General Purpose Linear IC's General Purpose Converters смоз

D/A Converter for Digital Tuning (With Built-in OP Amp and I/O Expander)

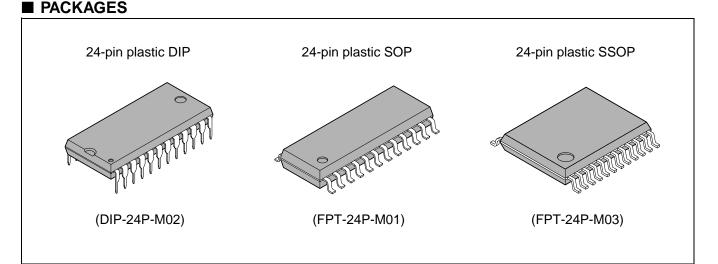
MB88141

DESCRIPTION

The FUJITSU MB88141 is a D/A converter with 12 built-in channels.

The 12 analog output channels have built-in OP Amps, providing large current drive capability.

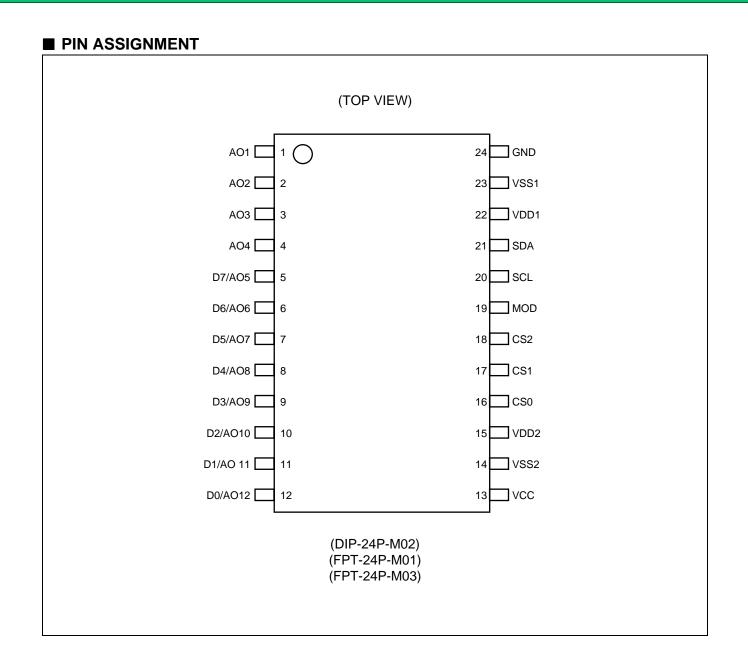
Data input is compatible with I²C specifications, and is controlled by two control lines.


The built-in I/O expander function allows the MB88141 to be controlled by devices incompatible with I²C bus specifications (provides conversion between I²C serial and 8- or 4-bit parallel I/O).

Can be adapted for tuning by electronically variable or pre-fixed resistance, etc.

FEATURES

- Ultra-low power consumption (0.9 mW/channel Typ.)
- Ultra-compact package
- Built-in 12-channel R-2R type 8-bit D/A converter
- Built-in analog output amplifier (maximum sink current 1.0 mA, maximum source current 1.0 mA)
- Analog output range 0 V to Vcc

