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INTRODUCTION

As any current–mode controllers, the NCP1200 can be
subject to subharmonic oscillations. Oscillations take place
when the Switch–Mode Power Supply (SMPS) operates in
Continuous Conduction Mode (CCM) together with a
duty–cycle near or greater than 50%. For Discontinuous
Conduction Mode (DCM) designs, this normally does not
happen. However, at the lowest line levels and when the
SMPS is pushed to its upper output power capability, CCM
can engender these oscillations within the current loop. This
application note details how to properly cure this problem by
injecting the correct amount of ramp compensation.

Origin of the Problem
A current–mode power supply is a two–loop system: one

loop controls the inductor peak current while the other
monitors the output voltage. The current loop is actually
embedded into the voltage loop which fixes the final
current setpoint. In CCM operation, the action of the
current loop can be compared to a sample and hold device.
This sampling action creates a pair of RHP zeroes in the
current loop which are responsible for the boost in gain at
Fswitching/2 but also stress the phase lag at this point. If the
gain margin is too low at this frequency, any perturbation
in the current will make the system unstable since, as we
said, both voltage and current loops are embedded. You can
fight the problem by providing the converter with an
external compensation ramp. This ramp will oppose the
duty cycle action by lowering the current–loop DC gain,
correspondingly increasing the phase margin at
Fswitching/2, finally damping the high Q poles in the
Vout/Vcontrol transfer function. As other benefits of ramp
compensation, Ray Ridley [1] confirmed that an external
ramp whose slope is equal to 50% (mc = 1.5) of the inductor
downslope could nullify the audio susceptibility in a
BUCK converter, as already calculated by Holland [2]. As
more external ramp is added, the low frequency pole ωp
moves to higher frequencies while the double poles will be
split into two distinct poles. The first one will move
towards lower frequencies until it joins and combines with
the first low frequency pole at ωp. At this point, the
converter behaves as if it is operating in voltage mode.

Lowering the Peaking
A current mode controlled SMPS exhibits one low

frequency pole, ωp, and two poles which are located at
Fswitching/2. These poles move in relation to the duty cycle
and the external compensation ramp, when present. The two
high frequency poles present a Q that depends on the
compensating ramp and the duty–cycle. Ridley
demonstrated that the Q becomes infinite at D = 0.5 with no
external ramp (mc = 1), confirming the inherent instability
of a CCM current–mode SMPS operating at a duty cycle
greater than 0.5. Below stands the definition of this quality
coefficient:

Q � 1
� · (mc · D�� 0.5)

 where mc = 1  + Se/Sn. Se is the

external ramp slope, Sn is the inductor on–time slope and
D′= 1 – D.

For designers, once the system’s Q has been determined,
they should look for the amount of ramp compensation that

will make this number equal to 1: mc � �1
�� 0.5�. 1

D�
.

How to Create a Ramp?
On the NCP1200, you do not have access to any oscillator

sawtooth. However, you can easily charge a capacitor when
the gate drive is high, and immediately discharge it when the
MOSFET switches off. Figure 1a shows how to simply
generate a sawtooth from the gate drive:

Figure 1a

A very simple way to generate a ramp
from a square wave signal.
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Calculating the RC component values is a rather easy task.
By drawing the smallest current from the drive to avoid
increasing the standby power, R shall be of high value. If this
is the case, you can consider this system as a current
generator. By applying Vc · C � i · t, you calculate R and C.
Suppose we want to create a ramp that goes up to 5.0 V when
a 60 kHz NCP1200 is operating at 50% duty–cycle. The ON

time is therefore 1
2 · 60 k

� 8.3 �s. In order to not bothering

the NCP1200 operation, let’s select a charging current of

250 µA. With a gate plateau of 11 V, this leads to a resistor of
≈11 V/250 µA = 44 kΩ. With a charging current of 250 µA,
what capacitor do we need to generate a ramp that reaches

5.0 V in 8.33 µs? Well, C �
250 � · 8.33 �

5
� 416 pF.

However, because the charging current varies during the
ramping (we actually obtain an exponential), we will to
reduce both elements to their next lower normalized values,
e.g., 39 kΩ and 390 pF. If we feed our SPICE simulator with
these values, Figure 1b and 1c confirms the calculations:

Figure 1b

A simple simulation schematic confirms the calculations: the capacitor voltage ramps up from a few hundred of mV up to nearly 5.0 V.

