|     | REVISIONS                                                                              | <b>*</b>          |                       |
|-----|----------------------------------------------------------------------------------------|-------------------|-----------------------|
| LTR | DESCRIPTION                                                                            | DATE (YR-MO-DA)   | APPROVED              |
| A   | Table I: Correct limits, figure I: Correct case outline. Editorial changes throughout. | 92-02 <b>-</b> 21 | Monica L.<br>Poelking |
| В   | Changes in accordance with NOR 5962-R098-93                                            | 93-03-10          | Monica L.<br>Poelking |
| С   | Add device 02. Editorial changes throughout.                                           | 94-04-25          | Monica L.<br>Poelking |

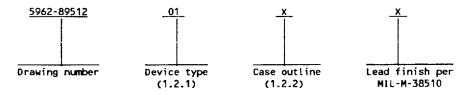
## THE ORIGINAL FIRST PAGE OF THIS DRAWING HAS BEEN REPLACED

| REV                      | С                                                                                                      | С  | С                        | С                                   | С         | С    | С    | С  | С   | С                                                                                      | С     | С  | С   | C  |          |              |    | _        |    |    |
|--------------------------|--------------------------------------------------------------------------------------------------------|----|--------------------------|-------------------------------------|-----------|------|------|----|-----|----------------------------------------------------------------------------------------|-------|----|-----|----|----------|--------------|----|----------|----|----|
| SHEET                    | 35                                                                                                     | 36 | 37                       | 38                                  | 39        | 40   | 41   | 42 | 43  | 44                                                                                     | 45    | 46 | 47  | 48 |          |              |    |          |    |    |
| REV                      | С                                                                                                      | С  | С                        | С                                   | С         | С    | С    | С  | С   | С                                                                                      | С     | С  | С   | U  | С        | С            | С  | С        | С  | С  |
| SHEET                    | 15                                                                                                     | 16 | 17                       | 18                                  | 19        | 20   | 21   | 22 | 23  | 24                                                                                     | 25    | 26 | 27  | 28 | 29       | 30           | 31 | 32       | 33 | 34 |
| REV STATUS REV C C C     |                                                                                                        |    | С                        | С                                   | С         | С    | С    | С  | С   | С                                                                                      | С     | С  | С   | С  |          |              |    |          |    |    |
| OF SHEET                 | S                                                                                                      |    |                          | SH                                  | SHEET 1 2 |      |      | 3  | 4   | 5                                                                                      | 6     | 7  | 8   | 9  | 10       | 11           | 12 | 13       | 14 |    |
| PMIC N/A                 |                                                                                                        |    |                          | PREPARED BY<br>Christopher A. Rauch |           |      |      |    |     | Di                                                                                     | EFENS |    |     |    |          | PPLY<br>454  |    | rer<br>- |    |    |
| STANDARDIZED<br>MILITARY |                                                                                                        |    | CHECKED BY<br>Tim H. Noh |                                     |           |      |      |    |     |                                                                                        |       | •  |     |    |          | <del>,</del> |    |          |    |    |
| THIS DRAWIN              | DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE |    |                          | APPROVED BY<br>William K. Heckman   |           |      |      |    | 56- | MICROCIRCUIT, DIGITAL, CMOS,<br>56-BIT DIGITAL SIGNAL<br>PROCESSOR, MONOLITHIC SILICON |       |    |     |    |          |              |    |          |    |    |
|                          |                                                                                                        |    | Ē                        |                                     | ING AP    |      | DATE |    |     |                                                                                        | -     |    |     |    | ·        |              |    |          |    |    |
| AMSC N/A                 |                                                                                                        |    |                          | 28                                  | March     | 1990 |      |    |     | SIZE CAGE CODE 5962-8                                                                  |       |    |     |    | 895      | <b>L2</b>    |    |          |    |    |
| MMSC N/A                 | ľ                                                                                                      |    |                          | REVI                                | SION L    | EVEL | С    |    |     | A                                                                                      |       |    | 726 | 8  | <u> </u> |              |    |          |    |    |
|                          |                                                                                                        |    |                          |                                     |           |      |      |    |     | SHI                                                                                    | ĒΤ    |    | 1   |    | 0        | F            | 4  | 8        |    |    |

DESC FORM 193

JUL 91

<u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.


5962-E472-93

9004708 0001261 671

### 1. SCOPE

Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:



1.2.1 Device type(s). The device type(s) shall identify the circuit function as follows:

| Device type | Generic number | <u>Circuit function</u>    |
|-------------|----------------|----------------------------|
| 01          | 56001-20       | 56-bit general purpose DSP |
| 02          | 56001A-20      | 56-bit general purpose DSP |

1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

| Outline letter | Descriptive designator | <u>Terminals</u> | Package style       |
|----------------|------------------------|------------------|---------------------|
| X              | CMGA5-P88              | 88               | Pin grid array      |
| Y              | See figure 1           | 100              | Leaded chip carrier |

1.3 Absolute maximum ratings.

| Supply voltage range with respect to GND (V <sub>CC</sub> ) | -0.3 V dc to +7.0 V dc       |
|-------------------------------------------------------------|------------------------------|
| Input voltage (V <sub>IN</sub> )                            | -0.5 V dc to V <sub>cc</sub> |
| Storage temperature range                                   | -65°C to +150°Č              |
| Maximum power dissipation                                   |                              |
| device 01                                                   | 1.1 W                        |
| device 02                                                   | 0.63 W                       |
| Maximum operating temperature (T <sub>C</sub> )             | -55°C to +125°C              |
| Lead temperature (soldering, 5 seconds)                     | +270°C                       |
| Junction temperature (T <sub>j</sub> )                      | +150°C                       |
| Thermal resistance, junction-to-case $(\theta_{JC})$ :      |                              |
| Case X · · · · · · · · · · · · · · · · · ·                  | See MIL-STD-1835             |
| Case Y                                                      | 10°C/W                       |

1.4 Recommended operating conditions.

| Supply voltage (V <sub>CC</sub> ) device 01                                |                                                    |
|----------------------------------------------------------------------------|----------------------------------------------------|
| device 01                                                                  | 4.5 V dc to 5.5 V dc                               |
| device 02                                                                  | 4.75 V dc to 5.25 V dc                             |
| High level input voltage (V <sub>1H</sub> )                                | 2 V dc to V <sub>CC</sub><br>-0.5 V dc to 0.8 V dc |
| High level input voltage ( $V_{IH}$ ) Low level input voltage ( $V_{IL}$ ) | -0.5 V dc to 0.8 V dc                              |
| Minimum high level output voltage (V <sub>OH</sub> )                       | 2.4 V dc                                           |
| Maximum low level output voltage (V <sub>OI</sub> )                        | 0.8 V dc                                           |
| Frequency of operation                                                     | 4.0 to 20.5 MHz                                    |
| Case operating temperature                                                 | -55°C to +125°C                                    |
|                                                                            |                                                    |

1/ Must withstand the added P<sub>D</sub> due to short circuit test; e.g.,  $I_{OS}$ .
2/  $V_{I\perp} \le 0.2$  V dc,  $V_{IH} \ge V_{CC}$  - 2.0 V dc. No dc loads. EXTAL is driven by a square wave.
3/ In order to obtain these results all inputs must be terminated, i.e., not allowed to float.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE |                | 5962-89512 |
|-----------------------------------------------------------------|------|----------------|------------|
| DAYTON, OHIO 45444                                              |      | REVISION LEVEL | SHEET 2    |

DESC FORM 193A JUL 91

9004708 0001262 508 📟

#### 2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standard, and bulletin</u>. Unless otherwise specified, the following specification, standard, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

MIL-STD-1835

Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103

- List of Standardized Military Drawings (SMD's).

(Copies of the specification, standard, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

#### 3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
  - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein and figure 1
  - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
  - 3.2.3 Block diagram. The block diagram shall be as specified on figure 3.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE 5962-89  REVISION LEVEL SHEET C 3 | 5962-89512          |            |
|-----------------------------------------------------------------|----------------------------------------|---------------------|------------|
| DAYTON, OHIO 45444                                              |                                        | REVISION LEVEL<br>C | SHEET<br>3 |

DESC FORM 193A JUL 91

**■ 9004708 0001263 444 ■** 

- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
  - a. Burn-in test, method 1015 of MIL-STD-883.
- (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall include the requirements for inputs, outputs, biases, and power dissapation, as applicable, in accordance with the specified purpose of method 1015.
  - (2)  $T_A = +125$ °C, minimum.
  - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512 |
|-----------------------------------------------------------------|-----------|---------------------|------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET      |

| Test                                                     | Symbol            | Conditions $\underline{1}/$ -55°C $\leq$ T <sub>C</sub> $\leq$ +125°C unless otherwise specified | Group A<br>subgroups | Device | Lin<br>Min        | mits<br>  Max   | Unit     |
|----------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|----------------------|--------|-------------------|-----------------|----------|
| Input high voltage<br>Except EXTAL, RESET,<br>MODA, MODB | v <sub>I H</sub>  |                                                                                                  | 1, 2, 3              | ALL    | 2.0               | v <sub>cc</sub> | v        |
| Input low voltage<br>Except EXTAL, MODA, MODB            | v <sub>IL</sub>   | <del>-</del><br> <br>                                                                            |                      |        | -0.5              | 0.8             |          |
| Input high voltage: EXTAL                                | VIHC              | †                                                                                                | -                    | 01     | V <sub>CC</sub> - | v <sub>CC</sub> |          |
|                                                          |                   |                                                                                                  |                      | 02     | 4.0               | V <sub>CC</sub> | Ī        |
| Input low voltage: EXTAL                                 | V                 | Ī                                                                                                | -                    | 01     | -0.5              | 0.4             |          |
| THE TOWN TOTAL BATTLE                                    | VILC              | 1                                                                                                |                      | 02     | -0.5              | 0.6             | <u> </u> |
| Input high voltage: RESET                                | V <sub>I HR</sub> |                                                                                                  |                      | ALL    | 2.5               | V <sub>CC</sub> |          |
| Input low voltage: RESET                                 | VILR              | İ                                                                                                | -                    | 01     |                   | 0.6             |          |
|                                                          | +                 | 1                                                                                                | -                    | 02     | -0.5              | 0.8             | -        |
| Input high voltage: MODA,<br>MODB                        | VIHM              |                                                                                                  |                      | ALL    | 3.5               | V <sub>CC</sub> |          |
| Input low voltage: MODA,                                 | VILM              | <u> </u><br>                                                                                     |                      | 01     | -0.5              | 0.6             | -        |
| MODB                                                     | I LM              |                                                                                                  |                      | 02     | -0.5              | 2.0             | -        |
|                                                          |                   | †                                                                                                | 1, 2, 3              | 01     | -1.0              | 1.0             | -        |
| Input leakage current:<br>EXTAL, RESET, MODA, MODB,      | IIN               |                                                                                                  | 1, 2                 | 02     | -1.0              | 1.0             | μΑ       |
| BR                                                       |                   |                                                                                                  | 3                    | 02     | -10               | -10             | =        |
| Three state input current                                | 1 TSI             | V <sub>IH</sub> = 2.4 V, V <sub>IL</sub> = 0.5 V                                                 | 1, 2, 3              | Ali    | -10               | 10              | -        |
| Output high voltage                                      | v <sub>ohc</sub>  | V <sub>CC</sub> = V <sub>CC</sub> min<br>I <sub>OH</sub> = -10 μA                                |                      | 01     | 4.3               |                 | v        |
| Output high voltage                                      | v <sub>OH</sub>   | V <sub>CC</sub> = V <sub>CC</sub> min<br>I <sub>OH</sub> = -400 μA                               |                      | All    | 2.4               |                 | •        |
| Output low voltage                                       | V <sub>OLC</sub>  | V <sub>CC</sub> = V <sub>CC</sub> min<br>I <sub>OL</sub> = -10 $\mu$ A                           |                      | 01     |                   | 0.1             | •        |
| see footnotes at end of tabl                             | •                 |                                                                                                  | ł                    |        |                   |                 | •        |

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

REVISION LEVEL
C
5962-89512
REVISION LEVEL
SHEET
C

DESC FORM 193A JUL 91

**9**004708 0001265 217 **m** 

| Test                                                    | Symbol                                                                | Conditions<br>-55°C ≤ T <sub>C</sub> ≤ +1<br>unless otherwise s                        | 1/<br>25°C<br>pecified | Group A<br>subgroups                  | Device | <u>Lin</u><br>Min | mits<br>  Max | Unit         |
|---------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------|---------------------------------------|--------|-------------------|---------------|--------------|
| Output low voltage:<br>Except HREQ                      | v <sub>ol</sub>                                                       | V <sub>CC</sub> = V <sub>CC</sub> min<br>I <sub>OL</sub> = 1.6 mA                      |                        | 1, 2, 3                               | All    |                   | 0.4           | v            |
| Output low voltage: Open drain output HREQ              | V <sub>OLOD</sub>                                                     | V <sub>CC</sub> = V <sub>CC</sub> min<br>I <sub>OL</sub> = 6.7 mA                      |                        | 1                                     | 01     |                   | 0.8           | <u> </u>     |
| Total supply current                                    | I <sub>DD</sub>                                                       | V <sub>CC</sub> = V <sub>CC</sub> max<br>V <sub>DD</sub> = 5.0 V, f <sub>o</sub> = 20. | 5 MHz                  | †                                     | 01     |                   | 200           | mA.          |
| Total supply current: In WAIT mode 2/                   | I IDW                                                                 | V <sub>CC</sub> = V <sub>CC</sub> max                                                  |                        | †                                     | 01     |                   | 50            | <del> </del> |
| Total supply current: In                                | I <sub>DDS</sub>                                                      |                                                                                        |                        |                                       | 01     |                   | 10            |              |
| STOP mode <u>2</u> /                                    | DUS                                                                   |                                                                                        |                        |                                       | 02     | İ                 | 2             |              |
| Input capacitance                                       | CIN                                                                   | See 4.3.1c                                                                             |                        | 4                                     | All    |                   | 10            | pF           |
| Functional test                                         |                                                                       | See 4.3.1d                                                                             |                        | 7, 8                                  | All    |                   |               |              |
| Frequency of operation                                  | fo                                                                    | V <sub>CC</sub> = V <sub>CC</sub> min<br>EXTAL pin                                     |                        | 9,10,11                               | All    | 4.0               | 20.5          | MHz          |
| External clock input high                               | 1                                                                     | EXTAL pin, see figur<br>external clock timi                                            |                        | †<br>                                 | All    | 22                | 150           | ns           |
| External clock input low                                | 2                                                                     | $V_{CC} = V_{CC} \min_{\underline{3}/\underline{4}/}$                                  |                        |                                       |        | 22                | 150           |              |
| Clock cycle time = 2T                                   | 3                                                                     | <br>  See figure 4<br>  external clock timin                                           | g <u>4</u> /           |                                       |        | 48.75             | 250           |              |
| Instruction cycle time<br>time = Icyc                   | 4                                                                     | V <sub>CC</sub> = V <sub>CC</sub> min                                                  |                        |                                       |        | 97.5              | 500           |              |
| Delay from RESET assertion<br>to address high impedance | 9                                                                     | See figure 4, reset<br>V <sub>CC</sub> = V <sub>CC</sub> min                           | timing                 | 9,10,11                               |        |                   | 50            | ns           |
| Minimum stabalization                                   | 10a                                                                   | See figure 4, reset<br> V <sub>CC</sub> = V <sub>CC</sub> min                          | timing <u>5</u> /      |                                       |        | <br> 15E4T<br>    |               |              |
|                                                         | 10b                                                                   | See figure 4, reset timing V <sub>CC</sub> = V <sub>CC</sub> min 6/                    |                        |                                       |        | 50т               |               |              |
| See footnotes at end of tabl                            | e.                                                                    |                                                                                        |                        | · · · · · · · · · · · · · · · · · · · |        | •                 |               | •            |
|                                                         | ARDIZEI                                                               |                                                                                        | SIZ                    | E                                     |        |                   |               | 5962-89      |
|                                                         | MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |                                                                                        |                        | RI                                    | VISION | LEVEI             |               | SHEET        |

