

IT124 MONOLITHIC DUAL NPN TRANSISTOR

Linear Systems replaces discontinued Intersil IT124

The IT124 is a monolithic pair of Super-Beta NPN transistors mounted in a single SOT-23 package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching. The IT124 is a direct replacement for discontinued Intersil IT124.

The 6 Pin SOT-23 provides ease of manufacturing, and a lower cost assembly option.

(See Packaging Information).

IT124 Features:

- Very high gain
- Tight matching
- Low Output Capacitance

FEATURES								
Direct Replacement for INTERSIL IT124								
HIGH GAIN	h _{FE} ≥ 1500 @ 1 AND 10μA							
LOW OUTPUT CAPACITANCE	≤ 2.0pF							
V _{BE} tracking	≤ 5.0μV°C							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25°C (unless otherwise noted)								
Maximum Temperatures								
Storage Temperature	-65°C to +200°C							
Operating Junction Temperature	-55°C to +150°C							
Maximum Power Dissipation								
Continuous Power Dissipation (One side)	250mW							
Continuous Power Dissipation (Both sides) 500mW							
Linear Derating factor (One side)	2.3mW/°C							
Linear Derating factor (Both sides)	4.3mW/°C							
Maximum Currents								
Collector Current	10mA							

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

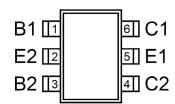
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} - V _{BE2}	Base Emitter Voltage Differential		2	5	mV	$I_C = 10 \mu A, V_{CE} = 1 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential		5	15	μV/°C	$I_C = 10 \mu A, V_{CE} = 1 V$
	Change with Temperature					T _A = -55°C to +125°C
I _{B1} - I _{B2}	Base Current Differential			0.6	nA	$I_C = 10 \mu A$, $V_{CE} = 1 V$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

LLLC I MICAL	ANACIEMISTICS & 25 C (unicas offici wise	iioteuj				
SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	2	_		V	$I_{c} = 10 \mu A, I_{E} = 0$
BV _{CEO}	Collector to Emitter Voltage	2	-		V	$I_{C} = 10 \mu A, I_{B} = 0$
BV_{EBO}	Emitter-Base Breakdown Voltage	6.2			V	$I_E = 10 \mu A$, $I_C = 0^2$
BV_{CCO}	Collector to Collector Voltage	100			V	$I_{C} = 10 \mu A, I_{E} = 0$
h _{FE}	DC Current Gain	1500				$I_{C} = 1\mu A, V_{CE} = 1V$
		1500				$I_{C} = 10 \mu A, V_{CE} = 1 V$
V _{CE} (SAT)	Collector Saturation Voltage			0.5	V	$I_{C} = 1mA, I_{B} = 0.1mA$
I _{EBO}	Emitter Cutoff Current			100	pА	$I_{C} = 0, V_{EB} = 3V$
I _{CBO}	Collector Cutoff Current			100	pА	$I_E = 0, V_{CB} = 1V$
C _{OBO}	Output Capacitance	-		2	pF	$I_{E} = 0, V_{CB} = 1V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	V _{CC} = 0V
I _{C1C2}	Collector to Collector Leakage Current			10	nA	$V_{CC} = \pm 50V$
f_T	Current Gain Bandwidth Product	100			MHz	$I_C = 100 \mu A, V_{CE} = 1 V$
NF	Narrow Band Noise Figure			3	dB	$I_C = 10\mu A$, $V_{CE} = 3V$, BW=200Hz, $R_G = 10K\Omega$,
						f = 1KHz

Notes:

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.


Available Packages:

IT124 in SOT-23 IT124 available as bare die micross

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

SOT-23 (Top View)

