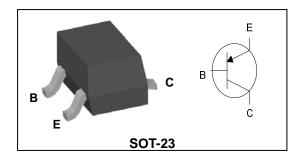


SBT5401

PNP Silicon Transistor


Description

- General purpose amplifier
- High voltage application

Features

- High collector breakdown voltage : $V_{CBO} = -160V$, $V_{CEO} = -160V$
- Low collector saturation voltage : $V_{CE(sat)} = -0.5V(MAX.)$
- Complementary pair with SBT5551

PIN Connection

Ordering Information

Type NO.	Marking	Package Code
SBT5401	<u>NFN</u> <u>□</u> ① ②	SOT-23

①Device Code ② Year&Week Code

Absolute maximum ratings

(Ta=25°C)

Characteristic	Symbol	Ratings	Unit
Collector-Base voltage	V_{CBO}	-160	V
Collector-Emitter voltage	$V_{\sf CEO}$	-160	V
Emitter-Base voltage	V_{EBO}	-5	V
Collector current	I _C	-600	mA
Collector dissipation	P _C	200	mW
Junction temperature	Tj	150	°C
Storage temperature	T_{stg}	-55~150	°C

Electrical Characteristics

(Ta=25°C)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Collector-Base breakdown voltage	BV _{CBO}	I _C =-100μA, I _E =0	-160	i	-	V
Collector-Emitter breakdown voltage	BV_CEO	I _C =-1mA, I _B =0	-160	-	-	V
Emitter-Base breakdown voltage	BV_{EBO}	I _E =-10μA, I _C =0	-5	-	-	V
Collector cut-off current	I _{CBO}	V _{CB} =-120V, I _E =0	-	-	-100	nA
Emitter cut-off current	I _{EBO}	$V_{EB} = -3V$, $I_{C} = 0$	_	-	-100	nA
DC current gain	h _{FE (1)}	V _{CE} =-5V, I _C =-1mA	50	-		-
DC current gain	h _{FE (2)}	V _{CE} =-5V, I _C =-10mA	60	-	240	-
DC current gain	h _{FE (3)}	$V_{CE} = -5V, I_{C} = -50mA$	50	-		-
Collector-Emitter saturation voltage	V _{CE(sat)(1)} *	I _C =-10mA, I _B =-1mA	_	-	-0.2	V
Collector-Emitter saturation voltage	V _{CE(sat)(2)} *	I _C =-50mA, I _B =-5mA	_	-	-0.5	V
Base-Emitter saturation voltage	V _{BE(sat)(1)} *	I _C =-10mA, I _B =-1mA	-	-	-1	V
Base-Emitter saturation voltage	V _{BE(sat)(2)*}	I _C =-50mA, I _B =-5mA	_	-	-1	V
Transition frequency	f _T	V _{CE} =-10V, I _C =-10mA	100	-	400	MHz
Collector output capacitance	C _{ob}	V _{CB} =-10V, I _E =0, f=1MHz	-	-	6	pF

^{* :} Pulse Tester : Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Electrical Characteristic Curves

Fig. 1 h_{FE} - I_{C}

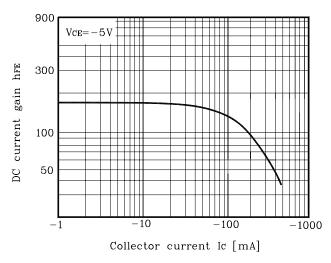


Fig. 3 f_T - I_C

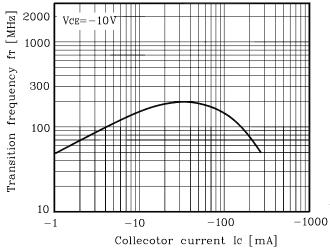
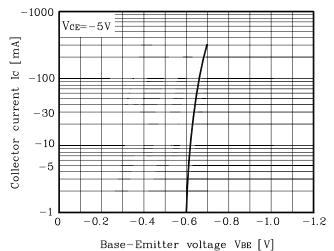
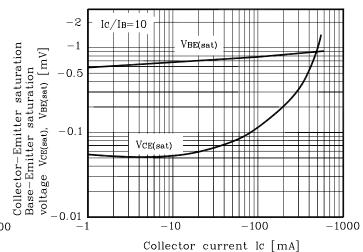
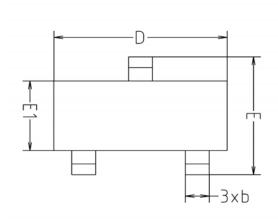
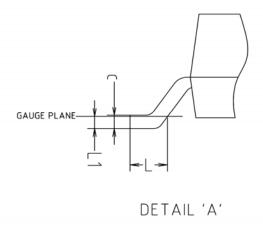
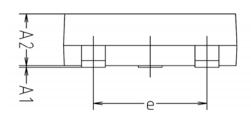


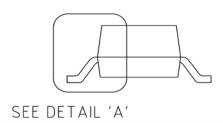
Fig. 5 C_{ob} - V_{CB}

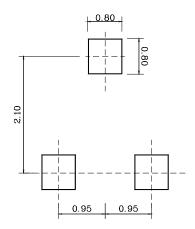

Fig. 4 $V_{CE(sat)}$, $V_{BE(sat)}$ - I_C




Ta=25°C f=1MHz, IE=0


operation of the property of the propert

Outline Dimension



SYMBOL	MILLIMETERS			NOTE	
STIDOL	MINIMUM	NOMINAL	MAXIMUM	NOTE	
A1	0.00	-	0.10		
A2	0.82	-	1.02		
Ь	0.39	0.42	0.45		
С	0.09	0.12	0.15		
D	2.80	2.90	3.00		
Ε	2.20	2.40	2.60		
E1	1.20	1.30	1.40		
е	1.90BSC				
L	0.20	-	-		
L1	0.12BSC				

*Recommend PCB solder land [Unit: mm]

KSD-T5C079-000

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.

KSD-T5C079-000 5