6

С

DESC FORM 193A JUL 91

| Test                                                                                                                                | Symbol                                                                                 | Conditions 1/                                                                      | Group A        |                    | Lim                 | Unit         |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|--------------------|---------------------|--------------|-----------------------------------------|
|                                                                                                                                     |                                                                                        | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                      | subgroups      | Device             | Min                 | Max          |                                         |
| Delay from asynchronous<br>RESET deassertion to<br>first external address<br>output (internal RESET<br>negation)                    | See figure 4, reset and synchronous reset timing V <sub>CC</sub> = V <sub>CC</sub> min | 9,10,11                                                                            | All            | 161                | 18T+<br>40          | ns           |                                         |
| Synchronous RESET setup<br>time from RESET<br>deassertion to falling<br>edge of external clock                                      | 12<br><u>7</u> /                                                                       | See figure 4, synchronous<br>reset timing<br>V <sub>CC</sub> = V <sub>CC</sub> min |                |                    | 20<br> <br>         | 2T<br>-10    | *************************************** |
| Synchronous RESET delay<br>time from the sync.<br>falling edge of ext.                                                              | 13                                                                                     |                                                                                    |                | 01                 | 16T+8               | 16T+<br>30   |                                         |
| clock to the first<br>external address output                                                                                       |                                                                                        |                                                                                    | <br> <br>      | 02                 | 16T+5<br><u>7</u> / | 16T+<br>30   |                                         |
| Mode select setup time                                                                                                              | 14                                                                                     | See figure 4, operating mode select timing                                         |                | All                | 100                 |              |                                         |
| Mode select hold time                                                                                                               | 15                                                                                     | V <sub>CC</sub> = V <sub>CC</sub> min                                              |                |                    | 0                   |              |                                         |
| Wi-i                                                                                                                                |                                                                                        | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, external                    | Ţ.             | 01                 | 48                  | -            | Į                                       |
| Minimum edge-triggered<br>interrupt request width                                                                                   | 16                                                                                     | interrupt timing Assertion:                                                        |                | 02                 | 25                  |              |                                         |
|                                                                                                                                     | -                                                                                      | De-assertion:                                                                      | <del> </del> . | 01                 | 15<br>19T           | <del> </del> | †                                       |
| Delay from IRQA,IRQB<br>assertion to external<br>memory access address                                                              | 17                                                                                     | See figure 4, external<br>level sensitive fast<br>interrupt timing                 |                |                    |                     |              |                                         |
| output valid caused by<br>first interrupt<br>instruction fetch                                                                      | <br>                                                                                   | V <sub>CC</sub> = V <sub>CC</sub> min Fetch:<br>  <u>8</u> /<br>  Ex:              |                | 02<br> <br>        | 11T<br>19T          |              |                                         |
| Delay from IRQA, IRQB to<br>assertion to genpurpose<br>transfer output valid<br>caused by first interrupt<br>instruction execution. | 18                                                                                     | V <sub>CC</sub> = V <sub>CC</sub> min                                              | 9,10,11        | <br>  All<br> <br> | 231                 |              |                                         |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512 |
|-----------------------------------------------------------------|-----------|---------------------|------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET 7    |

DESC FORM 193A JUL 91

**--** 9004708 0001267 09T **--**

| Test                                                                                                                                                                            | Symbol            | Conditions 1/                                                                  | Group A   |        | Limits |                       | Uni |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|-----------|--------|--------|-----------------------|-----|
|                                                                                                                                                                                 |                   | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                  | subgroups | Device | Min    | Max                   |     |
| Delay from address output valid caused by first interrupt instruction fetch to interrupt request deaasertion for level sensitive fast interrupts                                | 19                | See figure 4, external level sensitive fast interrupt timing  VCC = VCC min 8/ | 9,10,11   | All    |        | 5T+2T<br> *WS-<br> 44 | ns  |
| Delay from RD assertion to<br>interrupt request<br>deassertion for level<br>sensitive fast interrupts                                                                           | 20                |                                                                                |           |        |        | 4T+2T<br>*WS-<br>40   |     |
| Delay from WR assertion to<br>interrupt request<br>deassertion for level<br>sensitive fast interrupts<br>WS = 0                                                                 | 21a               |                                                                                |           |        |        | 4T<br>-40             |     |
| Delay from WR assertion to<br>interrupt request<br>deassertion for level<br>sensitive fast interrupts<br>WS > 0                                                                 | 216               |                                                                                |           |        |        | 31+21<br>*ws-<br>40   |     |
| Delay from general purpose<br>output valid to interrupt<br>request deassertion for<br>level sensitive fast<br>interrupts, If second<br>interrupt instruction is<br>single cycle | 22a               |                                                                                |           |        |        | T-60                  |     |
| Delay from general purpose<br>output valid to interrupt<br>request deassertion for<br>level sensitive fast<br>interrupts, if second<br>interrupt instruction is<br>two cycles   | 22b<br> <br> <br> |                                                                                |           |        |        | 5 <b>T</b><br>-60     |     |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                | 5962-89512 |
|-----------------------------------------------------------------|-----------|----------------|------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL | SHEET 8    |

DESC FORM 193A JUL 91

■ 9004708 0001268 T26 ■

| Test                                                                                                                     | Symbol | Conditions 1/                                                                                                                   | Group A   | }      | Lim                 | its                                          | Uni  |
|--------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------|-----------|--------|---------------------|----------------------------------------------|------|
|                                                                                                                          |        | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                                                                   | subgroups | Device | Min                 | Max                                          |      |
| Synchronous interrupt<br>set-up time from IRQA,<br>IRQB assertion to the<br>synchronous rising edge<br>of external clock | 23     | See figure 4, synchronous<br>interrupt from wait state<br>timing                                                                | 9,10,11   | All    | 25                  | 21-10                                        | ns   |
| Synchronous interrupt delay<br>time from the synchronous<br>rising edge of the<br>external clock to the                  | 24     | V <sub>CC</sub> = V <sub>CC</sub> min                                                                                           |           | 01     | 191+8               | 19т+30                                       |      |
| first external address<br>output valid caused by<br>the first instruction<br>fetch after coming out<br>of wait state     |        |                                                                                                                                 |           | 02     | 27T+8<br><u>7</u> / | 271+30                                       |      |
| Duration for IRQA assertion<br>to recover from STOP                                                                      | 25     | V <sub>CC</sub> = V <sub>CC</sub> min,<br>  See figure 4, recovery from<br>  stop state using IRQA                              |           | 01     | 19T+8               | 19T+30                                       | <br> |
| state                                                                                                                    |        | <u> </u>                                                                                                                        |           | 02     | 25                  | <u> i                                   </u> | ļ    |
| Delay from IRQA assertion<br>to fetch of first                                                                           | 26a    | V <sub>CC</sub> = V <sub>CC</sub> min, OMR bit 6 = 0<br>Stable external clock<br>see figure 4, recovery from                    |           | 01     | 128000T<br> +17T    |                                              |      |
| interrupt instruction                                                                                                    |        | stop state using IRQA                                                                                                           | •         | 02     | 1310901             |                                              | Ī    |
| Delay from IRQA assertion<br>to fetch of first                                                                           | 26b    | V <sub>CC</sub> = V <sub>CC</sub> min, OMR bit 6 = 1<br>Internal crystal oscillator<br>clock, see figure 4,                     |           | 01     | 150000T             |                                              |      |
| interrupt instruction                                                                                                    |        | recovery from stop state using IRQA                                                                                             | İ         | 02     | <b>3</b> 4T         |                                              |      |
| Duration of level sensitive IRQA assertion to fetch                                                                      | 27a    | V <sub>CC</sub> = V <sub>CC</sub> min, OMR bit 6 = 0<br>External clock<br>see figure 4, recovery from                           | 1         | 01     | 128000T<br>+17T     |                                              |      |
| of first interrupt instruction                                                                                           | j      | stop state and using IRQA interrupt service                                                                                     |           | 02     | 131067T             |                                              |      |
| Duration of level sensitive IRQA assertion to fetch                                                                      | 27b    | V <sub>CC</sub> = V <sub>CC</sub> min, OMR bit 6 = 1<br>Internal clock<br>see figure 4, recovery from                           |           | 01     | 150000т             |                                              | Ī    |
| of first interrupt                                                                                                       |        | stop state and using IRQA                                                                                                       |           | 02     | 111                 |                                              | †    |
|                                                                                                                          | 28a    | interrupt service<br> V <sub>CC</sub> = V <sub>CC</sub> min, OMR bit 6 = 0<br>  External clock<br>  see figure 4, recovery from | 1         | 01     | 128000T<br>+17T     |                                              | +    |
| of first interrupt                                                                                                       |        | stop state and using IRQA interrupt service                                                                                     | İ         | 02     | 131090T             |                                              | Ī    |
| Delay from level sensitive                                                                                               | 28b    | V <sub>CC</sub> = V <sub>CC</sub> min, OMR bit 6 = 1<br>Internal clock                                                          | †         | 01     | 150000Т             |                                              |      |
| IRQA assertion to fetch of first interrupt                                                                               |        | see figure 4, recovery from stop state and using IRQA                                                                           |           | 02     | 34T                 |                                              | †    |

| STANDARDIZED MILITARY DRAWING                        | SIZE<br>A |                | 5962-89512 |
|------------------------------------------------------|-----------|----------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL | SHEET<br>9 |

DESC FORM 193A JUL 91

**= 9004708 0001269 962** 

| Test                                                               | Symbol Conditions 1/ | Group A                                                                                                      | į         |        | mits       | Unit |          |
|--------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|-----------|--------|------------|------|----------|
|                                                                    | <br>                 | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                                                | subgroups | Device | Min        | Max  |          |
| Host synchronization delay                                         | 30                   | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, host<br>synchronous delay                             | 9,10,11   | All    | Т          | 31   | ns       |
| HEN/HACK assertion width<br>(CVR, ICR, ISR Read)                   | 31                   | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, host read<br>and write cycles                         |           | 02     | 21+60      |      |          |
| HEN/HACK assertion width<br>(read)                                 | 31a                  |                                                                                                              |           | All    | 50         |      |          |
| HEN/HACK assertion width<br>(write)                                | 31ь                  |                                                                                                              |           | All    | 25         |      |          |
| HEN/HACK deassertion width                                         | 32                   | †                                                                                                            |           | ALL    | 25         |      | Ţ        |
| Min cycle between two HEN                                          | <b>3</b> 2a          |                                                                                                              |           | 02     | 4T+60      |      |          |
| Host data input setup time<br>before HEN/HACK<br>deassertion       | 33                   | V <sub>CC</sub> = V <sub>CC</sub> min<br>  See figure 4, host write<br>  cycle and host DMA write<br>  cycle |           | All    | 5          |      |          |
| Host data input hold time<br>after HEN/HACK<br>deassertion         | 34                   |                                                                                                              |           |        | 5<br> <br> |      | <u> </u> |
| HEN/HACK assertion to<br>output data active from<br>high impedance | 35<br>               | See figure 4, host interrupt vector register (IVR) read, host read cycle and write cycle                     |           | 0      |            |      |          |
| HEN/HACK assertion to<br>output data valid                         | 36                   | V <sub>CC</sub> = V <sub>CC</sub> min                                                                        |           |        |            | 50   |          |
| HEN/HACK deassertion to<br>output data high<br>impedance           | 37                   |                                                                                                              |           |        |            | 35   |          |
| Output data hold time after<br>HEN/HACK deassertion                | 38                   |                                                                                                              |           |        | 5          |      |          |
| HR/W low setup time before HEN assertion                           | 39                   | See figure 4, host write cycle                                                                               |           |        | 0          |      |          |
| HR/W low hold time after<br>HEN deassertion                        | 40                   | V <sub>CC</sub> = V <sub>CC</sub> min                                                                        |           |        | 5          |      |          |
| HR/W high setup time to HEN assertion                              | 41                   | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, host IVR read<br>and host read cycle                  |           |        | 0          |      |          |
| See footnotes at end of tabl                                       | e.                   |                                                                                                              |           |        | <b></b>    |      |          |