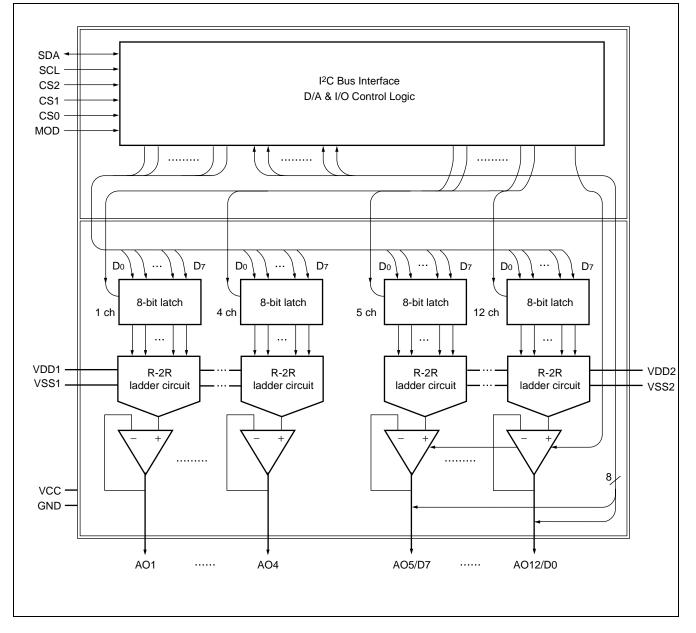

(Continued)

"Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips."

(Continued)

- 5 V single power supply
- Power supply/GND for MCU interface and OP Amp is separate from power supply/GND for D/A converter
- Power supply for D/A converter is divided into two systems for V_{DD1}/V_{SS1} (AO₁ to AO₄) and V_{DD2}/V_{SS2} (AO₅ to AO₁₂), allowing separate level settings for each system
- Compatible with serial data input, I²C specifications
- Built-in I/O expander function (converts between I²C serial and 8- or 4-bit parallel)
- CMOS process
- Packages: DIP 24-pin, SOP 24-pin, SSOP 24-pin

■ PIN DESCRIPTIONS

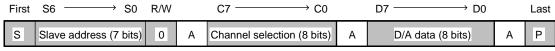

Pin no.	Symbol	I/O	Description
21	SDA	BUS	I ² C bus data input/output pin (hysteresis input). * ² Outputs the acknowledge signal.
20	SCL	I	I ² C bus shift clock input pin (hysteresis input). *2
19	MOD	I	D/A converter and I/O expander mode switching pin. *1, *3 Input "L" to operate as a D/A converter, "H" to operate as I/O expander and D/A converter.
16 17 18	CS0 CS1 CS2	I	Lower 3 bits of the slave address setting pins. *1 This allows up to eight MB88141 chips to be used on the same bus line.
1 2 3 4	AO1 AO2 AO3 AO4	0	8-bit D/A output with OP Amp. *3
5 6 7 8 9 10 11 12	D7/AO5 D6/AO6 D5/AO7 D4/AO8 D3/AO9 D2/AO10 D1/AO11 D0/AO12	I/O	8-bit D/A output with OP Amp. * ³ In I/O expander operation, these pins function as parallel data input/output pins.
13	VCC		Power supply pin for digital circuits and OP Amp.
24	GND	—	GND pin for digital circuits and OP Amp.
22	VDD1		Reference power supply pin for D/A converter (H). AO1 to AO4.
23	VSS1		Reference power supply pin for D/A converter (L). AO1 to AO4.
15	VDD2		Reference power supply pin for D/A converter (H). AO5 to AO12.
14	VSS2		Reference power supply pin for D/A converter (L). AO5 to AO12.

*1: The MOD and CS0-CS2 pins should be used with fixed level input.

*2: Use particular caution in handling the SDA and SCL pins. These pins have no transistor protection against Vcc voltage and therefore have weaker anti-static characteristics than other pins.

*3: When using the I/O expander function together with the D/A converter function, take care that D/A converter output precision is within a range that will not affect overall system operation.

BLOCK DIAGRAM



■ DATA CONFIGURATION

The MB88141 data configuration differs in each of the two operating modes (D/A converter (12-channel) and I/O expander plus D/A converter), selected by the MOD pin signal.

