Page 1

LXMG221W-0700030-D0

30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

DESCRIPTION

reliable 30W solid-state LED lighting driver module with a galvanic isolated output. It is compliant to Energy Star for commercial, industrial and residential applications. It is compatible with 50Hz and 60Hz AC power sources worldwide on DIM(+) input following IEC 60929 with standard voltages ranging from Annex E.2.3. A minimum dim level of 120VAC +/- 10% to 277VAC +/- 10%. The output is a 700mA dimmable constant shorted to DIM(-). current source. It complies with UL, CUL and CE standards for safety standards and EMC.

The LXMG221W-0700030-D0 is a highly Low voltage dimming control is available when using the dedicated dimming control input leads, DIM(+) and DIM(-). The amplitude of the output LED string current vary from 10% corresponding to a 1V_{DC} to 10V_{DC} signal 10% shall be obtained with DIM(+) input

KEY FEATURES

- Energy Star Compliant
- > 50k Hour Life at 60°C
- Constant Current Output
- 0 − 10V_{DC}, PWM and POT Dimmable
- Suitable for Damp Locations IP66
- Suitable for Plenum Locations
- Isolated Output, SELV
- High efficiency/Cool Running
- Universal AC Input
- UL, CUL, and CE Standards E337545
- EU ROHS, REACH Compliant
- Full Protection: OVP, SCP, OTP, Maximum Power Limit
- Small Compact Size

APPLICATIONS

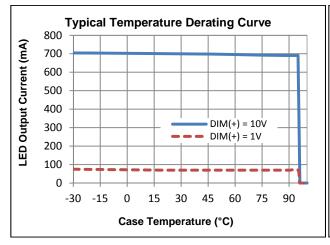
Worldwide Residential and Commercial LED Lighting Fixtures such as:

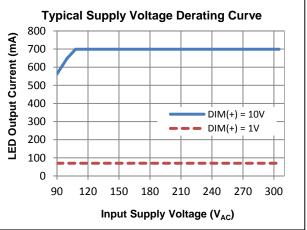
LED Down Lights

PRODUCT

Photo is representative only, actual product may differ

I	ORDER INFORMATION				
	Part Number	Input Voltage	Output Voltage Range and Full Scale Current (IFS)		
LXMG221W-0700030-D0		120V _{AC} to 277V _{AC} ; 47 to 63Hz	17V to 40V at 700mA		


30W 700mA Dimmable LED Driver Module


PRODUCTION DATASHEET

ABSOLUTE MAXIMUM RATINGS

AC Input Voltage	
DIM(+) (relative to DIM(-))	20V to 42.4V
DIM(+) Voltage (relative to OUTPUT(-))	20V to 42.4V
Operating Humidity	5 to 95% (non-condensing)
Input Power	38W (Internally Limited)
Output LED String Current	810mA (Internally Limited)
Output String Voltage	42.4V (Internally Limited)
Output Power	34W (Internally Limited)
Case Storage Temperature Range	40°C to 105°C

Note: Exceeding these ratings could cause damage to the device. Currents are positive into, negative out of specified terminal.

TYPICAL OPERATING CONDITIONS

Parameter Symbol		Test Conditions / Comment		Тур	Max	Units	
LED String Output Voltage	V _{OUT(+)}	At full load current	17		40) //	
Range		At minimum load Current (Dimmed to 10%)	15	15		7 v	
OUT(-) Sink Current	OUT(-) _{ISINK}	I _{FS}		700		mA	
Linear DIM(+) Control Input Voltage Range	V _{DIM(+)}		0.95		10	V	
DIM(+) Control PWM Frequency Range	V _{DIM(+)_PWM}	Open Collector Drive	200		1000	Hz	
DIM(+) Control PWM Duty Cycle Range	V _{DIM(+)_DC}		9.5		100	%	

