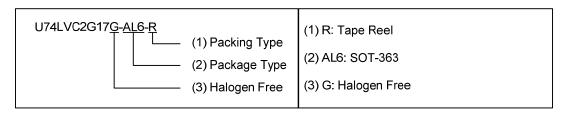
UNISONIC TECHNOLOGIES CO., LTD

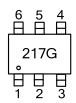
U74LVC2G17 cmos ic

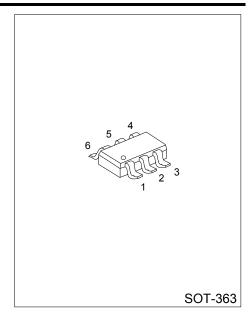
DUAL SCHMITT-TRIGGER BUFFER

DESCRIPTION


The UTC **U74LVC2G17** is a high-performance, low-power, low-voltage, Si-gate CMOS device which provides two independent buffers with Schmitt trigger action. It is capable of transforming slowly changed input signals into sharply defined, jitter-free output signals.

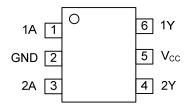
■ FEATURES


- * Operate From 1.65V to 5.5V
- * 5 V tolerant input/output for interfacing with 5 V logic
- * \pm 24mA output drive (V_{CC} = 3.3V)
- * CMOS low-power consumption and high noise immunity
- * I_{OFF} Supports Partial-Power-Down Mode Operation
- * Latch-up performance exceeds 100mA
- * Specified from -40 $^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$
- * Halogen Free


ORDERING INFORMATION

Ordering Number	Package	Packing
U74LVC2G17G-AL6-R	SOT-363	Tape Reel

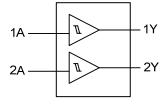
■ MARKING



<u>www.unisonic.com.tw</u> 1 of 5

U74LVC2G17 cmos ic

■ PIN CONFIGURATION


■ FUNCTION TABLE

INPUT(A)	OUTPUT(Y)	
L	L	
Н	Н	

H=High level

L=Low Level

■ LOGIC SYMBOL

■ ABSOLUTE MAXIMUM RATING

PARAME [*]	TER	SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	-0.5~6.5	V
Input Voltage (Note 2)		V_{IN}	-0.5~6.5	V
	High-Impedance Power-Off State	.,	-0.5~6.5	V
Output Voltage (Note 2,3)	High State Low State	V _{out}	-0.5~V _{CC} +0.5	V
Input Clamp Current (V _{IN} <	0)	I _{IK}	-50	mA
Output Clamp Current (Vo	_{UT} <0)	I _{OK}	-50	mA
Output Current		l _{out}	±50	mA
V _{CC} or GND Current		Icc	±100	mA
Junction Temperature		T_J	150	°C
Storage Temperature		T_{STG}	-65 ~ + 150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 3. The value of V_{CC} is provided in the recommended operating conditions table.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V _{CC}	Operating	1.65		5.5	V
Input Voltage	V _{IN}		0		5.5	V
Output Voltage	V _{OUT}	High or low state	0		Vcc	V
		V _{CC} = 1.65 V	0.70		1.40	V
		$V_{CC} = 2.3 \text{ V}$	1.00		1.70	V
High-Level Input Voltage	VT+	V _{CC} = 3.0 V	1.30		2.20	V
		V _{CC} = 4.5 V	1.90		3.10	V
		V _{CC} = 5.5 V	2.20		3.70	V
		V _{CC} = 1.65 V	0.30		0.70	V
		V _{CC} = 2.3 V	0.40		1.00	V
Low-Level Input Voltage	VT-	V _{CC} = 3.0 V	0.60		1.30	V
		V _{CC} = 4.5 V	1.10		2.00	V
		V _{CC} = 5.5 V	1.40		2.50	V
		V _{CC} = 1.65 V	0.30		0.80	V
		V _{CC} = 2.3 V	0.40		0.90	V
Hysteresis Voltage	ΔVΤ	V _{CC} = 3.0 V	0.40		1.10	V
-		V _{CC} = 4.5 V	0.60		1.30	V
		V _{CC} = 5.5 V	0.70		1.40	V
Operating Temperature	Та		-40		85	°C