REVISION LEVEL

SHEET

10

DESC FORM 193A JUL 91

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

| Test                                                               | Symbol | Conditions $\underline{1}/$ -55°C $\leq$ T <sub>C</sub> $\leq$ +125°C unless otherwise specified | Group A<br>subgroups | Device | Li<br>Min       | mits<br>  Max | Unit |
|--------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------|----------------------|--------|-----------------|---------------|------|
| HR/W high hold time after<br>HEN/HACK deassertion                  | 42     | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, host IVR read<br>and host read cycle      | 9,10,11              | All    | 5               |               | ns   |
| HAO-HA2 setup time before<br>HEN assertion                         | 43     | V <sub>CC</sub> = V <sub>CC</sub> min<br>  See figure 4, host read<br>  cycle and write cycle    | 9,10                 | 01     | 2               |               | +    |
| HAO-HA2 setup time before<br>HEN assertion                         | 43     |                                                                                                  | 9,10,11              | 02     | 1               |               |      |
| HAO-HA2 hold time after HEN<br>deassertion                         | 44     |                                                                                                  | 9,10,11              |        | 5               |               |      |
| DMA HACK assertion to<br>HREQ deassrtion                           | 45     | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, host DMA read<br>and write cycles         |                      | 01     | 5               | 30            |      |
|                                                                    |        | HREQ is pulled up by a                                                                           |                      | 02     | 5 7/            | 60            |      |
| DMA HACK deassertion to<br>HREQ assertion (for DMA<br>RXL read)    | 46a    | 1 kΩ resistor                                                                                    |                      | All    | tHSDL<br>+3T+5  |               |      |
| DMA HACK deassertion to<br>HREQ assertion (for DMA<br>TXL write)   | 46b    |                                                                                                  |                      | **     | tHSDL<br>+2T+5  |               |      |
| DMA HACK deassertion to<br>HREQ assertion (for all<br>other cases) | 46c    |                                                                                                  |                      |        | 5               |               |      |
| Delay from HEN deassertion<br>HREQ assertion for RXL<br>read       | 47     |                                                                                                  |                      |        | tHSDL<br> +3T+5 |               |      |
| Delay from HEN deassertion<br>to HREQ assertion for TXL<br>write   | 48     | <del> </del><br>                                                                                 |                      |        | tHSDL<br>+2T+5  |               |      |

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER

DAYTON, OHIO 45444

SIZE 5962-89512

REVISION LEVEL SHEET

С

11

DESC FORM 193A JUL 91

■ 9004708 0001271 510 **■** 

| Output data setup to clock falling edge (internal clock)  Output data hold after clock rising edge (internal clock)  Input data setup time before clock rising edge (internal clock)  Input data not valid before clock rising edge (internal clock)  Input data not valid before clock rising edge (internal clock)  Output data not valid before clock rising edge (internal clock)  Clock falling edge to output data valid (external clock)  Output data hold after clock output data hold after clock rising edge | Test                        | Symbol | Conditions $1/$ -55°C $\leq$ T <sub>C</sub> $\leq$ +125°C unless otherwise specified  | Group A<br>subgroups | Device           | Min   | Max   | Unit    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|---------------------------------------------------------------------------------------|----------------------|------------------|-------|-------|---------|
| 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HREQ deassertion for RXL    | 49     | See figure 4, host read/<br>  write cycles<br>  HREQ is pulled up by a                | 9,10,11              | All              | 5     | 75    | ns      |
| Clock high period   57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 55     | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, SCI<br>synchronous mode timing |                      |                  | 161   |       |         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Clock low period            | 56     |                                                                                       |                      |                  |       |       |         |
| Dutput clock rise/fall time   58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clock high period           | 57     |                                                                                       |                      | 01               |       |       | †       |
| Output data setup to clock falling edge (internal clock)  Output data hold after clock rising edge (internal clock)  Input data setup time 61                                                                                                                                                                                                                                                                                                                                                                          |                             |        |                                                                                       |                      | 02               | 16T/2 |       |         |
| falling edge (internal clock)  Output data hold after clock rising edge (internal clock)  Input data setup time 61                                                                                                                                                                                                                                                                                                                                                                                                     | Output clock rise/fall time | 58     |                                                                                       |                      | 01               |       | 20    |         |
| clock rising edge (internal clock)  Input data setup time before clock rising edge (internal clock)  Input data not valid before 62 clock rising edge (internal clock)  Clock falling edge to 63 output data valid (external clock)  Output data hold after clock rising edge  Output data hold after clock output data hold after clock rising edge                                                                                                                                                                   | falling edge (internal      | 59     |                                                                                       |                      | ALL              | ,     |       |         |
| before clock rising edge (internal clock)  Input data not valid before 62 clock rising edge (internal clock)  Clock falling edge to 63 output data valid (external clock)  Output data hold after 64 clock rising edge  Output data hold after 64 clock rising edge                                                                                                                                                                                                                                                    | clock rising edge           | 60     |                                                                                       |                      |                  |       |       |         |
| Input data not valid before 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | before clock rising         | 61     |                                                                                       |                      | <br> -<br> -<br> |       |       |         |
| clock rising edge (internal clock)  Clock falling edge to 63 output data valid (external clock)  Output data hold after 64 clock rising edge                                                                                                                                                                                                                                                                                                                                                                           | Input data not valid before | 62     | <del> </del><br>                                                                      |                      | 01               |       | •     | †       |
| Output data valid (external clock)  Output data hold after 64 clock rising edge                                                                                                                                                                                                                                                                                                                                                                                                                                        | clock rising edge           |        |                                                                                       |                      | 02               |       | 16T/4 |         |
| clock rising edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | output data valid           | 63     |                                                                                       |                      | ALL              |       | 63    | <u></u> |
| (external clock)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | 64     |                                                                                       |                      |                  | 21+12 |       |         |

SIZE

A

5962-89512

12

SHEET

REVISION LEVEL

DESC FORM 193A JUL 91

■ 9004708 0001272 457 **■** 

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

| Test                                                                          | Symbol | Conditions 1/                                                                         | Group A   |        | Li                | imits | Unit     |
|-------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------|-----------|--------|-------------------|-------|----------|
|                                                                               |        | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                         | subgroups | Device | Min               | Max   |          |
| Input data setup time<br>before clock rising edge<br>(external clock)         | 65     | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, SCI<br>synchronous mode timing | 9,10,11   | All    | 30                |       | ns       |
| Input data hold time after<br>clock rising edge<br>(external clock)           | 66     |                                                                                       |           |        | 40                |       |          |
| Asynchronous clock cycle                                                      | 67     | See figure 4, SCI                                                                     |           | 01     | 128T/<br> 2-20    |       |          |
| 11/                                                                           |        | asychronous mode timing                                                               |           | 02     | 128T              |       | 1        |
| Clock low period 7/                                                           | 68     |                                                                                       |           | All    | 128T/<br>2-20     |       |          |
| Clock high period 7/                                                          | 69     |                                                                                       |           |        | 128T/<br> 2-20    |       | <u> </u> |
| Output clock rise/fall time                                                   | 70     |                                                                                       |           | 01     |                   | 20    |          |
| Output data setup to clock<br>rising edge (internal<br>clock)                 | 71     |                                                                                       |           | ALL    | 128T/<br>2-100    |       |          |
| Output data hold after<br>clock rising edge<br>(internal clock)               | 72     |                                                                                       |           |        | 128T/<br>2-100    |       |          |
| Clock cycle <u>12</u> /                                                       | 80     | <br>  See figure 4, SSI receiver<br>  and transceiver timing                          |           | [<br>[ | 8T                |       |          |
| Clock high period                                                             | 81     |                                                                                       |           |        | 8T/2-<br>20       |       |          |
| Clock low period                                                              | 82     | V <sub>CC</sub> = V <sub>CC</sub> min                                                 |           |        | <br> 8T/2-<br> 20 |       |          |
| Output clock rise/fall time                                                   | 83     |                                                                                       |           | 01     |                   | 20    |          |
| RXC rising edge to FSR out<br>(bl) high. external<br>clock.                   | 84a    | See figure 4, SSI receiver timing <u>13</u> /                                         |           | All    |                   | 80    |          |
| RXC rising edge to FSR out<br>(bl) high. internal<br>clock, asynchronous mode | 84b    | V <sub>CC</sub> = V <sub>CC</sub> min                                                 |           |        |                   | 50    |          |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                | 5962-89512  |
|-----------------------------------------------------------------|-----------|----------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL | SHEET<br>13 |

| Test                                                                                                                | Symbol      | Conditions 1/                                                       | Group A   |        | Li  | mits                     | _ Uni1 |
|---------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------|-----------|--------|-----|--------------------------|--------|
|                                                                                                                     |             | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified       | subgroups | Device | Min | Max                      |        |
| RXC rising edge to FSR out                                                                                          | 85a         | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, SSI receiver | 9,10,11   | 01     |     | 80                       | ns     |
| (bl) low. external clock                                                                                            | <u> </u>    | timing                                                              | -         | 02     |     | 70                       | +      |
| RXC rising edge to FSR out (bl) low. internal clock asynchronous mode                                               | 85b         |                                                                     |           | All    |     | 40                       |        |
|                                                                                                                     |             | Ţ                                                                   |           | 01     |     | 80                       |        |
| RXC rising edge to FSR out (wl) high. external clock.                                                               | 86a         |                                                                     |           | 02     |     | 70                       | †      |
| RXC rising edge to FSR out (wl) high. internal clock, asynchronous mode                                             | 86b         |                                                                     |           | All    |     | 40                       |        |
|                                                                                                                     |             | †                                                                   | -         | 01     |     | 80                       | 1      |
| RXC rising edge to FSR out (wl) low. external clock.                                                                | 87a         |                                                                     |           | 02     |     | 70                       | 1      |
| RXC rising edge to FSR out<br>(wl) low. internal clock,<br>asynchronous mode.                                       | 87b         |                                                                     |           | All    |     | 40                       |        |
| Data in setup time before<br>RXC (SCK in synchronous<br>mode) falling edge.<br>external clock.                      | <b>88</b> a |                                                                     |           |        | 15  |                          |        |
| Data in setup time before<br>RXC (SCK in synchronous<br>mode) falling edge.<br>internal clock,<br>asynchronous mode | 88b         |                                                                     |           |        | 35  |                          |        |
| Data in setup time before<br>RXC (SCK in synchronous<br>mode) falling edge.<br>internal clock,<br>synchronous mode. | 88c         |                                                                     |           |        | 25  | <br> <br> <br> <br> <br> |        |
| Data in hold time after                                                                                             | 89a         |                                                                     |           | 01     | 33  | <br>                     | -      |
| RXC falling edge external clock                                                                                     | 070         |                                                                     |           | 02     | 35  |                          | 7      |

| STANDARDIZED MILITARY DRAWING                        | SIZE<br>A |                     | 5962-89512 |
|------------------------------------------------------|-----------|---------------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>C | SHEET      |

DESC FORM 193A JUL 91

■ 9004708 0001274 22T **■** 

| Test                                                                                | Symbol | Conditions                                                               |                     | Group A  |        |          | nits | Unit                |
|-------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------|---------------------|----------|--------|----------|------|---------------------|
|                                                                                     |        | -55°C ≤ T <sub>C</sub> ≤ +17<br>unless otherwise sp                      | 25°C su<br>pecified | ubgroups | Device | Min      | Max  |                     |
| Data in hold time after<br>RXC falling edge<br>internal clock                       | 89b    | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, SSI red<br>timing | ceiver 5            | 9,10,11  | ALL    | 5        |      | ns<br>  ns<br>      |
| FSR input (bl) high before<br>RXC falling edge<br>external clock. <u>13</u> /       | 90a    |                                                                          |                     |          |        | 15       |      | <br> <br> <br> <br> |
| FSR input (bl) high before RXC falling edge internal clock, asynchronous mode. 13/  | 90Ь    |                                                                          |                     |          |        | 35       |      |                     |
| FSR input (wl) high before<br>RXC falling edge                                      | 91a    |                                                                          |                     |          | 01     | 15       |      |                     |
| external clock <u>13</u> /                                                          |        |                                                                          |                     |          | 02     | 20       |      |                     |
| FSR input (wl) high before RXC falling edge internal clock, asynchronous mode. 13/  | 91b    |                                                                          |                     |          | All    | 55       |      |                     |
| FSR input hold time after<br>RXC falling edge<br>external clock                     | 92a    | <br>                                                                     |                     |          | 01     | 33<br>35 |      |                     |
| FSR input hold time after<br>RXC falling edge<br>internal clock                     | 92b    |                                                                          |                     |          | ALL    | 5        |      |                     |
| Flags input setup before                                                            | 93a    |                                                                          |                     |          | 01     | 24       |      | <u>†</u>            |
| RXC falling edge<br>external clock                                                  |        | <u> </u>                                                                 |                     |          | O2     | 30       |      | <u> </u>            |
| Flags input setup before<br>RXC falling edge<br>internal clock,<br>synchronous mode | 93b    |                                                                          |                     |          |        | 50       |      |                     |
| Flags input hold time after<br>RXC falling edge<br>external clock                   | 94a    |                                                                          |                     |          | 01     | 24<br>35 |      |                     |
| See footnotes at end of tabl                                                        | le.    |                                                                          |                     |          |        |          |      |                     |
| MILITAR                                                                             |        | ING                                                                      | SIZE                |          |        |          | 55   | 962-89              |
| DEFENSE ELECTRON<br>DAYTON, O                                                       |        |                                                                          |                     | RE       | VISION | LEVEL    | SHI  | EET                 |