30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating temperature of -20°C to 60°C and the full input voltage range. Except where noted, testing is performed at 25°C, with $120V_{AC}$, $240V_{AC}$ and $277V_{AC}$, $V_{OUT} = 37.5 \pm 2.5V$, $I_{OUT} = IFS$

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units	
Input Voltage	V _{AC}	Line Frequency 47Hz to 63Hz	108		305	V_{AC}	
	I _{AC}	120V _{AC} Input		0.265			
Input AC Current	I _{AC}	240V _{AC} Input		0.136		Α	
	I _{AC}	277V _{AC} Input		0.121		1	
Peak Inrush Current	I _{AC}	Measure at 277V _{AC} Peak AC Line; Prior to first AC zero crossing		12		A	
		Measure at 277V _{AC} Peak AC Line; After first AC zero crossing		0.6	5		
Power Factor	pf	V _{AC} = 120V _{AC} and 277V _{AC} , maximum load	0.9			PF	
Efficiency	η	V_{AC} = 120 V_{AC} and 277 V_{AC} , maximum load, after 30 minutes operation	88	90		%	
Total Harmonic Distortion	T.H.D.	V_{AC} = 120 V_{AC} and 277 V_{AC} , maximum load			10	%	
Output Current Source							
Average Sink Current	I _{OUT(-)}	$V_{AC} = 120V_{AC}$, 240 V_{AC} and 277 V_{AC} , full bright	95 100		105	%I _{FS}	
Line Regulation I _{OUT(-)}		V _{AC} = 120V _{AC} and 277V _{AC} , maximum load			1	%I _{FS}	
DC Controlled Dimmin	g(Per IEC	60929, Annex E2.1 - 2.3)					
		Maximum Brightness	9.5			V	
Dimming Control Voltage	V_{DIM}	Mid (50%) brightness	4.5	4.75	5.0		
		Minimum Brightness	0		1.05		
	I _{FS}	Maximum current; V _{DIM} = 10V	665	700	735	mA	
Output Current	I _{OUT(-)}	Mid Current ; V _{DIM} = 4.75V	47.5	50	52.5	%l _{FS}	
		Minimum current; V _{DIM} = 1V	8	10	12		
Dimming Control Current	I _{CONT}	The LED Driver sources DIM current	1.19	1.25	1.37	mA	
Start up							
Turn-on Time	tstart	Cold Start to 90% I _{FS}		150	200		
Turn-off Time t _{TURNOFF}		Full on to 10% I _{FS}			100	mS	
Power On Overshoot I _{OUT(-)}		Turning Power On			10	%I _{FS}	
Operating ambient ¹ T _{AMBIENT}		Ambient implies air surrounding unit	-30		60	°C	
Cold Start Temperature T _{START}		Minimum cold start up temperature	-30			°C	
Protection							
OV threshold V _{OUT(+)}		Relative to V _{OUT-} ; I _{OUT-} = 0 (open circuit);	41	41.2	42.4	V_{PK}	
Maximum case hot spot ¹	T _{SD}	Just prior to thermal shutdown.	90	105	110	°C	

The unit will operate continuously at full power in the operating ambient range. With an elevated ambient temperature, the unit will shut down prior to reaching a hot spot case temperature in excess of the specified maximum, when the unit cools approximately 8°C it will recover.

