Overview

The LC72131K and LC72131KM are PLL frequency synthesizers for use in tuners in radio/cassette players. They allow high-performance AM/FM tuners to be implemented easily.

Features

- High speed programmable dividers
- FMIN: 10 to 160 MHz pulse swallower (built-in divide-by-two prescaler)
- AMIN: 2 to 40 MHz pulse swallower
0.5 to 10 MHz direct division
- IF counter
- IFIN: 0.4 to 12 MHz AM/FM IF counter
- Reference frequencies
- Twelve selectable frequencies (4.5 or 7.2 MHz crystal)
- 100, 50, 25, 15, 12.5, 6.25, 3.125, 10, 9, 5, 3, 1kHz
- Phase comparator
- Dead zone control
- Unlock detection circuit
- Deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
- Dedicated output ports: 4 - Input or output ports: 2 - Support clock time base output

[^0]\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Continued from preceding page.

- Serial data I/O
- Support CCB format communication with the system controller.
- Operating ranges
- Supply voltage 4.5 to 5.5 V • Operating temperature - 40 to $+85^{\circ} \mathrm{C}$
- Packages
- DIP22S/MFP20

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Pins	Conditions	Ratings	Unit
Supply voltage	$V_{\text {DD }}$ max	$V_{\text {DD }}$		-0.3 to +7.0	V
Maximum input voltage	$\mathrm{V}_{\text {IN }} 1$ max	CE, CL, DI, AIN		-0.3 to +7.0	V
	$\mathrm{V}_{1} \mathrm{~N}^{2}$ max	XIN, FMIN, AMIN, IFIN		-0.3 to $V_{D D}+0.3$	V
	$\mathrm{V}_{\text {IN }} 3$ max	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		-0.3 to +15	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} 1$ max	DO		-0.3 to +7.0	V
	$\mathrm{V}_{\mathrm{O}} \mathrm{m}_{\text {max }}$	XOUT, PD		-0.3 to $V_{D D}+0.3$	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	$\overline{\mathrm{BO1}}$ to $\overline{\mathrm{BO4}}, \overline{\mathrm{O} 1}, \overline{\mathrm{IO}}$, AOUT		-0.3 to +15	V
Maximum output current	$\mathrm{l} \mathrm{O}^{\text {max }}$	$\overline{\mathrm{BO} 1}$		0 to 3.0	mA
	102 max	DO, AOUT		0 to 6.0	mA
	1 O 3 max	$\overline{\mathrm{BO} 2}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		0 to 10	mA
Allowable power dissipation	Pd max		Ta $\leq 85^{\circ} \mathrm{C}$ [LC72131K]	350	mW
			Ta $\leq 85^{\circ} \mathrm{C}$ [LC72131KM]	180	mW
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1: Power pins VDD and VSS: Insert a capacitor with a capacitance of 2,000pF or higher between these pins when using the IC.

LC72131K, 72131KM
Allowable Operating Ranges at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ SS $=0 \mathrm{~V}$

