NOTE 27) | 7 | | A. | Т | | |---|--|-----------------------------------|------------------|------|------------------|-----|-------| | PARAMETER | SYMBOL | TEST
CONDITIONS | (NOTE 28)
MIN | MAX | (NOTE 28)
MIN | мах | UNITS | | Propagation Delay PA_X to PB_X | t _{PLH}
t _{PHL} | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 6.5 | 1.5 | 5.7 | ns | | Propagation Delay A_X to B_X or B_X to A_X , PB_X to PA_X | t _{PLH}
t _{PHL} | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 6.5 | 1.5 | 5.0 | ns | | Propagation Delay A_X to PB_X | t _{PLH}
t _{PHL} | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 9.0 | 1.5 | 7.5 | ns | | Propagation Delay | t _{PLH} C _L = 50pF | | 1.5 | 10.5 | 1.5 | 9.0 | ns | | A _X to PERB, PA _X to PERB | (Note 29)
t _{PHL} | $R_L = 500\Omega$ | 1.5 | 9.5 | 1.5 | 8.0 | ns | | Propagation Delay | t _{PLH} | C _L = 50pF | 1.5 | 10.5 | 1.5 | 9.0 | ns | | B _X to PERA, PB _X to PERA | (Note 29)
t _{PHL} | $R_L = 500\Omega$ | 1.5 | 9.5 | 1.5 | 8.0 | ns | | Propagation Delay LEBA to A_X and PA_X , LEAB to B_X and PB_X | t _{PLH}
t _{PHL} | | | 6.0 | 1.5 | 5.6 | ns | | Propagation Delay | t _{PLH} | C _L = 50pF | 1.5 | 7.5 | 1.5 | 7.0 | ns | | LEBA to PERA, LEAB to PERB | (Note 29)
t _{PHL} | $R_L = 500\Omega$ | 1.5 | 6.5 | 1.5 | 6.0 | ns | # Switching Specifications Over Operating Range (Propagation Delays) (Continued) | | | (NOTE 27) | 7 | Г | A | Т | | |--|--------------------------------------|-----------------------------------|------------------|------|------------------|------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | (NOTE 28)
MIN | MAX | (NOTE 28)
MIN | MAX | UNITS | | Propagation Delay CLKBA to A_X and PA_X CLKAB to B_X and PB_X | tPLH
tPHL | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 6.0 | 1.5 | 5.6 | ns | | Propagation Delay | t _{PLH} | C _L = 50pF | 1.5 | 7.5 | 1.5 | 7.0 | ns | | CLKBA to PERA
CLKAB to PERB | (Note 29)
t _{PHL} | $R_L = 500\Omega$ | 1.5 | 6.5 | 1.5 | 6.0 | ns | | Output Enable Time $\overline{\text{OEBA}}$ to A_X and PA_X $\overline{\text{OEAB}}$ to B_X and PB_X | t _{PZH}
t _{PZL} | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 7.0 | 1.5 | 6.0 | ns | | Output Disable Time (Note 30) OEBA to Ax and PAx OEAB to Bx and PBx | t _{PHZ}
t _{PLZ} | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 7.0 | 1.5 | 5.6 | ns | | Parity ERROR Enable | t _{PLZ} | C _L = 50pF | 1.5 | 6.0 | 1.5 | 6.0 | ns | | OEBA to PERA, OEAB to PERB | (Note 29)
t _{PZL} | $R_L = 500\Omega$ | 1.5 | 6.0 | 1.5 | 6.0 | ns | | ODD/EVEN to PERB | t _{PLH} | C _L = 50pF | 1.5 | 10.0 | 1.5 | 10.0 | ns | | | tPHL | $R_L = 500\Omega$ | 1.5 | 10.0 | 1.5 | 10.0 | ns | | ODD/EVEN to PBX | t _{PLH}
t _{PHL} | $C_L = 50pF$
$R_L = 500\Omega$ | 1.5 | 10.0 | 1.5 | 10.0 | ns | # **Switching Specifications Over Operating Range** (Setup Times) | | | ,, | NOTES 27, 31) | | | Т | Α | λT | | |--------------------------------|-----------------|--------------|---------------------------|-----------------------|-----|-----|-----|-----|-------| | DESCRIPTION | SYMBOL | | CONDITIONS | | | МАХ | MIN | MAX | UNITS | | Setup Time | t _{SU} | GEN/CHK LOW | PB _X valid | C _L = 50pF | 6.5 | - | 4 | - | ns | | HIGH or LOW A_X to CLKAB | | | PB _X not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | GEN/CHK HIGH | PERB valid | C _L = 50pF | 6.5 | - | 4 | - | ns | | | | | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | Setup Time | t _{SU} | GEN/CHK HIGH | PERB valid | C _L = 50pF | 6.5 | - | 4 | - | ns | | PA _X to CLKAB | | | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | Setup Time | t _{SU} | | PERA valid | C _L = 50pF | 6.5 | - | 4 | - | ns | | B_X to CLKBA PB_X to CLKBA | | | PERA not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | Setup Time | tsu | CLKAB LOW | PB _X valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | A_X to LEAB | | GEN/CHK LOW | PB _X not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | CLKAB LOW | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | GEN/CHK HIGH | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | CLKAB HIGH | PB _X valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | GEN/CHK LOW | PB _X not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | CLKAB