30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

Safety & EMC Co	mpliance			
UL/CUL /CE Safety		UL 8750, UL1310 Class 2		
		Canada: CAN/CSA-C22.2 No. 223 Class 2		
		EN 60598-1&2; 61347-1, EN61347-2-13		
FCC Title 47, P	art 15, Class B	Conducted and Radiated Emission		
EN 55015; CISPR22 Class B EN 61000-3-2 Class C; ANSI C82.77		Conducted emission (Mains and Dimming Terminals)		
		Power Factor and Harmonic Current Emissions		
EN 610	00-3-3	Voltage Fluctuations and Flicker		
EN 61547	EN61000-4-2	Electrostatic Discharge Immunity		
	EN61000-4-3	Radiated Susceptibility test		
	EN61000-4-4	Electrical Fast Transient		
	EN61000-4-5	Surge Immunity Test (2kV)		
	EN61000-4-6	Conducted Susceptibility Immunity test		
	EN61000-4-8	Power Frequency Magnetic Field Immunity		
	EN61000-4-11	Voltage Dips and interruption immunity		
IEC 6	2384	Performance requirements for AC or DC supplied Control Gear for LED Modules		
IEEE C.62-41-1991		100kHz, 2kV ring wave per Energy Star (Pending)		
Energy St	ar Sound	< 24dBA; Class A sound rating per Energy Star (at all DIMMING settings) (Pending)		
Life Exp	ectancy	50,000 hours @ 100% duty at ambient temperature 60°C and max load		
Environmental Standards		EU RoHS, REACH		

LEAD DESCRIPTION					
Name Description					
INPUT TERMINAL LEADS (18AWG plenum rated)					
AC LINE Main Input Power Supply Line (120V _{AC} to 277V _{AC}) – Brown wire					
AC NEUTRAL Main Input Power Supply Neutral- Blue wire					
CONTROL TERMINAL LEADS (22 or 24 AWG plenum rated)					
DIM(+)	Analog Dimming Input – Purple wire				
DIM(-) Dimming Return – Grey wire					
OUTPUT TERMINALS (18AWG plenum rated)					
OUTPUT(+) LED String Anode Voltage (High Side) – Red wire					
OUTPUT(-)	LED String Cathode Voltage (Low Side) – Yellow wire				

30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

CONDITIONS OF ACCEPTABILITY

The components have been judged on the basis of the required spacings in the Standard for Class 2 Power Units, UL 1310.

The input and output leads are 18 AWG, rated min. 300V, 105°C, VW-1. The suitability of the leads shall be determined in each end-use application. The leads are suitable for field wiring, except for when installed with alternate lead colors below, are suitable for factory wiring only.

The polymeric housing is rated V-0 and has been subjected to a ball-impact and mold stress relief tests. The need for a suitable enclosure shall be considered in the end product.

The component has been evaluated for dry and damp locations, where the humidity conditioning and dielectric tests were conducted per UL 8750.

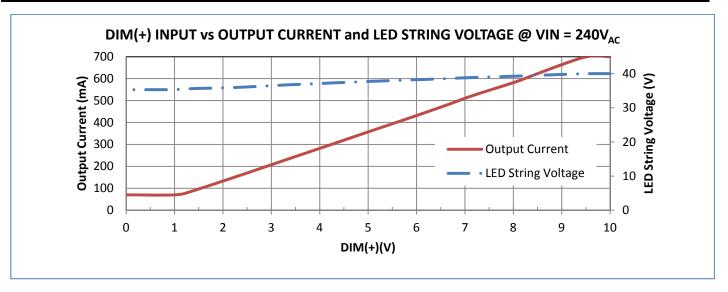
The maximum temperature measured on housing outside surface was 56°C during the Temperature Test when shifted to Ambient Temperature 40°C. The temperature test was conducted without potting compound. The necessity for repeating the Temperature Test shall be determined in each end use application.

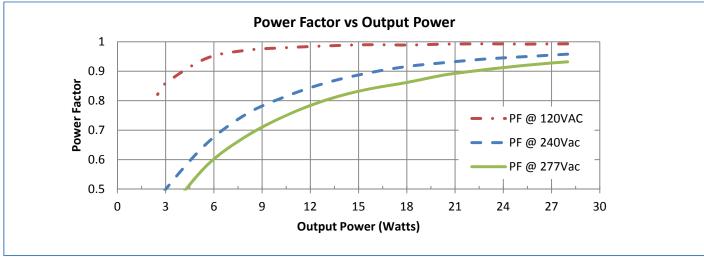
A proper mechanical, electrical and fire enclosure shall be provided in the end-use application that is in compliance with all the applicable requirements of the end-use application.