Parameter	Symbol	Pins	Conditions	Ratings			unit
				min	typ	max	
Supply voltage	V_{DD}	$\mathrm{V}_{\text {DD }}$		4.5		5.5	V
Input high-level voltage	$\mathrm{V}_{\mathrm{IH}}{ }^{1}$	CE, CL, DI		$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.5	V
	$\mathrm{V}_{\mathrm{IH}}{ }^{2}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$		13	V
Input low-level voltage	V_{IL}	$\mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{IO} 1}, \overline{\mathrm{O} 2}$		0		$0.3 \mathrm{~V}_{\text {DD }}$	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO		0		6.5	V
	$\mathrm{V}_{\mathrm{O}} 2$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}, \mathrm{AOUT}$		0		13	V
Input frequency	fin1	XIN	$\mathrm{V}_{\text {IN }} 1$	1.0		8.0	MHz
	fin2	FMIN	$\mathrm{V}_{\text {IN }}{ }^{2}$	10		160	MHz
	fin3	AMIN	$\mathrm{V}_{\text {IN }}{ }^{\text {d }}$	2.0		40	MHz
	fin4	AMIN	$\mathrm{V}_{\text {IN }} 4$	0.5		10	MHz
	fln5	IFIN	$\mathrm{V}_{\text {IN }}{ }^{5}$	0.4		12	MHz
Supported crystals	X'tal	XIN, XOUT	Note 1	4.0		8.0	MHz
Input amplitude High-level clock pulse width $\mathrm{t} \varphi \mathrm{H}$ CL [Figure 1][Figure 2] 160 ns Low-level clock pulse width	$\mathrm{V}_{\text {IN }} 1$	XIN	flN1	400		1500	mVrms
	$\mathrm{V}_{\text {IN }}{ }^{2-1}$	FMIN	$\mathrm{f}=10$ to 130 MHz	40		1500	mVrms
	$\mathrm{V}_{\text {IN }}{ }^{2-2}$	FMIN	$\mathrm{f}=130$ to 160 MHz	70		1500	mVrms
	$\mathrm{V}_{\mathrm{IN}} 3$	AMIN	fin3	40		1500	mVrms
	$\mathrm{V}_{1 \mathrm{~N}^{4}}$	AMIN	fin4	40		1500	mVrms
	$\mathrm{V}_{\text {IN }} 5$	IFIN	flN5 (IFS=1)	40		1500	mVrms
	$V_{\text {IN }} 6$	IFIN	flN5 (IFS=0)	70		1500	mVrms
Data setup time	tSU	DI, CL	Note 2	0.75			$\mu \mathrm{s}$
Data hold time	tHD	DI, CL	Note 2	0.75			$\mu \mathrm{s}$
Clock low-level time	tCL	CL	Note 2	0.75			$\mu \mathrm{s}$
Clock high-level time	tCH	CL	Note 2	0.75			$\mu \mathrm{s}$
CE wait time	tEL	CE, CL	Note 2	0.75			$\mu \mathrm{s}$
CE setup time	tES	CE, CL	Note 2	0.75			$\mu \mathrm{s}$
CE hold time	tEH	CE, CL	Note 2	0.75			$\mu \mathrm{s}$
Data latch change time	tLC		Note 2			0.75	$\mu \mathrm{s}$
Data output time	tDC	DO, CL	Differs depending on the value of the pull-up resistor. Note 2				
	tDH	DO, CE				0.35	$\mu \mathrm{s}$

Note 1: Recommended crystal oscillator CI values:
$\mathrm{CI} \leq 120 \Omega$ (For a 4.5 MHz crystal)
$\mathrm{CI} \leq 70 \Omega$ (For a 7.2 MHz crystal)
The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other factors. Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.
Note 2: Refer to "Serial Data Timing".