HIGH | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | GEN/CHK HIGH | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | ## Switching Specifications Over Operating Range (Setup Times) (Continued) | | | (1) | (NOTES 27, 31) | | - | Г | Α | ·Τ | | |------------------------------|--------|--------------|----------------|-----------------------|-----|-----|-----|-----|-------| | DESCRIPTION | SYMBOL | , | CONDITIONS | | MIN | MAX | MIN | MAX | UNITS | | Setup Time | tsu | CLKAB LOW | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | PAx to LEAB | | GEN/CHK HIGH | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | CLKAB HIGH | PERB valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | GEN/CHK HIGH | PERB not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | Setup Time | tsu | CLKBA LOW | PERA valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | B_X to LEBA PB_X to LEBA | | | PERA not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | | | | CLKAB HIGH | PERA valid | C _L = 50pF | 6.5 | - | 3.5 | - | ns | | | | | PERA not valid | $R_L = 500\Omega$ | 3 | - | 3 | - | ns | ## **Switching Specifications Over Operating Range** (Hold Times) | | | (NOTE 27) | T 77) | | Α | Т | | |--|----------------|-----------------------|-------|-----|-----|-----|-------| | DESCRIPTION | SYMBOL | CONDITIONS | MIN | MAX | MIN | MAX | UNITS | | Hold Time HIGH or LOW A_X to LEAB, B_X to LEBA | t _H | C _L = 50pF | 1 | - | 1 | - | ns | | Hold Time HIGH or LOW PA _X to LEAB | t _H | $R_L = 500\Omega$ | 1 | - | 1 | - | ns | | Hold Time HIGH or LOW PB _X to LEBA | t _H | | 1 | - | 1 | - | ns | | Hold Time A_X to CLKAB, PA_X to CLKAB | t _H | | 1 | - | 1 | - | ns | | Hold Time B_X to CLKBA, PB_X to CLKBA | t _H | | 1 | - | 1 | - | ns | | LEAB or LEBA Pulse Width HIGH (Note 30) | t _W | | 3 | - | 3 | - | ns | | CLKAB or CLKBA Pulse Width HIGH or LOW (Note 30) | tW | | 3 | - | 3 | - | ns | #### NOTES: - 19. For conditions shown as Max or Min, use appropriate value specified under Electrical Specifications for the applicable device type. - 20. Typical values are at $V_{CC} = 5.0V$, 25° C ambient and maximum loading. - 21. Not more than one output should be shorted at one time. Duration of the test should not exceed one second. - 22. This parameter is determined by device characterization but is not production tested. - 23. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND. - 24. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations. - 25. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested. - 26. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$ - $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$ - I_{CC} = Quiescent Current - $\Delta I_{\hbox{\footnotesize CC}}$ = Power Supply Current for a TTL High Input (V_{IN} = 3.4V) - D_H = Duty Cycle for TTL Inputs High - N_T = Number of TTL Inputs at D_H - I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) - f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices) - f_I = Input Frequency - N_I = Number of Inputs at f_I - All currents are in milliamps and all frequencies are in megahertz. - 27. See test circuit and wave forms. - 28. Minimum limits are guaranteed but not tested on Propagation Delays. - 29. On Open Drain Outputs t_{PLH} is measured up to V_{OUT} = V_{OL} + 0.3V. - 30. This parameter is guaranteed but not production tested. - 31. "Not Valid" means the setup time indicated is not sufficient to assure proper funtioning of this output; however, the set-up time indicated will assure proper functioning of the A-to-B or B-to-A port respective to the indicated direction. ## Test Circuits and Waveforms ### NOTE: 32. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq$ 50 $\!\Omega$; $t_f,\,t_r \leq$ 2.5ns. FIGURE 1. TEST CIRCUIT #### **SWITCH POSITION** | TEST | SWITCH | |-------------------------------------|--------| | t _{PLZ} , t _{PZL} | Closed | | tPHZ, tPZH, tPLH, tPHL | Open | #### **DEFINITIONS:** C_L = Load capacitance, includes jig and probe capacitance. R_T = Termination resistance, should be equal to Z_{OUT} of the Pulse Generator. FIGURE 2. SETUP, HOLD, AND RELEASE TIMING FIGURE 3. PULSE WIDTH FIGURE 4. ENABLE AND DISABLE TIMING FIGURE 5. PROPAGATION DELAY