1. For D/A Converter (12-channel) Operation (MOD = "L")

(1) I²C Bus Format

: Sent from master device : Sent from MB88141 (slave device)

S: "Start" condition P: "Stop" condition

A: "Acknowledge" output

(2) Slave Address Comparison (7 bits)

	Slave address input (7 bits)												
S 6	S5	S4	S3	S2	S1	S0							
1	0	0	1	0	0	0							
1	0	0	1	0	0	1							
1	0	0	1	0	1	0							
1	0	0	1	0	1	1							
1	0	0	1	1	0	0							
1	0	0	1	1	0	1							
1	0	0	1	1	1	0							
1	0	0	1	1	1	1							

Ir	nterna	lly fixe	Externally set					
CS6	CS5	CS4	CS3	CS2	CS1	CS0		
1	0	0	1	0	0	0		
1	0	0	1	0	0	1		
1	0	0	1	0	1	0		
1	0	0	1	0	1	1		
1	0	0	1	1	0	0		
1	0	0	1	1	0	1		
1	0	0	1	1	1	0		
1	0	0	1	1	1	1		

Address comparison: Operates only for devices whose own slave address (internally fixed CS6 to CS3 and externally set CS2 to CS0) matches the slave address input value.

(3) R/W Selection (1 bit)

Fixed at "0" (the D/A converter performs write operations only).

(4) Channel Selection (8 bit)

C7	C6	C5	C4	C3	C2	C1	C0	Channel select
×	×	×	×	0	0	0	0	All channels selected *1
×	×	×	×	0	0	0	1	AO1 selected
5	5	5	5	5	5	5	5	ş
×	×	×	×	1	1	0	0	AO12 selected
×	×	×	×	1	1	0	1	Don't care
×	×	×	×	1	1	1	0	Don't care
×	×	×	×	1	1	1	1	All channels selected *2

×: Don't care

*1: The 1 byte of data following the channel selection is set on all channels (all channels set to the same data value).

S Slave address (7 bits) 0 A XXXX0000

*2: The 12 bytes of data following the channel selection are set on all channels (all channels set to separate data values).

S Slave address	0	А	XXXX1111	А	AO1 data	А	•••	AO12 data	А	Ρ
: Sent from	mas	ter de	evice	: Sei	nt from MB8	8141	(slave de	evice)		

S: "Start" condition P: "Stop" condition A: "Acknowledge" output

Note: Setting will repeat, continuing in order from ch1, until the start and stop conditions are acknowledged.

(5) D/A Data (8 bits)

D7	D6	D5	D4	D3	D2	D1	D0	Channel select
0	0	0	0	0	0	0	0	$\cong Vss$
0	0	0	0	0	0	0	1	\cong (Vref / 256) \times 1 + Vss
0	0	0	0	0	0	1	0	\cong (Vref / 256) \times 2 + Vss
5	5	5	5	5	5	5	5	\$
1	1	1	1	1	1	1	0	\cong (Vref / 256) × 254 + Vss
1	1	1	1	1	1	1	1	\cong (Vref / 256) × 255 + Vss

Note: $V_{REF} = V_{DD} - V_{SS}$

2. For D/A Converter + I/O Expander Operation (MOD = "H")

(1) I²C Bus Format

First	$S6 \longrightarrow S0$	R/W		$D7 \longrightarrow D0$		Last		
S	Slave address (7 bits)	1	А	Digital data (8 bits)	А	Ρ		
First	$S6 \longrightarrow S0$	R/W		C7 ────→ C0		D7→ D0		Last
S	Slave address (7 bits)	0	А	Channel selection (8 bits)	А	Digital data (8 bits)	Α	Ρ
S: "(]: Sent from master Start" condition			: Sent from MB8		l (slave device) lge" output		

(2) Slave Address Comparison (7 bits)

Slave address comparison is the same as for D/A converter (12-channel) operation (see "1. (2) "Slave Address Comparison"), with the exception that the CS2 setting determines the number of D/A converter channels and the number of I/O expander bits.

CS2	D/A converter	I/O expander
0	4 channels (AO1 to AO4)	8 bits (D7 to D0)
1	8 channels (AO1 to AO8)	4 bits (D3 to D0)

When CS2 = "1" is selected, the upper 4 bits (D_7 to D_4) of write operations (I^2C bus to parallel interface) are ignored, and the upper 4 bits or read operations (parallel interface to I^2C bus) are output at "0" (low).