Figure 1c
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By ramping from 0.6 V to 4.5 V in 8.3 µs, we have created
a signal exhibiting a slope of 468 mV/µs.

“What compensation level shall I inject?”
Let’s suppose the following specs for our FLYBACK

converter:

VHVDC = 110 V
Fsw = 60 kHz
Lp = 1.8 mH
η = 80%
N = Np:Ns = 0.1
Poutmax = 15 W

To calculate the operating duty–cycle D, we need
to compute the peak current authorizing a 15 W output
power flow from the 1.8 mH primary inductance:

Pin � 1
2

· Lp · Ip? · Fsw. From our specs, we know that

Pin = 15/08 = 18.8 W. At the boundary between DCM
and CCM, the peak current is evaluated to:

Ip � 2 · Pin
Lp · Fsw� � 590 mA. To reach this value, we need to

apply VHVDC over Lp during: Ip ·
Lp

VHVDC
� 9.6 �s.

Compared to a 60 kHz switching frequency, it corresponds
to a 58% duty–cycle or D = 0.58.

The external ramp injection will keep Q below 1. To
adhere to this requirement, we must inject a compensating

ramp mc equal to �1�� 0.5�. 1
D�

� 1.9. By applying mc

definition, we can deduct the final amount of external ramp

we must inject: mc � 1 � Se
Sn

 or Se � (mc � 1) · Sn. In a

FLYBACK, the ON slope Sn is given by the rectified DC rail

applied over the primary inductance Lp: Sn � VHVDC
Lp

.

With Lp = 1.8 mH, Rsense = 1.5 Ω and the lowest main
equals 110 V, then Sn = 91.5 mV/µs once reflected in volts
over Rsense. To get the final level of ramp compensation,
let’s compute Se by: Se � (mc � 1) · Sn or 82 mV��s. To
obtain this ramp from our ramping generator, we must create
a division ratio of 0.082/468 or 175 m. If we select a 10 kΩ
resistor to convey the current sense information, then the

ramp resistor is calculated using: 10 k � 0.175 · 10 k
0.175

 or

47 k� in this example.

Simulation of the Converter
To check our calculation, we can use the NCP1200 SPICE

model. Figure 2a portrays the application schematic for this
converter with INTUSOFT’s IsSpice4 model version:
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Figure 2a

The current–mode SMPS built with the NCP1200 SPICE model.
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The system enters CCM for a load of 12 Ω and
subharmonic oscillations take place, as shown by Figure 2b.
Measurements on the board confirm the presence of these

unwanted oscillations (Figure 2c). Rcomp was kept to a high
value to suppress any compensating action.

Figure 2b

Oscillations take place when entering CCM with a duty–cycle greater than 50% as confirmed by both models and measurements.

Figure 2c
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Let’s now diminish Rcomp to 47 kΩ as previously
calculated and run a new simulation. Results are depicted by

Figure 2d and confirmed by Figure 2e:

Figure 2d

The right amount of ramp compensation stabilizes the converter (2d simulated, 2c measured).

Figure 2e
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The previous default has disappeared and the converter is
stabilized. However, the designer shall keep in mind that
injecting a compensation ramp diminishes the current loop
gain. This has the same effect as raising Rsense on the
small–signal point of view. As a result, the controller grows
its operating feedback voltage VFB (that sets Ip) to impose
the same peak current. If before compensation VFB was
already close to the maximum limit, the ramp injection will
make it raise and the possibility exists that the NCP1200
goes into short–circuit protection (VFB ≈ 4.1 V).

We deliberately selected a rather high value for the ramp
generator resistor in order to not load the NCP1200
(otherwise the standby power can be degraded). As a
consequence, the summing resistor Rcomp cannot be too
low to prevent from disturbing the ramp generator. In a noisy
environment, the electrical paths conveying these signals to

the NCP1200 pins shall be kept as short as possible to avoid
undesirable peaking. In case of troubles, the solutions
consists in lowering the ramp generator’s output impedance
and re–iterating the other elements.
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