GJ2137

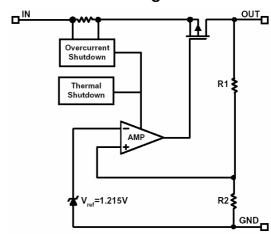
750mA CMOS Low Dropout Voltage Regulator

Description

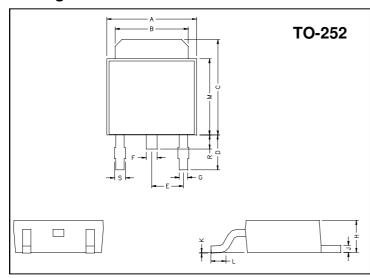
The GJ2137 series of positive, linear regulators feature low quiescent current (30µA typ.) with low dropout voltage, making them ideal for battery applications.

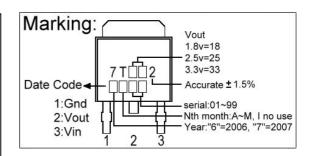
These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

The GJ2137 is stable with an output capacitance of 2.2µF or greater.

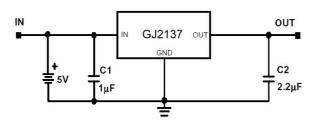

Features

- Very Low Dropout Voltage
- Guaranteed 750mA output
- Over-Temperature Shutdown
- Current Limiting
- Short Circuit Current Fold-back
- Highly Accurate ± 1.5%
- Low Temperature Coefficient


Applications


- Battery Powered Widgets
- Instrumentation
- Wireless Devices
- PC Peripherals
- Portable Electronics

Functional Block Diagram


Package Dimensions

REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	nLI.	Min.	Max.	
Α	6.40	6.80	G	0.50	0.70	
В	5.20	5.50	Н	2.20	2.40	
С	6.80	7.20	J	0.45	0.55	
D	2.40	3.00	K	0	0.15	
E	2.30 REF.		L	0.90	1.50	
F	0.70	0.90	М	5.40	5.80	
S	0.60	0.90	R	0.80	1.20	

Typical Application Circuit

GJ2137 Page: 1/5

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input Max Voltage	VIN	8	V
Output Current	Іоит	1	Α
Output Voltage	Vout	1.5~3.8	V
Operating Ambient Temperature	Topr	-40 ~ +85	°C
Junction Temperature	Tj	-40 ~ +125	°C
Maximum Junction Temperature	Tj Max	150	°C
Thermal Resistance	θjc	60	°CW
Internal Power Dissipation (∆T=100°C)	PD	3	W
EDS Classification		В	

Electrical Characteristics VIN=VOUT(T)+2V, Ta=25°C unless otherwise noted

Parameter	Symbol	Condition		Min	TYP	Max	Unit
Output Voltage	Vоит(E) (Note1)	Io=1mA		-1.5%	Vout(T) (Note2)	1.5%	V
Output Current	Io	Vo>1.2V		750	-	-	mA
Current Limit	ILIM	Vo>1.2V		750	850	-	mA
Load Regulation	REGLOAD	VIN=VOUT(T)+2V, Io=1mA to 750mA		-1	0.2	1	%
	VDROPOUT	Io=750mA Vo=Vouт(E)-2%	1.4V <vout(t)≤2.0v< td=""><td>-</td><td>-</td><td>1400</td><td rowspan="3">mV</td></vout(t)≤2.0v<>	-	-	1400	mV
Dropout Voltage			2.0V <vouτ(t)≤2.8v< td=""><td>-</td><td>-</td><td>800</td></vouτ(t)≤2.8v<>	-	-	800	
			2.8V <vоuт(t)< td=""><td>-</td><td>-</td><td>600</td></vоuт(t)<>	-	-	600	
Quiescent Current	Iq	VIN= VOUT(T)+2V, IO=0mA		-	30	50	μΑ
Ground Pin Current	Ignd	VIN= VOUT(T)+2V, IO=1mA~750mA		-	35	-	μA
Line Degulation	REGLINE	Io=1mA VIN=VOUT(T)+1 to VOUT(T)+2	1.4V <vo∪т(t)≤2.0v< td=""><td>-0.15</td><td>-</td><td>0.15</td><td rowspan="2">- %</td></vo∪т(t)≤2.0v<>	-0.15	-	0.15	- %
Line Regulation			2.0V <vout(t)<4.0v< td=""><td>-0.1</td><td>0.02</td><td>0.1</td></vout(t)<4.0v<>	-0.1	0.02	0.1	
Input Voltage	VIN			Note3	-	7	V
Over Temperature Shutdown	OTS			-	150	-	$^{\circ}\mathbb{C}$
Over Temperature Hysterisis	OTH			-	30	-	$^{\circ}\mathbb{C}$
Vo Temperature Coefficient	TC			-	30	-	ppm/°C
Short Circuit Current	Isc	VIN=VOUT(T)+1V, VOUT<0.8V		-	300	600	mA
		Io=100mA Co=2.2μF	f=1kHz	-	50	ı	dB
Power Supply Rejection			f=10kHz	-	20	-	
			f=100kHz	-	10	-	
Output Voltage Noise	eN	f=10Hz~100kHz, Io=10mA, Co=2.2µF		_	30	-	μVrms

Note 1: Vout (E) = Effective Output Voltage (i.e. the output voltage when "Vout (T) + 2.0V" is provided at the Vin pin while maintaining a certain Io∪⊤ value).