15

С

DESC FORM 193A JUL 91

| Test                                                                           | Symbol | Conditions 1/                                                                       | Group A   |               | Li       | mits     | Uni                       |
|--------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------|-----------|---------------|----------|----------|---------------------------|
|                                                                                |        | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                       | subgroups | Device        | Min      | Max      |                           |
| Flags input hold time after<br>RXC falling edge internal<br>clock, synchronous | 94b    | V <sub>CC</sub> = V <sub>CC</sub> min<br>  See figure 4, SSI<br>  receiver timing   | 9,10,11   | All           | 5        |          | ns                        |
| TXC input edge to FST out (bl) high, external clk                              | 95a    | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4, SSI<br>receiver timing       | <u> </u>  | 01            |          | 80<br>70 | <u> </u>                  |
| TXC input edge to FST out                                                      | 95b    | 13/                                                                                 |           | All           |          | 30       |                           |
| (bl) high, internal clk                                                        |        |                                                                                     |           | 01            | ·        | 80       | †                         |
| TXC rising edge to FSI out (bl) low, external clk                              | 96a    |                                                                                     |           | 02            |          | 65       | 1                         |
| TXC rising edge to FST out<br>(bl) low, internal clk                           | 96b    |                                                                                     |           | All           |          | 35       |                           |
| TXC rising edge to FST out                                                     | 97a    |                                                                                     |           | 01            |          | 80       | 1                         |
| (wl) high, external clk  TXC rising edge to FST out                            | 97b    |                                                                                     |           | 02  <br>  All | <u> </u> | 35       | 1                         |
| (wl) high, internal clk                                                        |        |                                                                                     |           | 01            |          | 80       | +                         |
| TXC rising edge to FST out (wl) low, external clk                              | 98a    |                                                                                     |           | 02            |          | 65       | 1                         |
| TXC rising edge to FST out (Wl) low, internal clock                            | 98b    |                                                                                     | <u> </u>  | All           |          | 35       |                           |
| TXC rising edge to data out<br>enable from high<br>impedance<br>external clock | 99a    | See figure 4, SSI<br>  transmitter timing<br> V <sub>CC</sub> = V <sub>CC</sub> min |           | All           |          | 65       |                           |
| TXC rising edge to data out<br>enable from high<br>impedance<br>internal clock | 99b    |                                                                                     |           |               |          | 40       | †<br> <br> <br> <br> <br> |
| TXC rising edge to data                                                        | 100a   | <del> </del>                                                                        | 9         | 01            |          | 80       | 1                         |
| out valid external clock                                                       |        |                                                                                     |           | 02            |          | 65       | -                         |
| TXC rising edge to data                                                        | 100a   | 1                                                                                   | 10        | 01            |          | 85       | 1                         |
| out valid                                                                      | 1008   |                                                                                     | 1 '5      | 02            |          | 65       | †                         |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS ASAAA | SIZE<br>A |                     | 5962-89512  |
|---------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                      |           | REVISION LEVEL<br>C | SHEET<br>16 |

DESC FORM 193A JUL 91

9004708 0001276 OT2 **=** 

| T <b>e</b> st                                                               | Symbol            |                                                               | Group A  |     | Li                   | mits | Unit     |
|-----------------------------------------------------------------------------|-------------------|---------------------------------------------------------------|----------|-----|----------------------|------|----------|
|                                                                             |                   | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified | subgroup | : - | Min                  | Max  |          |
| TXC rising edge to data                                                     | 100a              | See figure 4, SSI                                             | 11       | 01  |                      | 70   | ns       |
| out valid external clock                                                    |                   | transmitter timing VCC = VCC min                              |          | 02  |                      | 65   | _        |
| TXC rising edge to data out valid internal clock                            | 100ь              | - CC - CC                                                     | 9,10,11  | ALL |                      | 40   | <u> </u> |
| TXC rising edge to data<br>out high impedance<br>external clock             | 101a              |                                                               |          |     |                      | 70   |          |
| TXC rising edge to data<br>out high impedance<br>internal clock             | 1016              |                                                               |          |     |                      | 40   |          |
| TXC falling edge to data<br>out high impedance for<br>gated clock mode only | 101c              |                                                               |          | 02  | <br>  <b>3</b> T<br> |      | _        |
| FST input (bl) setup time<br>before TXC falling edge<br>external clock      | 102a              |                                                               |          | All | <br>  15<br>         |      |          |
| FST input (bl) setup time before TXC falling edge internal clock 13/        | 102b              |                                                               |          |     | 35                   |      |          |
| FST input (#1) to data out enable from high impedance 13/                   | 103               |                                                               |          |     | <br> <br> <br> <br>  | 60   |          |
| FST input (wl) setup time                                                   | 104a              | <u>†</u><br>                                                  |          | 01  | 15                   |      |          |
| TXC falling edge external clock 13/                                         |                   |                                                               |          | 02  | 20                   |      |          |
| FST input (WI) setup time TXC falling edge internal clock 13/               | 104b              |                                                               |          | All | 55                   |      |          |
| FST input hold time after<br>TXC falling edge<br>external clock             | 105a              |                                                               |          |     | 35                   |      |          |
| FST input hold time after<br>TXC falling edge<br>internal clock             | 105b              |                                                               |          |     | 5                    |      |          |
| See footnotes at end of tab                                                 | le.               |                                                               |          |     |                      |      |          |
| STAND.<br>MILITAR                                                           | ARDIZE<br>Y DRAW  |                                                               |          |     |                      | !    | 5962-895 |
| DEFENSE ELECTRON                                                            | IICS SU<br>OHIO 4 | PPLY CENTER                                                   |          |     |                      |      |          |

■ 9004708 0001277 T39 ■

| Test                                                                           | Symbol | Conditions 1/                                                 | Group A   |        | Limits      |                      | Unit       |
|--------------------------------------------------------------------------------|--------|---------------------------------------------------------------|-----------|--------|-------------|----------------------|------------|
|                                                                                |        | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified | subgroups | Device | Min         | Max                  |            |
| Flag out valid after TXC<br>rising edge external<br>clock                      | 106a   | See figure 4, SSI<br>transmitter timing                       | 9,10,11   | All    |             | 70                   | ns         |
| Flag out valid after TXC<br>rising edge internal<br>clock                      | 106b   | V <sub>CC</sub> = V <sub>CC</sub> min                         |           |        |             | 40                   |            |
| Delay from BR assertion                                                        | 115a   | <br>  See figure 4, bus request-                              |           | 01     | 3T          | 91+20                | L          |
| to BG assertion 14/                                                            |        | bus grant timing<br>V <sub>CC</sub> = V <sub>CC</sub> min     |           | 02     | 51          | 91+20                | [<br> <br> |
| Delay from BR assertion<br>to BG assertion <u>15</u> /                         | 115b   |                                                               |           | All    | <b>3</b> T  | 9T+2T<br>*WS+<br>20  |            |
| Delay from BR assertion<br>to BG assertion <u>16</u> /                         | 115c   |                                                               |           |        | 3T          | 13T+<br>4T*WS<br>+20 |            |
| Delay from BR assertion<br>to BG assertion <u>17</u> /                         | 115d   |                                                               |           | All    | <br>  &<br> |                      |            |
| Delay from BR assertion                                                        | 115e   | <u> </u>                                                      |           | 01     | ω           |                      | Ī          |
| to BG assertion 18/                                                            | libe   |                                                               | -         | 02     | T+4         | 3T+30                |            |
|                                                                                |        | 1                                                             | -         | 01     | 51          | 9T+20                | <u> </u>   |
| Delay from BR deassertion<br>to BG deassertion                                 | 116    |                                                               |           | 02     | 41          | 8T+20                |            |
| BG deassertin duration                                                         | 117    | †<br> <br> -                                                  | •         | All    | 4T-10       |                      |            |
| Delay from address, data,<br>and control bus high<br>impedance to BG assertion | 118    |                                                               |           |        | 0           |                      |            |
| Delay from BG deassertion<br>to address, data, and                             | 119    |                                                               |           | 01     |             | -10                  |            |
| control bus enabled                                                            |        |                                                               |           | 02     |             | T-15                 |            |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512  |
|-----------------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET<br>18 |

DESC FORM 193A JUL 91

**■** 9004708 0001278 975 **■** 

| Test                                        | Symbol   | Conditions 1/                                                 | Group A   | į        | Li                        | Limits    |                |      |  |           |
|---------------------------------------------|----------|---------------------------------------------------------------|-----------|----------|---------------------------|-----------|----------------|------|--|-----------|
|                                             |          | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified | subgroups | Device   |                           | Max       | Ī              |      |  |           |
| Address valid to WR                         | 120a     | See figure 4, external 9,10,11                                | 9,10,11   | 01       | T-9                       | Т         | ns             |      |  |           |
| assertion. WS=0 Address valid to WR         | 120b     | bus timing<br> V <sub>CC</sub> = V <sub>CC</sub> min          |           | 02<br>01 | T-9<br>2T-9               | 7+5<br>2T | +              |      |  |           |
| assertion. WS>0                             | <u> </u> | Ì                                                             |           | 02       | 21-9                      | 2T+5      |                |      |  |           |
| WR assertion width. WS=0                    | 121a     |                                                               |           | All      | 21-9                      |           |                |      |  |           |
| WR assertion width. WS>0                    | 121b     |                                                               |           |          | (2*WS<br>+1)*T<br>-9      |           | <br> <br> <br> |      |  |           |
| WR deassertion to address<br>not valid      | 122      |                                                               |           |          |                           |           |                | T-12 |  | <br> <br> |
| WR assertion to data out valid. WS=0        | 123a     |                                                               |           |          |                           | 7-9       | T+10           |      |  |           |
| WR assertion to data out<br>valid. WS>0     | 123b     |                                                               |           |          | 0                         | 10        |                |      |  |           |
| Data out hold time from WR<br>deassertion   | 124      |                                                               |           |          | T-9                       | T+7       |                |      |  |           |
| Data out setup time to WR deassertion. WS=0 | 125a     |                                                               |           | 01<br>02 | T-4<br>T-5                |           |                |      |  |           |
| Data out setup time to WR deassertion. WS>0 | 125b     |                                                               |           | 01       | (2*WS+<br>1)*T-9<br>2T*WS |           | 1              |      |  |           |
| RD deassertion to address                   | 126      |                                                               | -         | All      | +T-5<br>T-9               |           | 1              |      |  |           |
| not valid                                   |          |                                                               |           | 7.1      |                           |           | 1              |      |  |           |
| Address valid to RD<br>deassertion. WS=0    | 127a     |                                                               |           |          | 31-8                      |           | <u> </u>       |      |  |           |
| Address valid to RD deassertion. WS>0       | 127b     |                                                               |           |          | (2*₩S<br> +3)*T<br> -8    |           | <br> <br> <br> |      |  |           |
| Input data hold time to<br>RD deassertion   | 128      |                                                               |           |          | 0                         |           |                |      |  |           |
| RD assertion width. WS=0                    | 129a     |                                                               |           |          | <br>  <u>2</u> T-9        | ļ<br>ļ    |                |      |  |           |
| RD assertion width. WS>0                    | 129b     |                                                               |           |          | (2*WS<br>+2)*T<br>-9      |           | <br> <br>      |      |  |           |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512  |
|-----------------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET<br>19 |

| Test                                       | Symbol   | Conditions $\underline{1}/$ -55°C $\leq$ T <sub>C</sub> $\leq$ +125°C                   | Group A<br>subgroups | Device   | 1             | imits<br>  Max          | Unit     |   |
|--------------------------------------------|----------|-----------------------------------------------------------------------------------------|----------------------|----------|---------------|-------------------------|----------|---|
|                                            | <u> </u> | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified                           |                      | ļ<br>    |               |                         | <u> </u> |   |
| Address valid to input<br>data valid. WS=0 | 130a     | <br>  See figure 4, external<br>  bus timing<br>  V <sub>CC</sub> = V <sub>CC</sub> min | ing                  | All      |               | 3T-18                   | ns       |   |
| Address valid to input<br>data valid. WS>0 | 130b     |                                                                                         |                      |          |               | (2*₩S<br>+3)*T          |          |   |
| Address valid RD assertion                 | 131      |                                                                                         | 01                   | T-9      | T             | Ì                       |          |   |
|                                            | <u> </u> |                                                                                         | -                    | 02       | T-9 7/        | T+5                     |          |   |
| RD assertion to input data valid. WS=0     | 132a     |                                                                                         |                      | All      | (2*i<br>+2)*  | 21-14                   |          |   |
| RD assertion to input data valid. WS>0     | 132b     |                                                                                         |                      |          |               | (2*WS<br> +2)*T<br> -14 |          |   |
| WR deassertion to RD<br>assertion          | 133      |                                                                                         |                      |          | 21 - 15       |                         |          |   |
| RD deassertion to RD assertion             | 134      |                                                                                         |                      |          | 21-10         |                         |          |   |
| WR deassertion to WR<br>assertion. WS=0    | 135a     |                                                                                         |                      |          | 21-15         |                         |          |   |
| WR deassertion to WR<br>assertion. WS>0    | 135b     |                                                                                         |                      |          | <b>3</b> T-15 |                         |          |   |
| RD deassertion to WR<br>assertion. WS=0    | 136a     |                                                                                         |                      |          |               | 21-10                   |          | † |
| RD deassertion to WR<br>assertion. WS>0    | 136b     |                                                                                         |                      |          | 3T - 10       |                         |          |   |
| See footnotes at end of table              | le.      | · · · · · · · · · · · · · · · · · · ·                                                   |                      | <u> </u> |               | 1                       | -        |   |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512  |
|-----------------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET<br>20 |

**9004708 0001280 523** 

| Test                                            | Symbol | Conditions <u>1</u> /                                                      | Group A   |        | Li  | mi ts      | Unit             |
|-------------------------------------------------|--------|----------------------------------------------------------------------------|-----------|--------|-----|------------|------------------|
|                                                 |        | -55°C ≤ T <sub>C</sub> ≤ +12 <sup>5</sup> °C<br>unless otherWise specified | subgroups | Device | Min | Max        |                  |
| CLK low Transition to address valid             | 140    | V <sub>CC</sub> = V <sub>CC</sub> min     See figure 4                     | 9,10,11   | 02     |     | 24         | ns               |
| CLK high transition to WR*                      | 141    | +                                                                          |           |        |     |            | †                |
| WS = 0<br>WS > 0                                |        |                                                                            |           |        | 0   | 19<br>T+19 |                  |
| CLK high transition to WR*<br>Deassertion       | 142    |                                                                            |           |        | 5   | 21         |                  |
| CLK high transition RD*<br>assertion            | 143    |                                                                            |           |        | 0   | 19         | †<br> <br>       |
| CLK high transition to RD*<br>deassertion       | 144    |                                                                            |           |        | 3   | 17         |                  |
| CLK low transition to<br>data-out-valid         | 145    |                                                                            |           |        | -   | 25         |                  |
| CLK low transition to<br>data-out-invalid       | 146    |                                                                            | <br>      |        | 5   | -          | †<br> <br> <br>  |
| Data-In Valid to CLK high<br>transition (Setup) | 147    |                                                                            |           |        | 0   | -          |                  |
| CLK high transition to<br>data-invalid (Hold)   | 148    |                                                                            |           |        | 15  | -          |                  |
| CLK Low to address invalid                      | 149    | <del> </del><br> <br>                                                      |           |        | 3   |            | <del> </del><br> |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512 |
|-----------------------------------------------------------------|-----------|---------------------|------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET 21   |