(3) R/W Selection (1 bit)

R/W	I/O expander operation	D/A converter operation
0	I ² C bus input \rightarrow parallel data output	I ² C bus input \rightarrow analog output
1	Parallel data input \rightarrow I ² C bus output	

C7	C6	C5	C4	C3	C2	C1	C0	Channel select
×	×	×	×	0	0	0	0	I/O expander operation
×	×	×	×	0	0	0	1	AO1 selected
5	S	5	5	5	5	5	5	\$
×	×	×	×	0	1	0	0	AO4 selected
×	×	×	×	0	1	0	1	Don't care (AO5 selected)
5	5	5	5	5	5	5	5	\$
×	×	×	×	1	0	0	0	Don't care (AO8 selected)
×	×	×	×	1	0	0	1	Don't care
S	5	5	5	5	5	5	5	Ş
×	×	×	×	1	1	1	0	Don't care
×	×	×	×	1	1	1	1	I/O expander continuous operation

(4) Channel Selection (8 bits)

(): When using D/A converter 8 channel, I/O expander 4 bit operation.

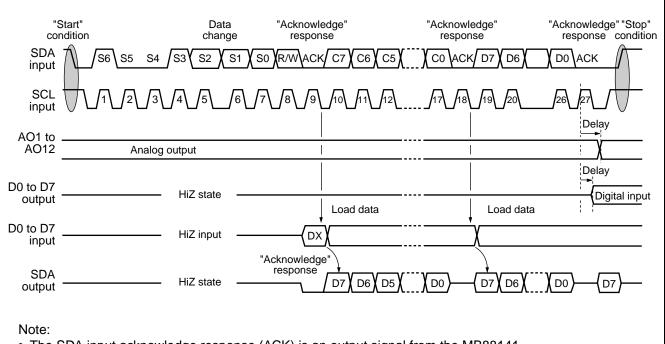
 \times : Don't care

(5) D/A Data (8 bits)

Same as "1. (5) D/A Data (8 bits)."

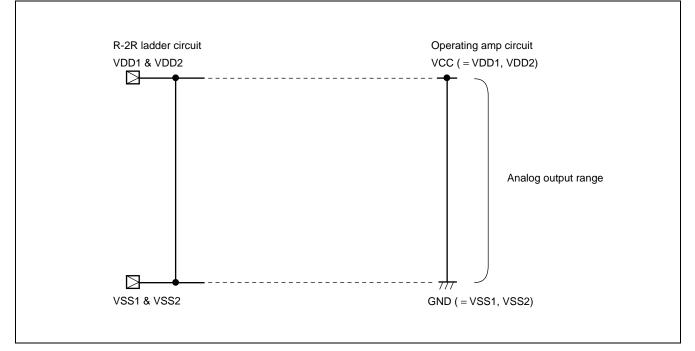
(6) I/O Expander Continuous Operation

 I^2C bus input \rightarrow parallel data output


S Slave address 0 A XXXX1111 A Digital data A	•••	Digital data	A	Р
---	-----	--------------	---	---

Note: In continuous operation, operation continues until start and stop conditions are acknowledged.

Parallel data input \rightarrow I ²C bus output


S Slave address 1	А	Digital data	A	Digital data	А	•••	Digital data	А	Ρ
Sent from master device Sent from MB88141 (slave device)									
S: "Start" condition	P: '	P: "Stop" condition A: "Acknowledge" output							

■ TIMING CHART (I²C BUS SPECIFICATIONS)

- The SDA input acknowledge response (ACK) is an output signal from the MB88141.
- The D0-D7 input and output timing represent the timing of switching to write and read operations respectively. Also, D0-D7 input remains in HiZ state between the end of a read operation and the acknowledgment of the next I/O write signal.