LC72131K, 72131KM
Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Pins	Conditions	Ratings			unit
				min	typ	max	
Built-in feedback resistance	Rf1	XIN			1.0		$\mathrm{M} \Omega$
	Rf2	FMIN			500		k Ω
	Rf3	AMIN			500		k Ω
	Rf4	IFIN			250		$\mathrm{k} \Omega$
Built-in pull-down resistor	Rpd1	FMIN			200		k Ω
	Rpd2	AMIN			200		k Ω
Hysteresis	VHYS	$\mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{IO} 1}, \overline{\mathrm{O} 2}$			$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
Output high-level voltage	V_{OH}	PD	$1 \mathrm{O}=1 \mathrm{~mA}$	$V_{D D}{ }^{-0.1}$			V
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	PD	$1 \mathrm{O}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\overline{\mathrm{BO} 1}$	$\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~mA}$			0.5	V
			$1 \mathrm{O}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	DO	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
			$\mathrm{I}^{\mathrm{O}}=5 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}} 4$	$\overline{\mathrm{BO} 2}$ to $\overline{\mathrm{BO}}, \overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$	$1 \mathrm{O}=1 \mathrm{~mA}$			0.2	V
			$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			1.0	V
			$\mathrm{I}^{\mathrm{O}}=8 \mathrm{~mA}$			1.6	V
	$\mathrm{V}_{\mathrm{OL}} 5$	AOUT	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA} \mathrm{AIN}=1.3 \mathrm{~V}$			0.5	V
Input high-level current	${ }_{1 \mathrm{IH}^{1}}$	CE, CL, DI	$\mathrm{V}_{\mathrm{I}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{2}}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$	$\mathrm{V}_{1}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}{ }^{3}$	XIN	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$	2.0		11	$\mu \mathrm{A}$
	${ }_{1 H_{4}}$	FMIN, AMIN	$V_{1}=V_{\text {DD }}$	4.0		22	$\mu \mathrm{A}$
	${ }_{1 / 145}$	IFIN	$V_{1}=V_{\text {DD }}$	8.0		44	$\mu \mathrm{A}$
	${ }_{1 / 46}$	AIN	$V_{1}=6.5 \mathrm{~V}$			200	nA
Input low-level current	$\mathrm{I}_{\text {IL }}{ }^{1}$	CE, CL, DI	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{l}_{\mathrm{IL}}{ }^{2}$	$\overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$	$V_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{\text {a }}$	XIN	$\mathrm{V}_{1}=0 \mathrm{~V}$	2.0		11	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 4$	FMIN, AMIN	$V_{1}=0 \mathrm{~V}$	4.0		22	$\mu \mathrm{A}$
	IIL 5	IFIN	$V_{1}=0 \mathrm{~V}$	8.0		44	$\mu \mathrm{A}$
	IIL 6	AIN	$\mathrm{V}_{1}=0 \mathrm{~V}$			200	nA
Output off leakage current	IOFF1	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \mathrm{AOUT}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$	$\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IOFF2	DO	$\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
High-level three-state off leakage current	IOFFH	PD	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$		0.01	200	nA
Low-level three-state off leakage current	IOFFL	PD	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA
Input capacitance	CIN	FMIN			6		pF
Current drain	'DD1	V_{DD}	$\begin{aligned} & \hline \text { X'tal }=7.2 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{I}} \mathrm{~N}^{2=130 \mathrm{MHz}} \\ & \mathrm{~V}_{\mathrm{IN}^{2}}=40 \mathrm{mVrms} \\ & \hline \end{aligned}$		5	10	mA
	${ }^{\prime} \mathrm{DD}^{2}$	V_{DD}	PLL block stopped (PLL INHIBIT) X'tal oscillator operating (X'tal=7.2MHz)		0.5		mA
	${ }^{\prime} \mathrm{DD}^{3}$	V_{DD}	PLL block stopped X'tal oscillator operating			10	$\mu \mathrm{A}$

Serial Data Timing

When stopped with CL low

When stopped with CL high

Package Dimensions

unit : mm (typ)
3059A [LC72131K]

Package Dimensions

unit : mm (typ)
3036C [LC72131KM]