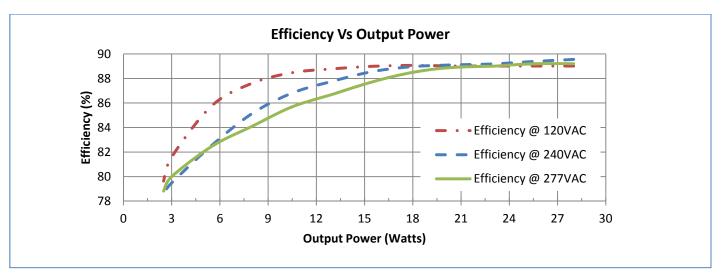
Testing was on a 20 A branch circuit. If used on a branch circuit greater than this, additional testing may be necessary.

The LED driver is rated as noted in the Electrical Ratings Table above, and the outputs comply with the requirements for Class 2. The need for additional evaluation shall be considered in the end product if used beyond these ratings.

The LED driver is provided with dimmer leads for connecting an external dimmer. The leads colors are shown as below. The dimmer circuit is considered as Class 2 circuit. The routing of the Dimming leads shall be determined in the end use application.

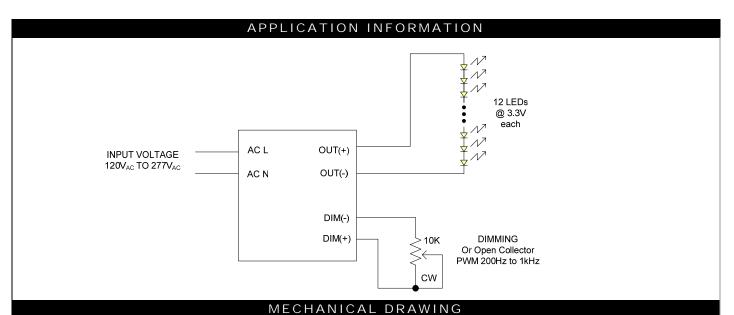

Lead Function	Color		
AC LINE	BROWN		
AC NEUTRAL	BLUE		
OUTPUT(+)	RED		
OUTPUT(-)	YELLOW		
DIM(-)	GRAY		
DIM(+)	PURPLE		

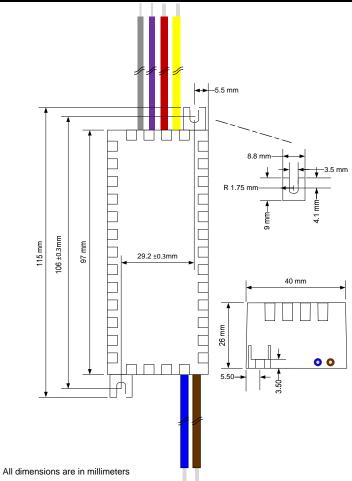



30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

TYPICAL CHARACTERISTIC CHARTS 25°C





30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

Wire length is $210 mm \pm 10 mm$, stripped $12 mm \pm 5 mm$ UL1015 AWG#18 16/30 stranded 105°C Input & Output wires; AWG#22 or 24 stranded Control wires, all wires tinned. Please insure the wire nuts are installed correctly to prevent intermittent operation. Connecting the AC input to Control or Output wires will result in damage to the module.

30W 700mA Dimmable LED Driver Module

PRODUCTION DATASHEET

] FRODUCTION	DATASHEET
	NOTEC	
	NOTES	
PRODUCTION DATA - Informati	ion contained in this document is proprietary to	
Microsemi and is current as of public	cation date. This document may not be modified in	1
any way without the express written	cation date. This document may not be modified in consent of Microsemi. Product processing does not ameters. Microsemi reserves the right to change the	
necessarily include testing of all para	ameters. Microsemi reserves the right to change the	

configuration and performance of the product and to discontinue product at any time.