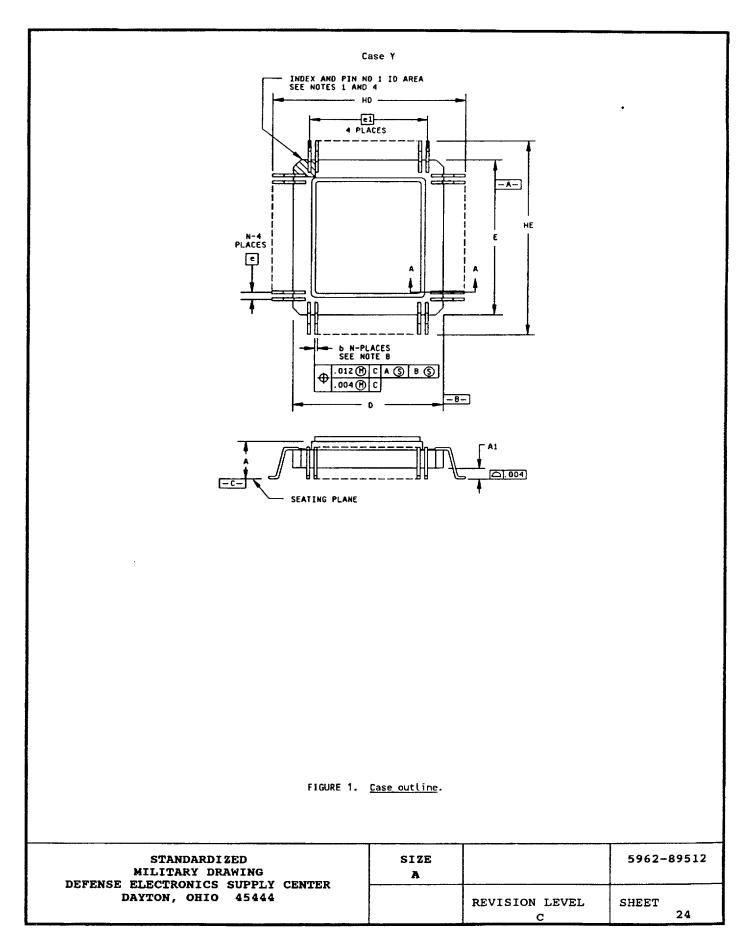
DESC FORM 193A JUL 91

■ 9004708 0001281 46T ■

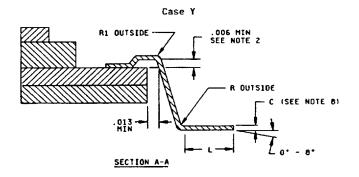
| Test                                                           | Symbol        | Symbol Conditions <u>1</u> /                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Li             | mits                         | Unii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------|---------------|---------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                |               | -55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified | subgroups      | Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min            | Max                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLK low transition to BS* assertion                            | 150           | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4         | 9,10,11        | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4              | 24                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WT* assertion to clk low<br>transition (setup time)            | <br>  151<br> |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4              | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clk low transition to WT*<br>deassertion for minimum<br>timing | 152           |                                                               | <br> <br> <br> | Andreas de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la | 14             | 21-8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WT* deassertion to clk low<br>transition for max timing<br>2WS | 153           |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br> <br>     | -                            | <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CLK high transition to BS* deassertion                         | 154           |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>  5<br>    | 26                           | <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BS* assertion to address valid                                 | 155           |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2             | 10<br><u>7</u> /             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BS* assertion to WT* assertion                                 | 156           |                                                               |                | <del> </del><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0              | 21-15                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BS* assertion to WT* deassertion $WS \leq 2$ $WS \geq 2$       | 157           |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2T(WS<br>-1)2T | 4T - 15<br>  2T*WS<br>  - 15 | THE PARTY STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES |
| WT* deassertion to BS*<br>deassertion                          | <br>  158<br> | V <sub>CC</sub> = V <sub>CC</sub> min<br>See figure 4         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3</b> T     | 5T+23                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Min. BS* deassertion width consecutive external access         | 159           |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т-7            | -                            | <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BS* deassertion to address invalid                             | 160           |                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т-10           | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data-in valid to RD<br>deassertion (setup)                     | 161           |                                                               |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16             | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | 1             | İ                                                             | 1              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              | §                            | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| STANDARDIZED  MILITARY DRAWING                       | SIZE<br>A |                | 5962-89512  |
|------------------------------------------------------|-----------|----------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL | SHEET<br>22 |

DESC FORM 193A JUL 91


#### TABLE I. Electrical performance characteristics - Continued.

#### NOTES:


- 1/ The following pins are active low: RESET, IRQA, IRQB, RD, WR, HEN, HACK, W (of HR/W), HREQ, BG, BR, PS, DS, Y (of X/Y). For ac testing, the following conditions apply: V<sub>ILR</sub> maximum = 0.5 V, V<sub>ILM</sub> maximum = 1.0 V and V<sub>ILM</sub> minimum = -0.5 V, unless otherwise specified.
- $\underline{2}$ / In order to obtain these results all inputs must be terminated, i.e., not allowed to float.
- 3/ External clock input high and clock input low are measured at 50% of the input transition.
- $\frac{4}{7}$  T = I<sub>CYC</sub>/4 is used in the electrical characteristics. The exact length of each T is affected by the duty cycle of the external clock input.
- 5/ A clock stabilization delay is required when using the on-chip crystal oscillator after power-on reset and after recovering from STOP mode.
- 6/ Circuit stabilization delay is required during reset when using an external clock after power-on reset and after recovering from STOP mode.
- 7/ Parameters are guaranteed but not tested.
- 8/ Timing parameters 17 through 22 apply only to IRQA and IRQB in level-sensitive mode using fast interrupts to prevent multiple interrupt service. To avoid these timing restrictions, the negative edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using level sensitive mode.
- $\underline{9}$  Host synchronization delay, (t<sub>HSDL</sub>), is the time period required for the device to sample any external asynchronous input signal, determine whether it is high or low, and synchronize it to the internal clock.
- $\underline{10}$ / Synchronous clock cycle,  $t_{SCC}$ , (for internal clock) is determined by the SCI clock control register and  $I_{CYC}$ .
- 11/ Asynchronous clock cycle,  $t_{ACC}$ , (for internal clock) is determined by the SCI clock control register and  $I_{CYC}$ .
- $\underline{12}$ / For internal clock, external clock cycle is defined by Icyc and SSI control register.
- 13/ The timing waveforms in the ac electrical characteristics are tested with  $V_{IL}$  maximum of 0.5 V and a  $V_{IH}$  minimum of 2.4 V for all pins, except EXTAL, RESET, MODA, and MODB. These four pins are tested using the input levels set forth in the dc electrical characteristics, except for  $V_{ILR}$  and  $V_{ILM}$ , which are referenced to a device input signal and are measured with respect to the 50% point of the respective input signal's transition. The device 01 output levels are measured with  $V_{OL}$  and  $V_{OH}$  reference levels set at 1.0 V dc and 2.0 V dc, respectively. WS= Number of wait states (1 WS = 1 tcyc) programmed into the external bus access using BCR (WS=0-15).  $t_{HSDL}$  = Host synchronization delay time. TXC (SCK pin) = Transmit clock. RXC (SCO and SCK pin) = Receive clock. FST (SC2 pin) = Transmit frame sync. FSR (SC1 or SC2 pin) = Receive frame sync. bl = Bit length. wl = Word length. Device external bus timing parameters are designed and tested at the maximum capacitive load of 50 pF, including stray capacitance.
- 14/ With no external access from DSP.
- 15/ During external read or write access.
- 16/ During external read-write-modify access.
- 17/ During STOP mode, external bus will not be released and BG will not go low.
- 18/ During WAIT mode, external bus will not be released and BG will not go low.

| STANDARDIZED MILITARY DRAWING                        | SIZE<br>A |                | 5962-89512 |
|------------------------------------------------------|-----------|----------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL | SHEET 23   |

DESC FORM 193A JUL 91



**=** 9004708 0001284 179 **=** 



### SECTION A-A

| 1      | Dimensions |       |       |         |  |  |  |  |
|--------|------------|-------|-------|---------|--|--|--|--|
| Symbol | Inch       | nes   | Milli | imeters |  |  |  |  |
|        | Min        | Max   | Min   | Max     |  |  |  |  |
| A      |            | .125  |       | 3.18    |  |  |  |  |
| A1     | .018       | .035  | 0.46  | 0.89    |  |  |  |  |
| ь      | .008       | .014  | 0.20  | 0.36    |  |  |  |  |
| с      | .005       | .010  | 0.13  | 0.25    |  |  |  |  |
| D/E    | .940       | .960  | 23.88 | 24.38   |  |  |  |  |
| e      |            | BSC   | 1.27  | 7 BSC   |  |  |  |  |
| e1     |            | ) BSC |       | BSC     |  |  |  |  |
| HD/HE  | 1.133      | 1.147 | 28.78 | 29.13   |  |  |  |  |
| L      | .024       | .040  | 0.61  | 1.02    |  |  |  |  |
| N      | 100        |       |       |         |  |  |  |  |
| R      | .011       | .034  | 0.28  | 0.86    |  |  |  |  |
| R1     | .009       |       | 0,23  |         |  |  |  |  |

#### NOTES:

- 1/. A terminal 1 identification mark shall be located at the index corner in the shaded area shown. Terminal 1 is located immediately adjacent to and counterclockwise from the index corner. Terminal numbers increase in a counterclockwise direction when viewed as shown.
- 2/. Generic lead attach dogleg depiction.3/. Dimension N: Number of terminals.
- $\overline{4}$ /. Corner shapes (square, notch, radius, etc.) may vary from that shown on the drawing. The index corner shall be clearly unique.
- 5/. Metric equivalents are given for general information only.
- 6/. Controlling dimensions are in inches.
- $\underline{7}/.$  Datums X and Y to be determined where center leads exit the body.
- 8/. Dimensions b and c include lead finish.

FIGURE 1. <u>Case outlines</u> - Continued.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE<br>A |                     | 5962-89512  |
|------------------------------------------------------------------------------------|-----------|---------------------|-------------|
|                                                                                    |           | REVISION LEVEL<br>C | SHEET<br>25 |

DESC FORM 193A JUL 91

### 9004708 0001285 005

Device type 01, 02

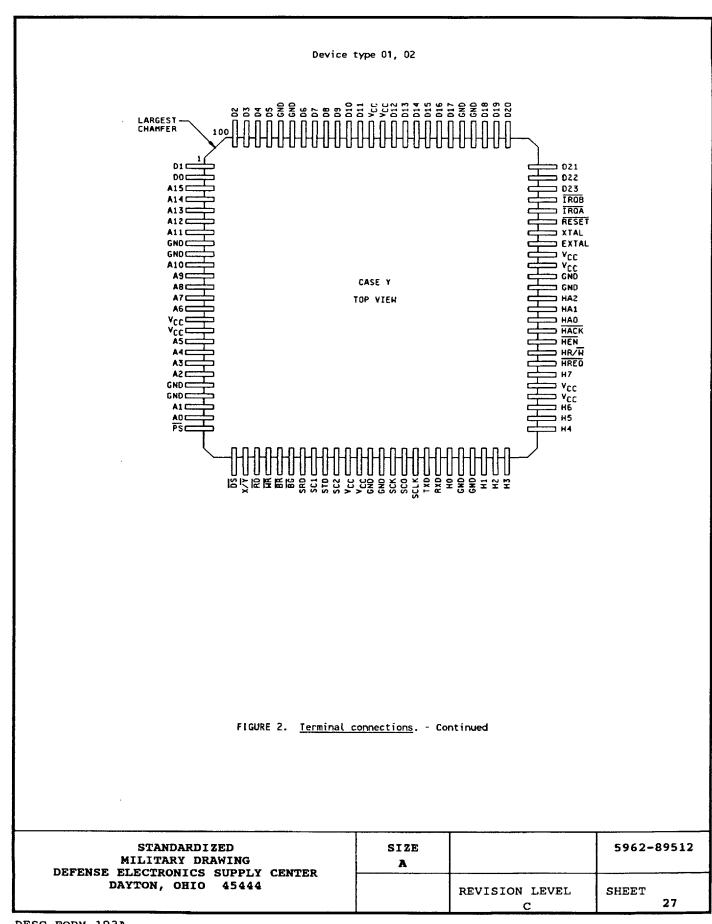
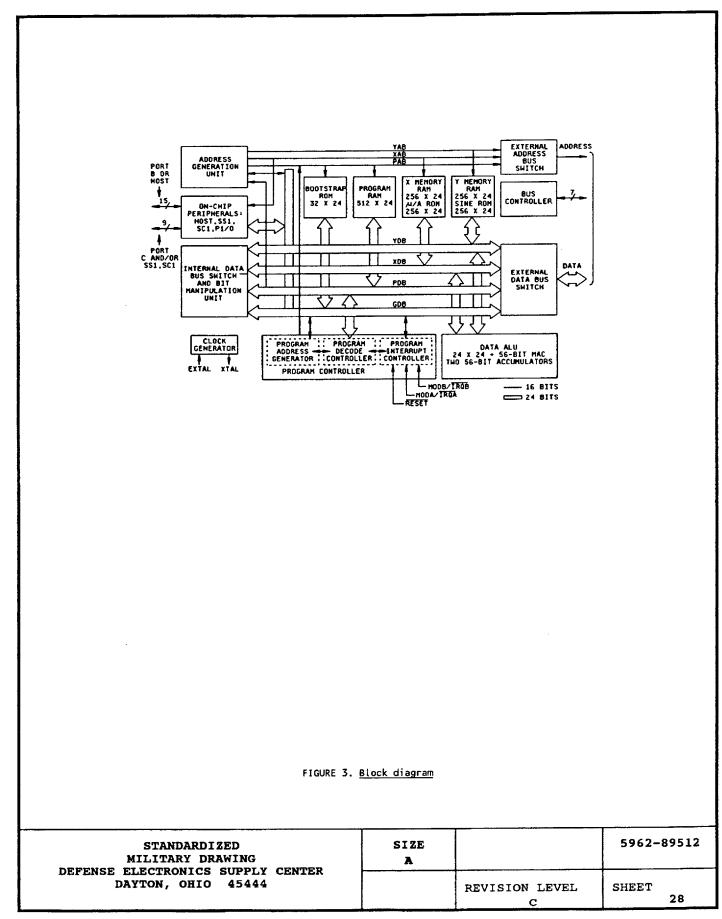
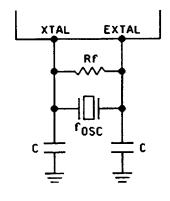

