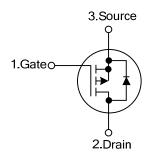


UNISONIC TECHNOLOGIES CO., LTD

UTT75P03 Preliminary Power MOSFET

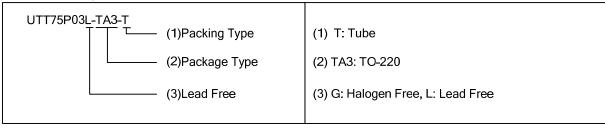
75A, 30V P-CHANNEL POWER MOSFET

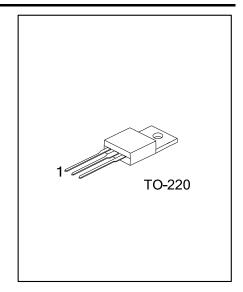

■ DESCRIPTION

The UTC **UTT75P03** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed, high current capacity and a minimum on-state resistance.

■ FEATURES

- * $R_{DS(ON)}$ =5.5m Ω @ V_{GS} =-10V, I_{D} =-30A
- * High Switching Speed
- * High Current Capacity


■ SYMBOL



ORDERING INFORMATION

Lead Free Halogen Free Package 1 2 3 Packing UTT75P03L-TA3-T UTT75P03G-TA3-T TO-220 G D S Tube		Ordering Number			Pin Assignment			Dealing	
UTT75P03L-TA3-T		Lead Free	Halogen Free	Package	1	2	3	Packing	
	L	JTT75P03L-TA3-T	UTT75P03G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	-30	V	
Gate-Source Voltage			V_{GSS}	±20	V
	Continuous	T _C =25°C	I _D	-75 (Note 2)	Α
Drain Current	Continuous	T _C =125°C		-65	Α
	Pulsed		I _{DM}	-240	Α
Avalanche Current		I _{AR}	-60	Α	
Repetitive Avalanche Energy (Note 3) L=0.1mH		E _{AR}	180	mJ	
Power Dissipation T _C =25°C		P_{D}	187	W	
Junction Temperature		TJ	-55~175	°C	
Storage Temperature			T _{STG}	-55~175	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Package limited.
- 3. Duty cycle≤1%.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	0.8	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER OFF CHARACTERISTICS Drain Course Breakdown Voltage	SYMBOL	TEST CONDITIONS	MIN		MAX	CIVII
	1					
Drain-Source Breakdown Voltage	BV_{DSS}	I _D =-250μA, V _{GS} =0V	-30			V
	I _{DSS}	V _{DS} =-30V, V _{GS} =0V			-1	μA
Drain-Source Leakage Current		V _{DS} =-30V, V _{GS} =0V , T _J =125°C			-50	μA
Ğ		V _{DS} =-30V, V _{GS} =0V , T _J =175°C			-250	μA
Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate- Source Leakage Current Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS	•	,				
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =-250μA	-1		-3	V
		V _{GS} =-10V, I _D =-30A		5.5	7	mΩ
Static Drain-Source On-State Resistance		V _{GS} =-10V, I _D =-30A, T _J =125°C			10	mΩ
(Note 1)	R _{DS(ON)}	V _{GS} =-10V, I _D =-30A, T _J =175°C			13	mΩ
		V _{GS} =-4.5V, I _D =-20A		8	10	mΩ
On State Drain Current (Note 1)	I _{D(ON)}	V _{GS} =-10V, V _{DS} =-5V	-120			Α
DYNAMIC PARAMETERS (Note 2)						
Input Capacitance	C _{ISS}			9000		pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =-25V, f=1.0MHz		1565		pF
Reverse Transfer Capacitance	C _{RSS}			715		pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_G	\\ - 10\\ \\ - 15\\ \ \ - 75\\		160	240	nC
Gate to Source Charge	Q_GS	V _{GS} =-10V, V _{DS} =-15V, I _D =-75A (Note 3)		32		nC
Gate to Drain Charge	Q_{GD}	(Note 3)		30		nC
Turn-ON Delay Time	t _{D(ON)}	V 45V D 000 L 375A		25	40	ns
Rise Time	t _R	V _{DD} =-15V, R _L =0.2Ω, I _D ≈-75A,		225	360	ns
Turn-OFF Delay Time	t _{D(OFF)}	V_{GEN} =-10V, R _G =2.5Ω (Note 3)		150	240	ns
Fall-Time	t _F	(14016-3)		210	340	ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS (T _C =25°C) (Note 2)				
Maximum Body-Diode Continuous Current	I _S				-75	Α
Maximum Body-Diode Pulsed Current	I _{SM}				-240	Α
Drain-Source Diode Forward Voltage	V_{SD}	I _F =-75A, V _{GS} =0V		-1.2	-1.5	V
Body Diode Reverse Recovery Time	t _{rr}			55	100	ns
Body Diode Reverse Recovery Charge	Q_{RR}	I _F =-75A, di/dt=100A/μs		0.07	0.25	μC
Peak Reverse Recovery Current	I _{RM(REC)}			2.5	5	Α

Notes: 1. Pulse test; pulse width ≤ 300µs, duty cycle ≤ 2%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

^{2.} Guaranteed by design, not subject to production testing.

^{3.} Independent of operating temperature.