Pin Assignments

Block Diagram

Pin Functions

Symbol	Pin No.		Type	Functions	Circuit configuration
	LC72131K	LC72131KM			
$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{gathered} 1 \\ 22 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	X'tal OSC	Crystal resonator connection ($4.5 \mathrm{MHz} / 7.2 \mathrm{MHz}$)	
FMIN	16	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1 . The input frequency range is from 10 to 160 MHz . The input signal passes through the internal divide-by-two prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535 . However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	
AMIN	15	13	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0 . When the serial data input SNS bit is set to 1 : - The input frequency range is 2 to 40 MHz . - The signal is directly input to the swallow counter. - The divisor can be in the range 272 to 65535 , and the divisor used will be the value set. When the serial data input SNS bit is set to 0 : - The input frequency range is 0.5 to 10 MHz . - The signal is directly input to a 12 -bit programmable divider. - The divisor can be in the range 4 to 4095 , and the divisor used will be the value set.	
CE	3	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	$\square-50$
DI	4	3	Input data	Inputs serial data transferred from the controller to the LC72131.	$\square-50$
CL	5	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	$\square-5>$
DO	6	5	Output data	Outputs serial data transferred from the LC72131 to the controller. The content of the output data is determined by the serial data DOCO to DOC2.	
V_{DD}	17	15	Power supply	The LC72131 power supply pin ($\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V) The power on reset circuit operates when power is first applied.	-
$\mathrm{V}_{\text {SS }}$	21	19	Ground	The LC72131 ground	-
$\begin{aligned} & \overline{\overline{\mathrm{BO} 1}} \\ & \overline{\mathrm{BO} 2} \\ & \overline{\mathrm{BO} 3} \\ & \overline{\mathrm{BO} 4} \end{aligned}$	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Output port	Dedicated output pins The output states are determined by $\overline{\mathrm{BO1}}$ to $\overline{\mathrm{BO4}}$ bits in the serial data. Data: 0=open, $1=$ low A time base signal $(8 \mathrm{~Hz})$ can be output from the $\overline{\mathrm{BO}} \mathrm{pin}$. (When the serial data TBC bit is set to 1.) Care is required when using the $\overline{\mathrm{BO1}}$ pin, since it has a higher on impedance that the other output ports (pins $\overline{\mathrm{BO} 2}$ to $\overline{\mathrm{BO} 4}$).	
$\frac{\overline{101}}{102}$	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	I/O port	I/O dual-use pins The direction (input or output) is determined by bits IOC1 and IOC2 in the serial data. Data: 0=input port, 1=output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low=0 data value high=1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0=open, $1=$ low These pins function as input pins following a power on reset.	

Continued on next page.

Continued from preceding page.

Symbol	Pin No.		Type	Functions	Circuit configuration
	LC72131K	LC72131KM			
PD	18	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.	
AIN AOUT	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	LPF amplifier transistors	The n-channel MOS transistor used for the PLL active low-pass filter.	
IFIN	12	11	IF counter	Accepts an input in the frequency range 0.4 to 12 MHz . The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: $4,8,32$, and 64 ms .	

DI Control Data (Serial Data Input) Structure

[1] IN1 mode

[2] IN2 mode
address
DI

Control Data Functions

No.	Control block/data	Functions			Related data
(1)	Programmable divider data P0 to P15 DVS, SNS	Data that sets the divisor of the A binary value in which P15 DVS and SNS. (*: don't care) Note: P0 to P3 are ignored w Selects the signal input pin (the input frequency range. (* Note: See the "Programmable	programmable divider. e MSB. The LSB change ivider Structure" item for	nding on le divider, switches Input frequency range $\begin{gathered} 10 \text { to } 160 \mathrm{MHz} \\ 2 \text { to } 40 \mathrm{MHz} \\ 0.5 \text { to } 10 \mathrm{MHz} \\ \hline \end{gathered}$	
(2)	Reference divider data R0 to R3 XS	Reference frequency (fref) se Note *: PLL INHIBIT The programmable di and IFIN pins are set high impedance state Crystal resonator selection $\begin{aligned} & \mathrm{XS}=0: 4.5 \mathrm{MHz} \\ & \mathrm{XS}=1: 7.2 \mathrm{MHz} \end{aligned}$ The 7.2 MHz frequency is s	tion data. block and the IF coun pull-down state (grou ted after the power-on	nce frequency 100 kHz 50 25 25 12.5 6.25 3.125 3.125 10 9 5 1 3 15 BIT + X'tal OSC STOP INHIBIT are stopped, the FMIN, AMIN, d the charge pump goes to the	
(3)	IF counter control data CTE GT0, GT1	IF counter measurement start CTE=1: Counter start $=0$: Counter reset Determines the IF counter m Note: See the "IF Counter Str	ta urement period. ure" item for more inform	Wait time (ms) 3 to 4 3 to 4 7 to 8 7 to 8	IFS

Continued on next page.

LC72131K, 72131KM
Continued from preceding page.

Continued on next page.

Continued from preceding page.