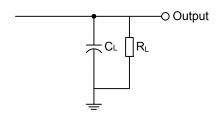
Note: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

U74LVC2G17 cmos ic

■ ELECTRICAL CHARACTERISTICS (V_{CC}=3.3V, Ta=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{CC} = 1.65V~5.5V, I _{OH} =-100μA	V _{CC} -0.1			٧
		V _{CC} =1.65V, I _{OH} =-4mA	1.20			V
High-Level Output Voltage	V_{OH}	V _{CC} =2.3V, I _{OH} =-8mA	1.90			V
		$V_{CC} = 3.0V, I_{OH} = -16mA$	2.40			V
		$V_{CC} = 3.0V, I_{OH} = -24mA$	2.30			V
		V _{CC} = 4.5V, I _{OH} =-32	3.80			V
		$V_{CC} = 1.65 \sim 5.5 \text{V}, I_{OI} = 100 \mu\text{A}$			0.10	V
		$V_{CC} = 1.65V, I_{OI} = 4mA$			0.45	V
Low Lovel Output Voltage	V _{OL}	$V_{CC} = 2.3V, I_{OI} = 8mA$			0.30	V
Low-Level Output Voltage		$V_{CC} = 3.0V. I_{OI} = 16mA$			0.40	V
		$V_{CC} = 3.0V, I_{OI} = 24mA$			0.55	V
		$V_{CC} = 4.5V, I_{OI} = 32mA$			0.55	V
Input Leakage Current	I _{I(LEAK)}	$V_{IN} = 0$ to 5.5V, $V_{CC} = 0 \sim 5.5$ V			±5	μA
Power OFF Leakage Current	I _{OFF}	V_{IN} or V_{OUT} =5.5V, V_{CC} = 0			±10	μA
Quiescent Supply Current	I _{CC}	V _{IN} = V _{CC} or GND, I _{OUT} =0			10	μA
Quiescent Supply Surrent	100	V _{CC} =1.65~5.5 V		10		μ/ τ
Additional Quiescent Supply Current		One input at V _{CC} -0.6V				
	ΔI_{CC}	Other inputs at V _{CC} or GND,			500	μA
Carrent		I _{OUT} =0, V _{CC} =3~5.5 V			550	μΛ
Input Capacitance	Cı	$V_{IN} = V_{CC}$ or GND,		4		pF
Input Supuoitarioc	5	$V_{CC} = 3.3 \text{ V}$		7		Pi

■ **SWITCHING CHARACTERISTICS** (see TEST CIRCUIT AND WAVEFORMS)

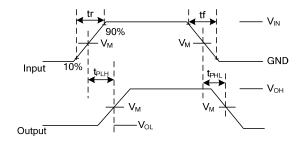

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay nA to nY		$V_{CC} = 1.8V \pm 0.15V$, $C_L = 30pF$, $R_L = 1K\Omega$	3.9		9.3	ns
	t_PLH	V_{CC} =2.5V±0.2V, C_L =30pF, R_L =500 Ω	1.9		5.7	ns
	t _{PHL}	V_{CC} =3.3V±0.3V, C_L =50pF, R_L =500 Ω	2.2		5.4	ns
		V_{CC} =5V±0.5V , C_L =50pF, R_L =500 Ω	1.5		4.3	ns

■ **OPERATING CHARACTERISTICS** (Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Dissipation Capacitance	Cpd	V _{CC} =5V, f=10MHz		21		pF

U74LVC2G17 cmos ic

■ TEST CIRCUITS AND WAVEFORMS



V_{CC}	V_{IN}	t_R , t_F	V_{M}	C_L	R_L
1.65V~1.95V	V_{CC}	≤2ns	V _{CC} /2	30pF	1kΩ
2.3V~2.7V	V _{CC}	≤2ns	V _{CC} /2	30pF	500Ω
3.0V~3.6V	3V	≤2.5ns	1.5V	50pF	500Ω
4.5V~5.5V	V _{CC}	≤2.5ns	V _{CC} /2	50pF	500Ω

Definitions for test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

Notes: 1. V_{OL} and V_{OH} are typical output drop that occur with the output load.

2. t_{PLH} and t_{PHL} are the same as tpd .

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.