ANALOG OUTPUT VOLTAGE RANGE

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol Conditions –		Rat	Unit	
Faiameter			Min.	Min. Max.	
	Vcc		-0.3	+7.0*	V
Supply voltage	Vdd		-0.3	+7.0*	V
	Vss	With reference to GND, at Ta = +25 °C	-0.3	+7.0*	V
Input voltage	Vin		-0.3	Vcc + 0.3	V
Output voltage	Vout		-0.3	Vcc + 0.3	V
Power consumption	PD	—	—	250	mW
Operating temperature	Та	—	-20	+85	°C
Storage temperature	Tstg		-55	+120	°C

*: $V_{CC} \ge V_{DD1} \ge V_{SS1}$, $V_{CC} \ge V_{DD2} \ge V_{SS2}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions		Unit		
Farameter	Symbol	Conditions	Min.	Тур.	Max.	Onit
Supply voltage 1	Vcc	—	4.5	5.0	5.5	V
Supply voltage i	GND	—		0		V
Supply voltage 2	Vdd1	$V_{CC} \ge V_{DD1} > V_{SS1}$	2.0		Vcc	V
Supply voltage 2	Vss1	$V_{DD1} - V_{SS1} \ge 2.0 \text{ V}$			3.5	V
Supply voltage 3	Vdd2	$V_{CC} \ge V_{DD2} > V_{SS2}$	2.0		Vcc	V
Supply voltage S	Vss2	V _{DD2} − V _{SS2} ≥ 2.0 V	0	_	3.5	V
Analog output current	AL	Source current	0		1.0	mA
Analog output current	Іан	Sink current	0		1.0	mA
Oscillator limit output capacitance	Col	—		_	1.0	μF
Digital data setting range		—	#00		#FF	—
Operating temperature	Та		-20		+85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

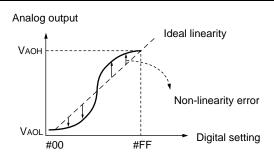
(1) Digital Circuits

$(VCC = 5 V \pm 10\%, GND = 0 V, Ta = -20 \circ C to +85 \circ C)$

Parameter	Symbol	Pin name	Conditions		Unit		
Farameter	Symbol		Conditions	Min.	Тур.	Max.	Onit
Supply voltage	Vcc		—	4.5	5.0	5.5	V
Supply current	Icc	VCC	SCL = 400 kHz, no load	—	1.0	3.7	mA
Input leak current	Iilk	SDA, SCL,	VIN = 0 to Vcc	-10		+10	μA
"L" level input voltage	VIL	CS0, CS1, CS2, MOD,	—	0		0.3 Vcc	V
"H" level input voltage	Vін	D0 to D7		0.7 Vcc		Vcc	V
Input hysteresis width	VHYS	SDA, SCL	—	0.05 Vcc			V
"H" level output voltage	Vон	D0 to D7	Іон = -400 μА	Vcc-0.4			V
	Vol1		lo∟ = 2.5 mA	—		0.4	V
"L" level output voltage	Vol2	SDA	lo∟ = 3.0 mA	—		0.4	V
	Vol3	SDA	IoL = 6.0 mA	—		0.6	V

(2) Analog Circuits 1

(VCC = 5 V \pm 10%, GND = 0 V, Ta = -20 °C to +85 °C)


Parameter	Symbol Pin name		Conditions		Unit				
Farameter			Conditions	Min.	Тур.	Max.			
Current consumption	lod	VDD1, VDD2			1.2	2.5	mA		
	Vdd	VDD2	VDD2 VDD1 - Vss1 ≥ 2.0 V		_	Vcc	V		
Analog voltage	Vss	VSS1, VSS2	VSS1, $V_{DD2} - V_{SS2} \ge 2.0 V$	GND	_	3.5	V		
Resolution	Res				8	_	bit		
Monotonic increase	Rem	AO1 to		No load Vdd1, Vdd2 ≤ Vcc – 0.1 V		8	_	bit	
Non-linearity error	LE			AO12	AO12	AO12	$V_{DD1}, V_{DD2} \le V_{CC} - 0.1 V$ Vss1, Vss2 $\ge 0.1 V$	-1.5	
Differential linearity error	DLE			-1.0		+1.0	LSB		

Non-linearity error:

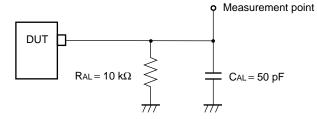
Error in the input/output curve with respect to a straight line connecting output voltage at "00" and output voltage at "FF" levels.