GJ2137 Page: 2/5

^{2:} Vout (T) = Specified Output Voltage

^{3:} VIN (MIN) = VOUT+ VDROPOUT

Ordering Information (contd.)

Part Number	Marking	Output Voltage	Part Number	Marking	Output Voltage
GJ2137-15	7T152 XXXX	1.5V	GJ2137-18	7T182 XXXX	1.8V
GJ2137-25	7T252 XXXX	2.5V	GJ2137-27	7T272 XXXX	2.7V
GJ2137-28	7T282 XXXX	2.8V	GJ2137-29	7T292 XXXX	2.9V
GJ2137-30	7T302 XXXX	3.0V	GJ2137-31	7T312 XXXX	3.1V
GJ2137-33	7T332 XXXX	3.3V	GJ2137-34	7T342 XXXX	3.4V
GJ2137-35	7T352 XXXX	3.5V	GJ2137-36	7T362 XXXX	3.6V
GJ2137-3.7	7T372 XXXX	3.7V	GJ2137-38	7T382 XXXX	3.8V
GJ2137-2H	7T2H2 XXXX	2.85V			

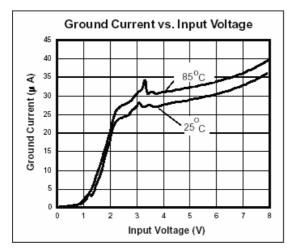
Detailed Description

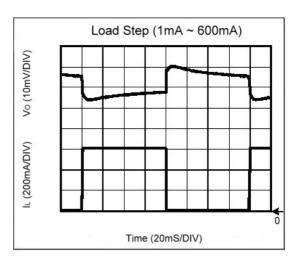
The GJ2137 series of COMS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, and thermal shutdown.

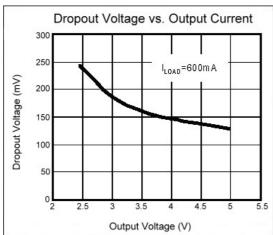
The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 750mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

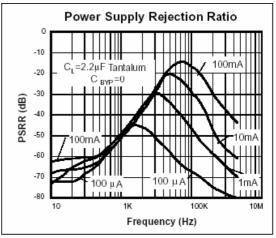
The GJ2137 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The GJ2137 also incorporates current fold-back to reduce power dissipation when the output is short circuited. This feature becomes active when the output drops below 0.8V and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.8V.

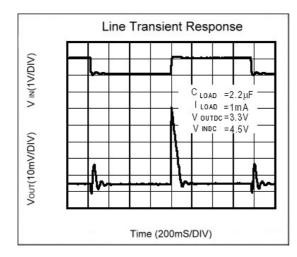
External Capacitors

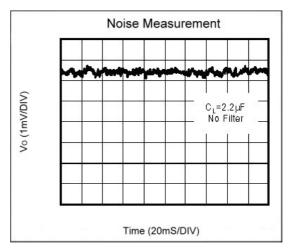

The GJ2137 is stable with an output capacitance to ground of 2.2µF or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a 0.1µF ceramic capacitor with a 10µF Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

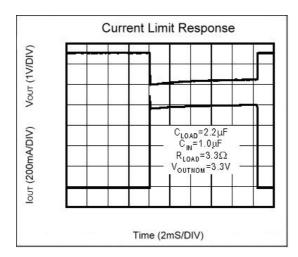

A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least 0.1µF to have a beneficial effect.

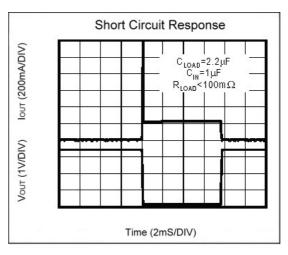

All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

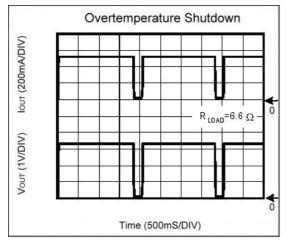

GJ2137 Page: 3/5

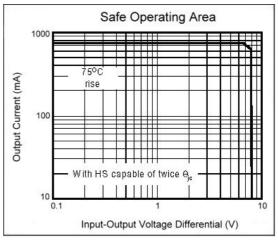

Characteristics Curve











GJ2137 Page: 4/5

Important Notice:

- Important Notice:
 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.
 GTM reserves the right to make changes to its products without notice.
 GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.
 GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.
 Head Office And Factory:
 Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
 TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785
 China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China
 TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165

GJ2137 Page: 5/5