
CD54AC193/3A CD54ACT193/3A

Presettable Synchronous 4-Bit Binary Up/Down Counter with Reset

The RCA CD54AC193/3A and CD54ACT193/3A are up/ down binary counters with separate up/down clocks. These devices utilize the new RCA ADVANCED CMOS LOGIC technology. Presetting the counter to the number on preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL). The counter is incremented on the LOW-to-HIGH transition of the Clock-Up input (and a HIGH level on the Clock-Down input) and decremented on the LOW-to-HIGH transition of the Clock-Down input (and a HIGH level on the Clock-Up input). A HIGH level on the Reset input overrides any other input to clear the counter to its zero state. The TCU (carry) output goes LOW half a clock period before the zero count is reached and returns to a HIGH level at the zero count. The TCD (borrow) output in the count down mode likewise goes LOW half a clock period before the maximum count (15 counts) and returns to HIGH at the maximum count. Cascading is effected by connecting the TCU and TCD outputs of a less significant counter to the Clock-Up and Clock-Down inputs, respectively, of the next most significant counter.

The CD54AC193/3A and CD54ACT193/3A are supplied in 16-lead dual-in-line ceramic packages (F suffix).

FUNCTIONAL DIAGRAM & TERMINAL ASSIGNMENT

Package Specifications See Section 11, Fig. 11

Static Electrical Characteristics (Limits with black dots (•) are tested 100%.)

	TEST CONDITIONS			AMBIENT TEMPERATURE (T _A) - °C				
CHARACTERISTICS			V _{cc}	+25		-55 to +125		UNITS
	V ₁ (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	
Quiescent Supply Current (MSI) Icc	V _{cc} or GND	0	5.5	_	8•		160•	μΑ

The complete static electrical test specification consists of the above by-type static tests combined with the standard static tests in the beginning of this section.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*		
P0 — P3, PL	0.75		
MR, CPU, CPD	0.85		

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

Burn-In Test-Circuit Connections (Use Static II for /3A burn-in and Dynamic for Life Test.)

Static		STATIC BURN-II	N I	STATIC BURN-IN II			
	OPEN	GROUND	V _{cc} (6V)	OPEN	GROUND	V _{cc} (6V)	
CD54AC/ACT193	2,3,6,7,12, 13	1,4,5,8-11,14,15	16	2,3,6,7,12, 13	8	1,4,5,9-11,14-16	
Dynamic		0001110	1/2 V _{cc} (3V)	V _{cc} (6V)	OSCILLATOR		
	OPEN	GROUND			50 kHz	25 kHz	
CD54AC/ACT193		1,8-10,14,15	2,3,6,7,12,13	4,11,16	5	_	

NOTE: Each pin except Vcc and Gnd will have a resistor of 2k-47k ohms.

CD54AC193/3A CD54ACT193/3A

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF (Worst Case)

CHARACTERISTICS	SYMBOL	V _{cc} (V)	-55 te		
			MIN.	MAX.	UNITS
Propagation Delays: PL to Qn	t _{PLH} t _{PHL}	1.5 3.3* 5†		200 29 15	ns
CPU to Qn CPD to Qn	t _{PLH} t _{PHL}	1.5 3.3 5	_ _ _	188 27 14•	ns
CPU to TCU CPD to TCD	t _{PLH} t _{PHL}	1.5 3.3 5		152 22 11.2	ns
MR to Qn	t _{PLH} t _{PHL}	1.5 3.3 5	_ _ _	215 30 16	ns
MR to TCU	tern tehr	1.5 3.3 5	_ _ _	200 29 15	ns
MR to TCD	telн teнl	1.5 3.3 5	_ _ _	245 35 18.2	ns
Pn to Qn	t _{PLH} t _{PHL}	1.5 3.3 5		222 31 16.5	ns
Power Dissipation Capacitance	C _{PD} §		95 Typ.		pF
Input Capacitance	Cı			10	pF

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF (Worst Case)

CHARACTERISTICS	SYMBOL	V _{cc} (V)	-55 to		
			MIN.	MAX.	UNITS
Propagation Delays: PL to Qn		5†	_	15	
CPU to Qn		5	<u> </u>	14•	
CPD to Qn		5	_	14	
CPU to TCU	一 .	5	_	11.2	
CPD to TCD	t _{PLH}	5	_	11.2	ns
MR to QN	LPHL	5		16	
MR to TCU		5		15	
MR to TCD		5	_	18.2	
Pn to Qn		5	_	16.5	
Power Dissipation Capacitance	C _{PD} §	_	126 Typ.		ρF
Input Capacitance	C,	_	_	10	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

§C_{PD} is used to determine the dynamic power consumption per package.

†5 V: min. is @ 5.5 V max. is @ 4.5 V

For AC, $P_D = C_{PD}V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ For ACT, $P_D = C_{PD}V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o) + V_{CC}\Delta I_{CC}$ where $f_i = \text{input frequency}$

 $f_o = \text{output frequency}$ $C_L = \text{output load capacitance}$

(Limits with black dots (•) are tested 100%.)

V_{cc} = supply voltage