Differential linearity error:

Deviation from ideal voltage with respect to a 1-bit increase in digital value.

Note: V_{AOH} and V_{DD} , as well as V_{AOL} and V_{SS} are not necessarily the same values.

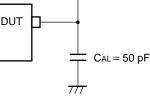
(3) Analog Circuits 2

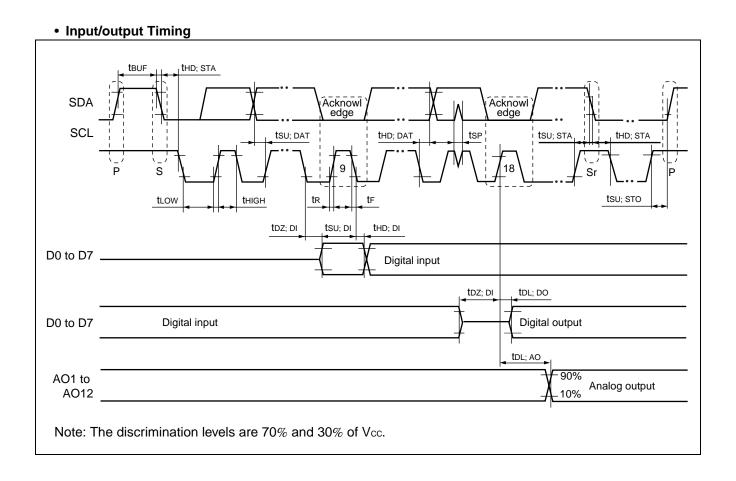

(VCC = VDD1 = VDD2 = 5.0 V, GND = VSS1 = VSS2 = 0.0 V, Ta = -20 °C to +85 °C)

Parameter	Symbol	Pin name	Conditions			Value		Unit
Farameter	Symbol	FIII IIdille	Conu	110115	Min.	Тур.	Max.	Unit
Output minimum voltage 1	V _{AOL1}		$I_{\text{AL}}=0~\mu A$		Vss	—	Vss + 0.1	V
Output minimum voltage 2	VAOL2		$I_{\text{AL}}=500\;\mu\text{A}$	Digital data "00"	Vss - 0.2	Vss	Vss + 0.2	V
Output minimum voltage 3	VAOL3		Іан = 500 μА		Vss		Vss + 0.2	V
Output minimum voltage 4	VAOL4		$I_{AL} = 1.0 \text{ mA}$		Vss - 0.3	Vss	Vss + 0.3	V
Output minimum voltage 5	VAOL5	AO1 to	I _{АН} = 1.0 mA		Vss		Vss + 0.3	V
Output maximum voltage 1	VAOH1	AO12	$I_{\text{AL}}=0\;\mu A$	Digital data "FF"	Vdd - 0.1		Vdd	V
Output maximum voltage 2	VAOH2		$I_{\text{AL}}=500~\mu\text{A}$		$V_{\text{DD}}-0.2$		Vdd	V
Output maximum voltage 3	Vаонз		Іан = 500 μА		$V_{\text{DD}} - 0.2$	Vdd	V _{DD} + 0.2	V
Output maximum voltage 4	VAOH4]	$I_{AL} = 1.0 \text{ mA}$		$V_{\text{DD}}-0.3$		Vdd	V
Output maximum voltage 5	V _{AOH5}]	I _{АН} = 1.0 mA		$V_{\text{DD}}-0.3$	Vdd	$V_{\text{DD}} + 0.3$	V