|     |     |                                                    |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | _                                                                                                                                                                             |
|-----|-----|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 0   | 0                                                  | 0                                                                                                                 | 0                                                                                                                                               | 0                                                                                                                                               | 0                                                                                                                                                          | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                             | 0_                                                                                                                                                                            |
|     | DO  | A14                                                | A13                                                                                                               | A12                                                                                                                                             | AID                                                                                                                                             | A8                                                                                                                                                         | A7                                                                                                                                                                                                          | A6                                                                                                                                                                                                                                      | A4                                                                                                                                                                                             | A2                                                                                                                                                                                                                                                           | A1                                                                                                                                                                                                                                                              | PS                                                                                                                                                                                                                                            | ΧŹΫ                                                                                                                                                                           |
|     |     | 0                                                  | 0                                                                                                                 |                                                                                                                                                 | 0                                                                                                                                               | 0                                                                                                                                                          |                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                              |                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
|     |     | 01                                                 | A15                                                                                                               |                                                                                                                                                 | A11                                                                                                                                             | A9                                                                                                                                                         |                                                                                                                                                                                                             | A5                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | A0                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               | iir<br>O                                                                                                                                                                      |
| ı   | _   |                                                    |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 | _                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | BR                                                                                                                                                                            |
|     |     |                                                    |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 | GIVD                                                                                                                                                       |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         | 00                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
|     |     | 05                                                 |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | SC1                                                                                                                                                                           |
| ı   | _   | 0                                                  | 0                                                                                                                 |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | O<br>std                                                                                                                                                                      |
|     |     | D7                                                 | GND                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | SKU                                                                                                                                                                                                                                           | 0                                                                                                                                                                             |
|     | 09  |                                                    |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | scs                                                                                                                                                                           |
| •   | 0   |                                                    | 0                                                                                                                 |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                               | Q                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
| (   | 010 |                                                    | vcc                                                                                                               |                                                                                                                                                 |                                                                                                                                                 | (                                                                                                                                                          | ASE I                                                                                                                                                                                                       | (                                                                                                                                                                                                                                       |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | GND                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                               | SCK                                                                                                                                                                           |
|     |     | 0                                                  |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 | BOT                                                                                                                                                        | TOM V                                                                                                                                                                                                       | IEH                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                             | O<br>sclk                                                                                                                                                                     |
| i i |     | DIZ                                                |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                               | 500                                                                                                                                                                                                                                           |                                                                                                                                                                               |
|     |     |                                                    |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | O<br>txd                                                                                                                                                                      |
| ı   |     | 0                                                  | 0                                                                                                                 |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
| 1   |     | D16                                                | GND                                                                                                               |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | но                                                                                                                                                                                                                                            | RXD                                                                                                                                                                           |
|     | 0   | 0                                                  |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 | 0                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         | 0                                                                                                                                                                                              |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
|     | D15 | D18                                                |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 | v <sub>C</sub> ¢                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         | ¥CC                                                                                                                                                                                            |                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | H1                                                                                                                                                                            |
|     | 0   | 0                                                  |                                                                                                                   | 0                                                                                                                                               | 0                                                                                                                                               | 0                                                                                                                                                          | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                       |                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
| 1   |     | D20                                                |                                                                                                                   |                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                         | _                                                                                                                                                                                              |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | H3                                                                                                                                                                            |
|     | 0   | 0                                                  | 0                                                                                                                 | 0                                                                                                                                               | 0                                                                                                                                               | _                                                                                                                                                          | _                                                                                                                                                                                                           | _                                                                                                                                                                                                                                       | ~                                                                                                                                                                                              | _                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                             | 0                                                                                                                                                                             |
|     |     |                                                    |                                                                                                                   |                                                                                                                                                 | ACCET                                                                                                                                           | V T 4 .                                                                                                                                                    | 1102                                                                                                                                                                                                        | HAT                                                                                                                                                                                                                                     | MACK                                                                                                                                                                                           | MEN                                                                                                                                                                                                                                                          | UD /LI                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                                                               |
| \ ' | D19 | D21                                                | 022                                                                                                               | IROB                                                                                                                                            | KESEI                                                                                                                                           | XIAL                                                                                                                                                       | HAZ                                                                                                                                                                                                         | UMI                                                                                                                                                                                                                                     | HACK                                                                                                                                                                                           | HEIN                                                                                                                                                                                                                                                         | nrv A                                                                                                                                                                                                                                                           | no                                                                                                                                                                                                                                            | H5                                                                                                                                                                            |
|     |     | O 010<br>O 011<br>O 013<br>O 014<br>O 015<br>O 017 | DO A14 O O D3 D1 O O O D4 D2 O O D6 D5 O O D8 D7 O D9 O D11 D12 O D13 O O D14 D16 O O D15 D18 O O O D17 D20 O O O | DO A14 A13 O O O D3 D1 A15 O O O D4 D2 O O O D6 D5 O O O D8 D7 GND O O D9 O O O D11 D12 O O D13 O O O D14 D16 GND O O D15 D18 O O O D17 D20 O O | DO A14 A13 A12 O O O D3 D1 A15 O O D4 D2 O O D6 D5 O O D8 D7 GND O D9 O O D11 D12 O O D13 O O O D14 D15 GND O O D15 D18 O O O D17 D20 D23 O O O | DO A14 A13 A12 A1D O O O O D3 D1 A15 A11 O O D4 D2 O O O D6 D5 O O O D8 D7 GND O D9 O O O D11 D12 O O D14 D16 GND O O D15 D18 O O O D17 D20 D23 IROA O O O | DO A14 A13 A12 A1D A8 O O O O O O D3 D1 A15 A11 A9 O O O O D4 D2 GND O O O D6 D5 O O O D8 D7 GND O O D9 O O O D10 VCC O O O D11 D12 O O D13 O O O D14 D16 GND O O D15 D18 O O O D17 D20 O O O D17 D20 O O O | DO A14 A13 A12 A10 A8 A7  O O O O O O  D3 D1 A15 A11 A9  O O O O  D4 D2 GND  O O  D6 D5  O O O  D8 D7 GND  O D9  O O O  D10 VCC CASE O  BOTTOM V  D11 D12  O D14 D16 GND  O O O  D15 D18  O O O O  D17 D20  D23 IROA EXTAL GND  O O O O | DO A14 A13 A12 A10 A8 A7 A6 O O O O O O O D3 D1 A15 A11 A9 A5 O O O O D4 D2 GND VCC O D6 D5 O O O D8 D7 GND O D9 O O O D13 O O O D13 O O O D14 D16 GND O D15 D18 O O O D17 D20 D O O O O O O O | DO A14 A13 A12 A10 A8 A7 A6 A4  O O O O O O O O  D3 D1 A15 A11 A9 A5 A3  O O O O  D4 D2 GND VCC GND  D6 D5  O O O  D8 D7 GND  O O  D10 VCC CASE X  BOTTOM VIEH  D11 D12  O O  D14 D16 GND  O O O  D15 D18 VCC VCC  D17 D20 D23 IROA EXTAL GND HAO  O O O O O | DO A14 A13 A12 A10 A8 A7 A6 A4 A2  O O O O O O O O  D3 D1 A15 A11 A9 A5 A3  O O O O  D4 D2 GND VCC GND  D6 D5  O O O  D8 D7 GND  O O  D10 VCC  CASE X  BOTTOM VIEH  D11 D12  O O  D14 D16 GND  O O  D15 D18  VCC  O O O O  D17 D20  D23 TROA EXTAL GND HAO HREQ | DO A14 A13 A12 A10 A8 A7 A6 A4 A2 A1 O O O O O O O O O D3 D1 A15 A11 A9 A5 A3 A0 O O O O O O O O D4 D2 GND VCC GND O O O D8 D7 GND O O O D9 O O O D11 D12 O O O O D14 D16 GND O O O D14 D16 GND O O O D15 D18 VCC VCC VCC O O O O O O O O O O | DO A14 A13 A12 A1D A8 A7 A6 A4 A2 A1 PS O O O O O O O O O O O O D3 D1 A15 A11 A9 A5 A3 A0 DS O O O O O O O O O O O D4 D2 GND VCC GND RD O O O O O O O O O O O O O O O O O O O |

FIGURE 2. Terminal connections.

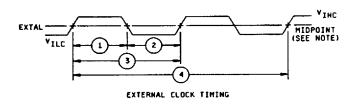

| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                | 5962-89512 |
|------------------------------------------------------|-----------|----------------|------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL | SHEET 26   |

DESC FORM 193A JUL 91


■ 9004708 0001286 T41 ■



9004708 0001287 988 📟




9004708 0001288 814



| Recommended component values |         |            |  |  |  |  |
|------------------------------|---------|------------|--|--|--|--|
| f <sub>OSC</sub> (MHz)       | C (pF)  | Rf (K ohm) |  |  |  |  |
| 4                            | 82 ±20% | 680 ±10%   |  |  |  |  |
| 20                           | 47 ±20% | 680 ±10%   |  |  |  |  |

Crystal oscillator test circuit



NOTE: The midpoint is  $V_{\rm ILC}$  +0.5 ( $V_{\rm IHC}$ - $V_{\rm ILC}$ ).

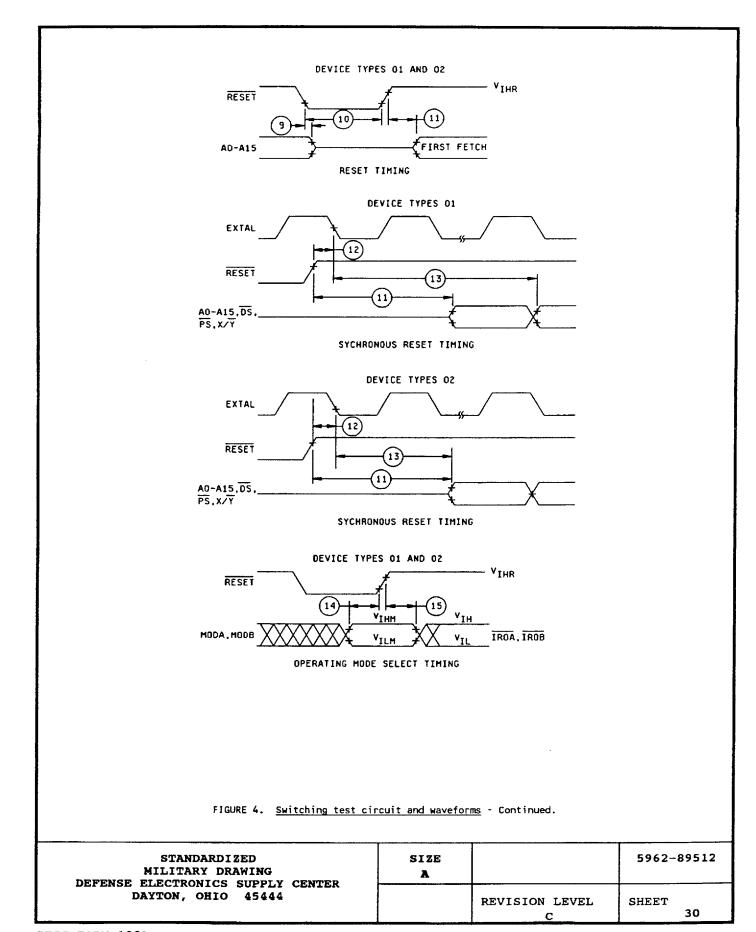
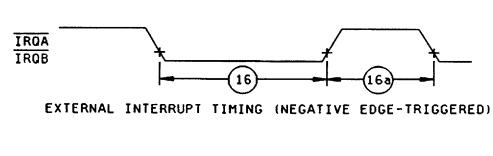
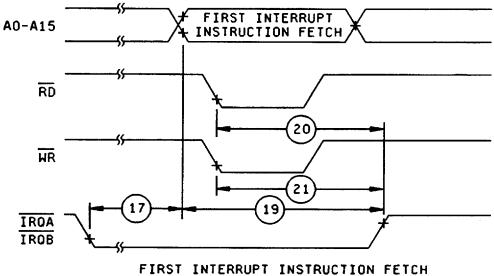

External clock timing

FIGURE 4. Switching test circuit and waveforms.


| STANDARDIZED MILITARY DRAWING                        | SIZE<br>A |                     | 5962-89512  |
|------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>C | SHEET<br>29 |


DESC FORM 193A JUL 91

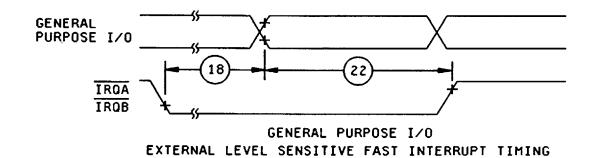
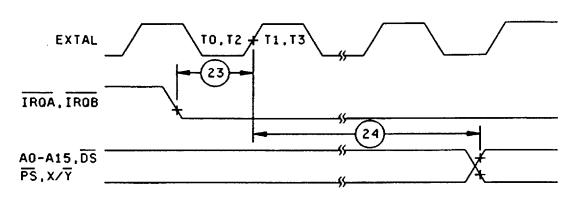
**3004708 0001289 750** 

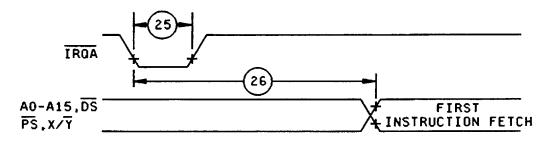


■ 9004708 0001290 472 **■** 

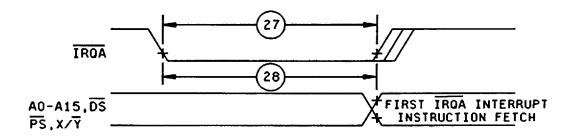






FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                | 5962-89512  |
|-----------------------------------------------------------------|-----------|----------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL | SHEET<br>31 |

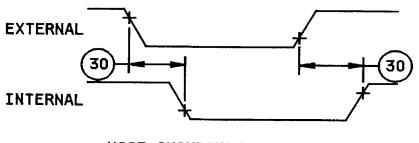

## ■ 9004708 0001291 309 **■**



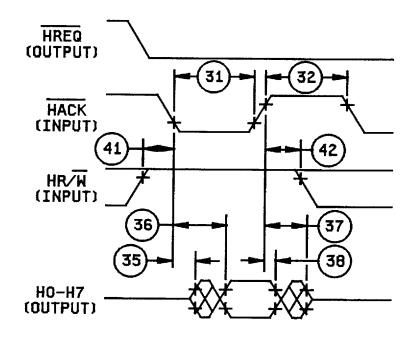
SYNCHRONOUS INTERRUPT FROM WAIT STATE TIMING



RECOVERY FROM STOP STATE USING IROA




RECOVERY FROM STOP STATE USING IROA INTERRUPT SERVICE

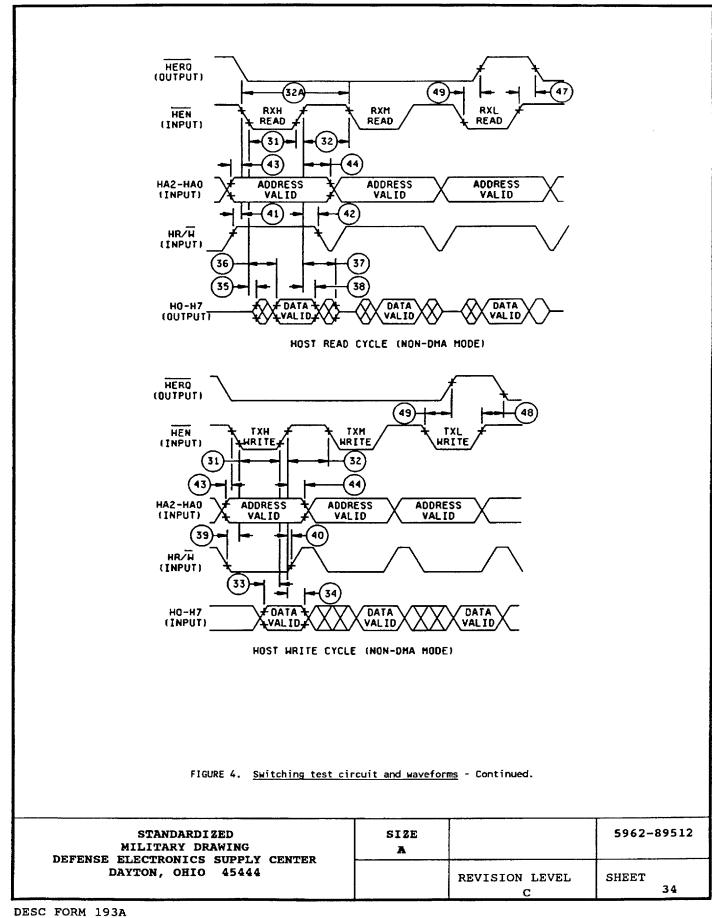

FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED  MILITARY DRAWING  DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512  |
|-------------------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444              |           | REVISION LEVEL<br>C | SHEET<br>32 |

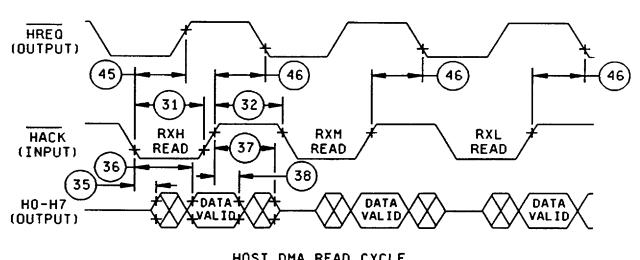
💻 9004708 0001292 245 🖿



HOST SYCHRONIZATION DELAY




HOST INTERRUPT VECTOR REGISTER (IVR) READ


FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE |                     | 5962-89512  |
|-----------------------------------------------------------------|------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |      | REVISION LEVEL<br>C | SHEET<br>33 |

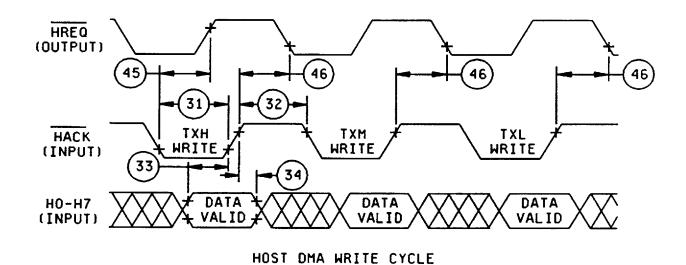
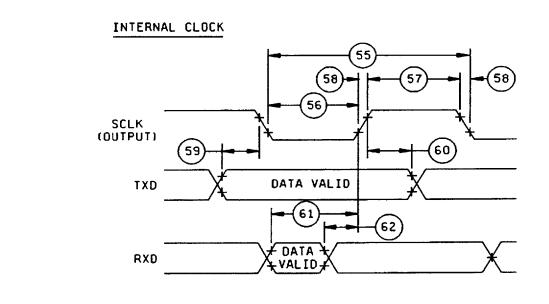
**-** 9004708 0001293 181 **-**

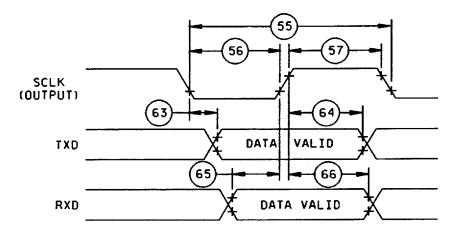


■ 9004708 0001294 018 **■** 



HOST DMA READ CYCLE



FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE<br>A |                | 5962-89512  |
|------------------------------------------------------------------------------------|-----------|----------------|-------------|
|                                                                                    |           | REVISION LEVEL | SHEET<br>35 |

# ■ 9004708 0001295 T54 **■**



## EXTERNAL CLOCK



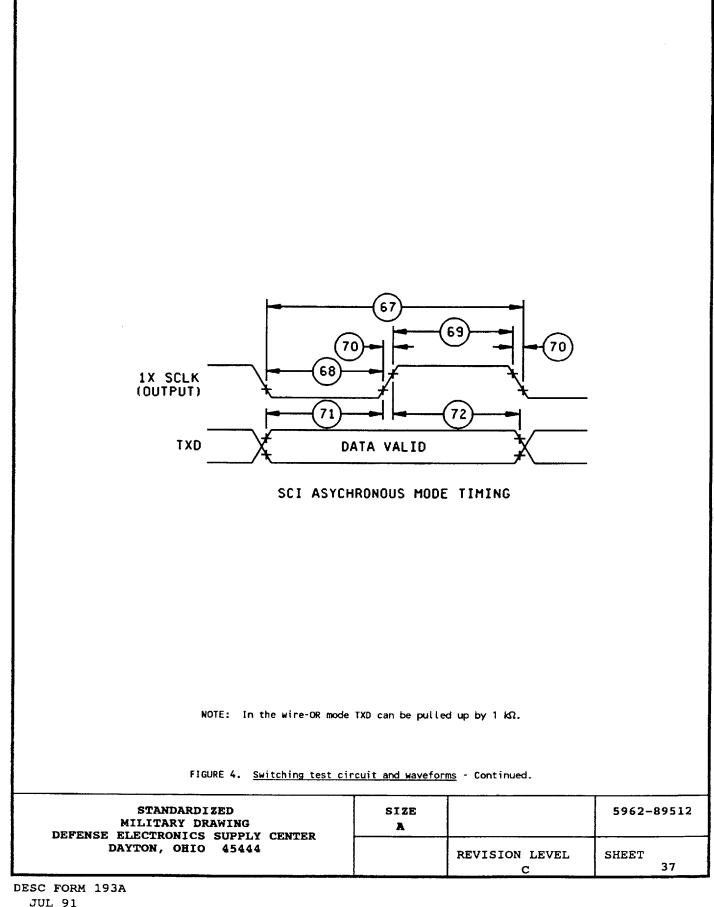
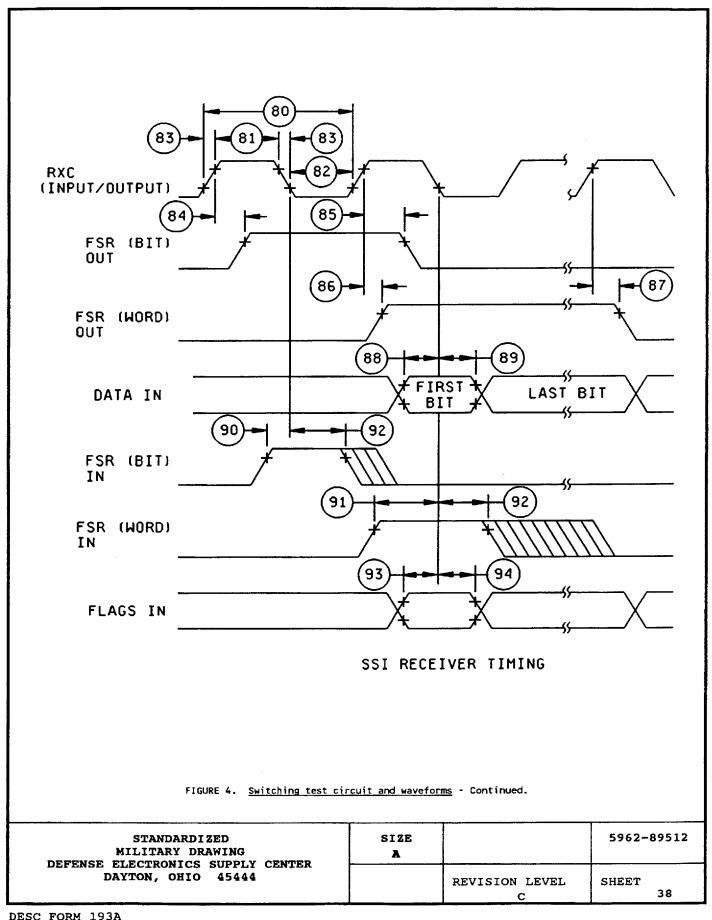
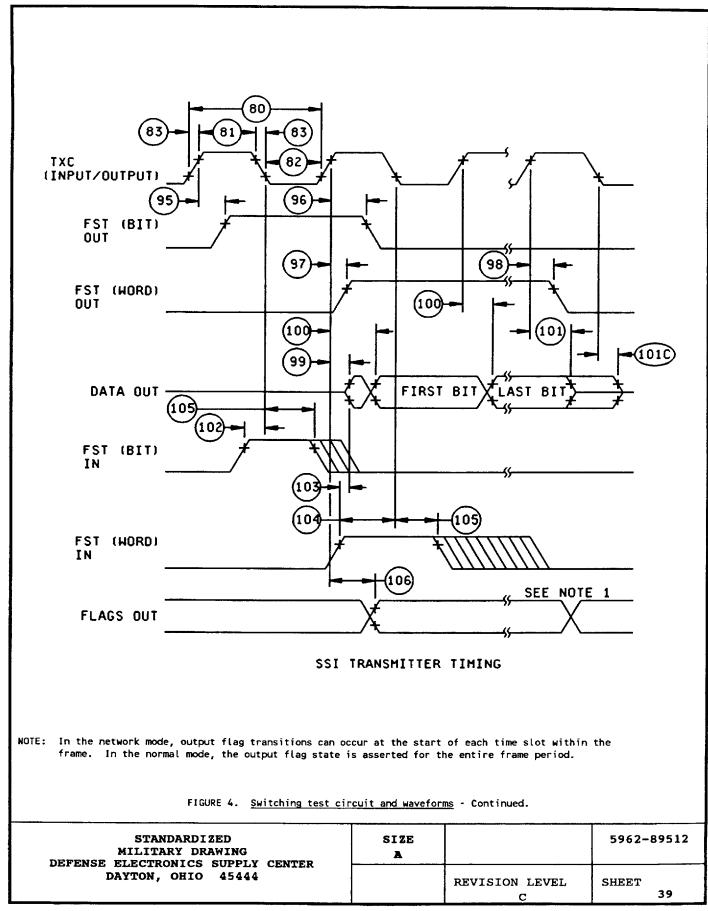

SCI SYNCHRONOUS MODE TIMING

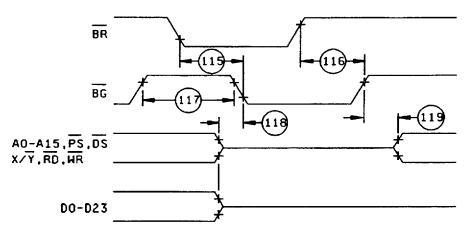
FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED  MILITARY DRAWING  DEFENSE ELECTRONICS SUPPLY CENTER  DAYTON, OHIO 45444 | SIZE |                | 5962-89512  |
|---------------------------------------------------------------------------------------|------|----------------|-------------|
|                                                                                       |      | REVISION LEVEL | SHEET<br>36 |

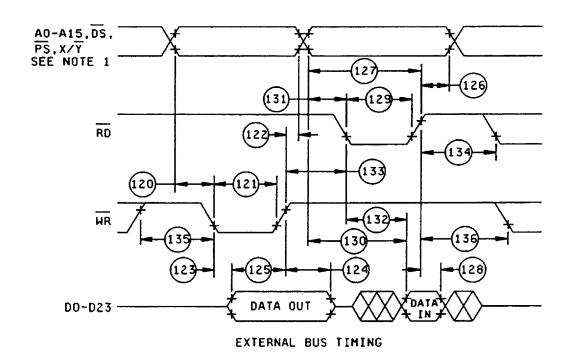

DESC FORM 193A JUL 91

**■** 9004708 0001296 990 **■** 





JUL 91

9004708 0001297 827 🖿




■ 9004708 0001298 7**63** ■

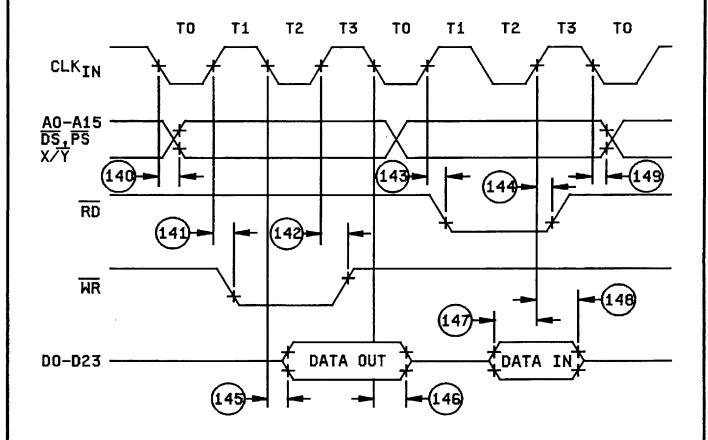




BUS REQUEST BUS GRANT TIMING



NOTE: During read-modify-write instructions, these address lines do not change state.


FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED<br>MILITARY DRAWING<br>DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                | 5962-89512 |
|-----------------------------------------------------------------------|-----------|----------------|------------|
| DAYTON, OHIO 45444                                                    |           | REVISION LEVEL | SHEET 40   |

DESC FORM 193A JUL 91

9004708 0001300 141 ==





## Synchronous bus timing

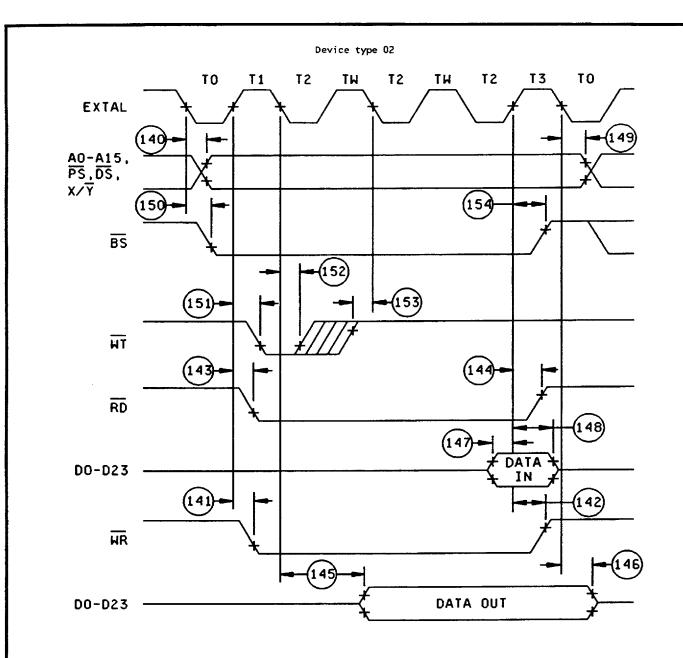

Note: During Read-Modify-Write instructions, the address lines do not change states.

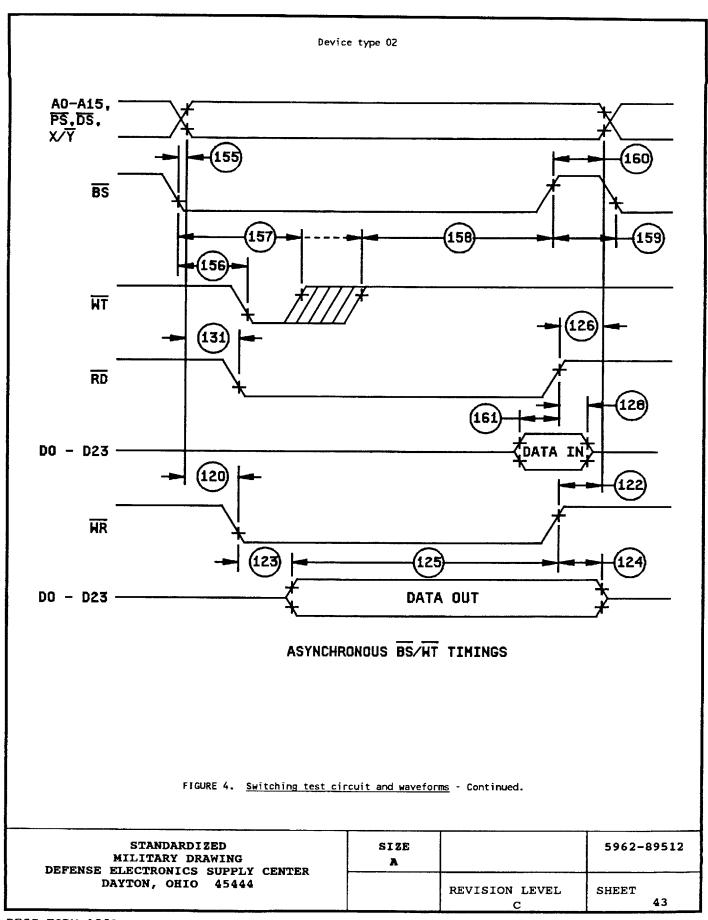
FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512  |
|-----------------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET<br>41 |

DESC FORM 193A JUL 91

## **-** 9004708 0001301 088 **-**




# Synchronous BS/WT timings

Note: During Read-Modify-Write instructions, the address lines do not change state. However, BS will deassert before asserting again for the write cycle.

FIGURE 4. Switching test circuit and waveforms - Continued.

| STANDARDIZED MILITARY DRAWING                        | SIZE<br>A |                     | 5962-89512  |
|------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>C | SHEET<br>42 |

DESC FORM 193A JUL 91



**■** 9004708 0001303 950 **■** 

TABLE II. <u>Electrical test requirements</u>.

| MIL-STD-883 test requirements                                      | Subgroups<br>(per method<br>5005, table I) |
|--------------------------------------------------------------------|--------------------------------------------|
| Interim electrical parameters<br>(method 5004)                     | 1, 7, 9                                    |
| Final electrical test parameters (method 5004)                     | *1, 2, 3, 7, 8,<br>9, 10, 11               |
| Group A test requirements<br>(method 5005)                         | 1, 2, 3, 4, 7,<br>8, 9, 10, 11             |
| Groups C and D end-point<br>electrical parameters<br>(method 5005) | 1, 2, 3                                    |

<sup>\*</sup> PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

### 4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 ( $C_{1N}$  measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of 5 devices with zero rejects shall be required.
- d. Subgroups 7 and 8 functional testing shall include verification of instruction set. The instruction set forms a part of the vendors test tape and shall be maintained and available from the approved sources of supply.

## 4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-SID-883.
  - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
  - (2)  $T_A = +125$ °C, minimum.
  - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

#### 5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

| MILITARY DRAWING | SIZE<br>A |                | 5962-89512 |
|------------------|-----------|----------------|------------|
|                  |           | REVISION LEVEL | SHEET      |

DESC FORM 193A JUL 91

**-** 9004708 0001304 897 **-**

#### 6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-ECS, telephone (513) 296-6022.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444, or telephone (513) 296-5377.
  - 6.6 Symbols and definitions. Symbols and definitions are listed as follows:

| Pin descriptions |                                                                                                                                                                                                                 |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pin name         | Description                                                                                                                                                                                                     |  |
| AO - A15         | These three state output pins specify the address for external program and data memory accesses. To minimize power dissipation AO - A15 do not change state when external memory spaces are not being accessed. |  |
| DO - D23         | These pins provide the bidirectional data bus for external program and data memory accesses. DO - D23 are in the high-impedance state when the bus grant signal is asserted.                                    |  |
| PS               | Program memory select is a three state output asserted only when external program memory is referenced.                                                                                                         |  |
| DS               | Data memory select is a three state output asserted only when external data memory is referenced.                                                                                                               |  |
| X/Ÿ              | This three state output selects which external data <u>me</u> mory space (X or Y) is referenced by data memory select (DS).                                                                                     |  |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                     | 5962-89512  |
|-----------------------------------------------------------------|-----------|---------------------|-------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL<br>C | SHEET<br>45 |

DESC FORM 193A JUL 91

**9**904708 0001305 723 **=** 

|                        | Pin descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin name               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RD                     | Read enable is a three state output asserted to read external memory on the data bus DO - D23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WR                     | Write enable is a three state output asserted to write external memory on the data bus DO - D23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BR                     | The bus request input BR allows another device such as a processor or controller to become the master of the data and address buses. When BR is asserted, device 01 will always release the external data bus DO - D23, address bus AO - A15 and bus control pins PS, DS, X/Y, RD and WR(i.e., port A), by placing these pins in the high impedance state after the execution of the current instruction has been completed.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BG                     | Bus grant is a three state output asserted to acknowledge an external bus request after port A has been released.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MODA/IRQA<br>MODB/IRQB | The interrupt and mode control inputs have dual functions:  1) To select the initial chip operating mode.  2) To receive an interrupt request from an external source.  MODA and MODB are read and internally latched in the DSP when the processor exits the RESET state. After leaving the RESET state, the MODA and MODB pins automatically change to external interrupt requests IRQA and IRQB. After leaving the RESET state, the chip operating mode can be changed by software. IRQA and IRQB may be programmed to be level sensitive or negative edge triggered. When edge triggered, triggering occurs at a voltage level and is not directly related to the fall time of the interrupt signal, however, the probability of noise on IRQA or IRQB generating multiple interrupts increases with increasing fall time of the interrupt signal. |
| RESET                  | This <u>Schmitt</u> trigger input pin is used to reset device 01. When RESET is asserted, device 01 is initialized and placed in the reset state. When the RESET signal is negated, the initial ship operating mode is latched from MODA and MODB pins. When coming out of reset, negation occurs at a voltage level and is not directly related to the rise time of the reset signal, however, the probability of noise on RESET generating multiple resets increases with increasing rise time of the reset signal.                                                                                                                                                                                                                                                                                                                                  |
| V <sub>CC</sub>        | There are five sets of power and ground pins, two pairs for internal logic, one power and two ground for Port A address and control pins, one power and two ground for Port A data pins, and one pair for peripherals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| STANDARDIZED<br>MILITARY DRAWING                     | SIZE<br>A |                     | 5962-89512  |
|------------------------------------------------------|-----------|---------------------|-------------|
| DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 |           | REVISION LEVEL<br>C | SHEET<br>46 |

■ 9004708 0001306 66T **■** 

|           | Pin descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EXTAL     | External clock/crystal input (EXTAL) may be used to interface the crystal oscillator input to an external crystal or an external clock. The maximum clock rate is 20.5 MHz.                                                                                                                                                                                                                                                                                                                                                          |
| XTAL      | The crystal output (XTAL) connects the internal crystal oscillator output to an external crystal. If an external clock is used, XTAL should not be connected.                                                                                                                                                                                                                                                                                                                                                                        |
| но - н7   | The host data bus is used to transfer data between the host processor and device 01. This bus is an input unless enabled by a host processor read. HO - H7 may be programmed as general purpose parallel I/O pins called PBO - PB7 when the host interface is not being used.                                                                                                                                                                                                                                                        |
| HAC - HA2 | Host address inputs provide the address selection for each host interface register. HAO - HA2 may be programmed as general purpose parallel I/O pins called PBO - PB10 when the host interface is not being used.                                                                                                                                                                                                                                                                                                                    |
| HR/W      | Host read/write input selects the di <u>rection</u> of data transfer for each host processor access. HR/W may be programmed as a general purpose I/O pin called PB11 when the host interface is not being used.                                                                                                                                                                                                                                                                                                                      |
| HEN       | Host enable input enables a data transfer on the host data bus When HEN is asserted and HR/W is high, HO - H7 become outputs and device 01 data may be read by the host processor. When HEN is asserted and HR/W is low, HO - H7 become inputs and host data is latched inside device 01 when HEN is negated. Normally a chip select signal, derived from host address decoding and an enable clock is used to generate HEN. HEN may be programmed as general purpose I/O pin called PB12 when the host interface is not being used. |
| HREQ      | Host request is an open drain output signal used by device 01 interface to request service from the host <u>proc</u> essor, DMA controller or simple external controller. HREQ may be programmed as a general purpose I/O pin (not open-drain) called PB13 when the host interface is not being used.                                                                                                                                                                                                                                |
| HACK      | Host acknowledge input has two functions:  1) To receive a host acknowledge handshake signal for DMA transfers.  2) To receive a host acknowledge compatible with other family processors. HACK may be programmed as a general purpose I/O pin called PB14 when the host interface is not being used.                                                                                                                                                                                                                                |

| STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE<br>A |                | 5962-89512 |
|-----------------------------------------------------------------|-----------|----------------|------------|
| DAYTON, OHIO 45444                                              |           | REVISION LEVEL | SHEET      |

■ 9004708 0001307 5T6 ■

|          | Pin descriptions                                                                                                                                                                                                                                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin name | Description                                                                                                                                                                                                                                                                                                                     |
| RXD      | Receive data input receives byte oriented serial data into the SCI receive shift register. Input data is sampled on the positive edge of the receive clock. RXD may be programmed as a general purpose I/O pin called PCO when the SCI is not being used.                                                                       |
| TXD      | Transmit data output transmits serial data from the SCI transmit shift register. Data changes on the negative edge of the transmit clock. This output is stable on the positive edge of the transmit clock. TXD may be programmed as a general purpose I/O pin called PC1 when the SCI is not being used.                       |
| SCLK     | SCI Serial clock is a bidirectional pin which provides an input or output clock from which the transmit and/or receive baud rate is derived in the asynchronous mode and from which data is transferred in the synchronous mode. SCLK may be programmed as a general purpose I/O pin called PC2 when the SCI is not being used. |
| sco      | Serial control zero bidirectional pin is used for control by the SSI. SCO may be programmed as a general purpose I/O pin called PC3 when the SSI is not being used.                                                                                                                                                             |
| SC1      | Serial control one bidirectional pin is used for control by the SSI. SC1 may be programmed as a general purpose I/O pin called PC4 when the SSI is not being used.                                                                                                                                                              |
| SC2      | Serial control two bidirectional pin is used for control by the SSI. SC2 may be programmed as a general purpose I/O pin called PC5 when the SSI is not being used.                                                                                                                                                              |
| SCK      | SSI serial clock bidirectional pin provides the serial bit rate clock for the SSI when only one clock is used. SCK may be programmed as a general purpose I/O pin called PC6 when the SSI is not being used.                                                                                                                    |
| SRD      | SSI receive data input pin receives data into the SSI receive shift register. SRD may be programmed as a general purpose I/O pin called PC7 when the SSI is not being used.                                                                                                                                                     |
| STD      | SSI transmit data output pin transmits serial data from the SSI transmit shift register STD may be programmed as a general purpose I/O pin called PC8 when the SSI is not being used.                                                                                                                                           |

6.7 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

| STANDARDIZED<br>MILITARY DRAWING<br>DEFENSE ELECTRONICS SUPPLY CENTER<br>DAYTON, OHIO 45444 | SIZE<br>A |                     | 5962-89512  |
|---------------------------------------------------------------------------------------------|-----------|---------------------|-------------|
|                                                                                             |           | REVISION LEVEL<br>C | SHEET<br>48 |

DESC FORM 193A JUL 91

**3004708 0001308 432** 

41432