2. AC Characteristics

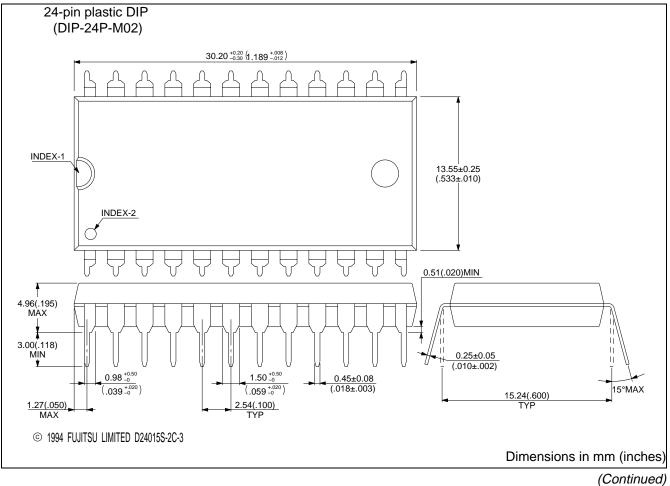
						V	alue		
	Parame	eter	Symbol	Con- dition	Standa	rd mode	High spee	d mode	Unit
	SCL clock frequency			annon	Min.	Max.	Min.	Max.	
SCL clock	frequency		fsc∟		0	100	0	400	kHz
Bus free ti and "start"		"stop" condition	t BUF		4.7	_	1.3		μs
	ock pulse is	art" condition. generated after	t hd ; sta		4.0	_	0.6		μs
SCL clock	low hold tin	ne	t LOW		4.7	—	1.3		μs
SCL clock	high hold ti	me	tніgн		4.0	—	0.6		μs
Resend "s	tart" conditio	rt" condition setup time			4.7	—	0.6		μs
Data hold	time		t hd ; dat		0	—	0	0.9	μs
Data setup	o time		t su ; dat		250	—	100		ns
SDA and SCL signal fall time		tR			1000	20 + 0.1 Cb	300	ns	
SDA and S	SCL signal r	ise time	t⊧			300	20 + 0.1 Cb	300	ns
"Stop" con	dition setup	time	t su ; sто		4.0	—	0.6		μs
Pulse widt filter	h of spike su	ippressed by input	tsp				0	50	ns
	time when	Sink current 3 mA				250	20 + 0.1 Cb	250	ns
bus capac between 1 400 pF		Sink current 6 mA	tof			_	20 + 0.1 Cb	250	ns
I ² C bus line capacitance load		Cb		_	400	—	400	pF	
D/A	Analog output settling time		t dl ; ao	*1	_	100		100	μs
	Digital output delay time		tdl;do	*2		300		300	ns
I/O	Input open time		tdz ; di	*3	200	—	200		ns
expander	Digital inpu	it setup time	t su ; DI		250	_	100		ns
	Digital inpu	ut hold time	t HD ; DI	_	0.9		0.9		μs

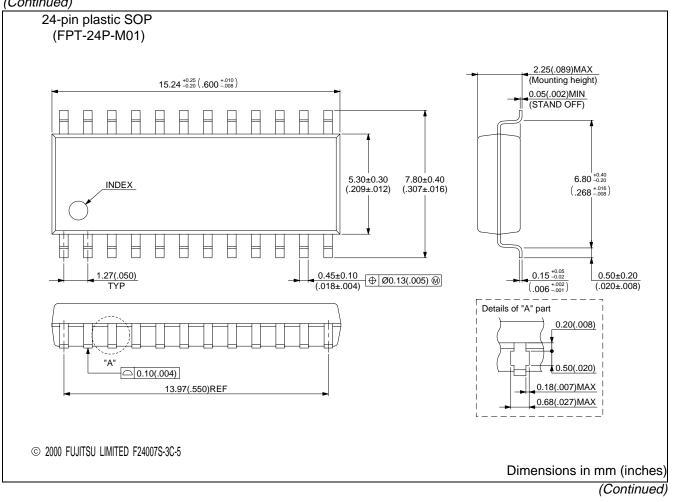

*1: Load condition 1



*2: Load condition 2

Measurement point


*3: The I/O expander input open time value applies to read operation following an I/O write operation, or to an I/O write operation following a read operation.


■ ORDERING INFORMATION


Part number	Package	Remarks
MB88141P	24-pin plastic DIP (DIP-24P-M02)	
MB88141PF	24-pin plastic SOP (FPT-24P-M01)	
MB88141PFV	24-pin plastic SSOP (FPT-24P-M03)	

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0101 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.