DO Control Data (Serial Data Output) Structure

[3] OUT Mode
address
DI

Control Data Functions

No.	Control block/data	Functions	Related data
(1)	I/O port data $12,11$	Latched from the pin states of the $\overline{\mathrm{IO} 1}$ and $\overline{\mathrm{IO} 2} \mathrm{I} / \mathrm{O}$ ports. These values follow the pin states regardless of the input or output setting. $\left.\begin{array}{l} 11 \leftarrow \overline{\mathrm{IO} 1} \text { pin state } \\ \mathrm{I} 2 \leftarrow \overline{\mathrm{O} 2} \text { pin state } \end{array}\right] \begin{aligned} & \text { High: } 1 \\ & \text { Low: } 0 \end{aligned}$	$\begin{aligned} & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
(2)	PLL unlock data UL	Latched from the state of the unlock detection circuit. UL $\leftarrow 0$: Unlocked $\mathrm{UL} \leftarrow 1$: Locked or detection stopped mode	ULO UL1
(3)	IF counter binary counter C19 to C0	Latched from the value of the IF counter (20-bit binary counter). $\mathrm{C} 19 \leftarrow$ MSB of the binary counter $\mathrm{C} 0 \leftarrow$ LSB of the binary counter	$\begin{aligned} & \text { CTE } \\ & \text { GT0 } \\ & \text { GT1 } \\ & \hline \end{aligned}$

Serial Data I/O Methods

The LC72131 inputs and outputs data using the SANYO CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.

	I/O mode	Address								Function
		B0	B1	B2	B3	A0	A1	A2	A3	
[1]	IN1 (82)	0	0	0	1	0	1	0	0	- Control data input mode (serial data input) - 24 data bits are input. - See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
[2]	IN2 (92)	1	0	0	1	0	1	0	0	- Control data input mode (serial data input) - 24 data bits are input. - See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.
[3]	OUT (A2)	0	1	0	1	0	1	0	0	- Data output mode (serial data output) - The number of bits output is equal to the number of clock cycles. - See the "DO Control Data (serial data output) Structure" item for details on the meaning of the output data.

1. Serial Data Input (IN1/IN2) tSU, tHD, tES, $\mathrm{tEH} \geq 0.75 \mu \mathrm{~s} \mathrm{tLC}<0.75 \mu \mathrm{~s}$
(1) CL: Normal high

(2) CL: Normal low

2. Serial Data Output (OUT) tSU, tHD, tEL, tES, $\mathrm{tEH} \geq 0.75 \mu \mathrm{~s} \mathrm{tDC}, \mathrm{tDH}<0.35 \mu \mathrm{~s}$
(1) CL: Normal high

(2) CL: Normal low

Note: Since the DO pin is an N -channel open-drain pin, the time for the data to change (tDC and tDH) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range
(A)	1	$*$	FMIN	272 to 65535	Twice the set value	10 to 160 MHz
(B)	1	1	AMIN	272 to 65535	The set value	2 to 40 MHz
(C)	0	0	AMIN	4 to 4095	The set value	0.5 to 10 MHz

*: Don't care

Programmable Divider Calculation Examples

(1) FM, 50 kHz steps (DVS=1, SNS=*: FMIN selected)

FM RF= 90.0 MHz ($\mathrm{IF}=+10.7 \mathrm{MHz}$)
FM VCO $=100.7 \mathrm{MHz}$
PLL fref $=25 \mathrm{kHz}$ (R0 to R1=1, R2 to R3=0)
100.7 MHz (FMVCO) $\div 25 \mathrm{kHz}$ (fref) $\div 2$ (FMIN: divide-by-two prescaler) $=2014 \rightarrow 07 \mathrm{DE}$ (HEX)

(2) SW 5 kHz steps (DVS=0, SNS=1: AMIN high-speed side selected)

SW RF $=21.75 \mathrm{MHz}(\mathrm{IF}=+450 \mathrm{kHz})$
SW VCO $=22.20 \mathrm{MHz}$
PLL fref $=5 \mathrm{kHz}(\mathrm{R} 0=\mathrm{R} 2=0, \mathrm{R} 1=\mathrm{R} 3=1)$
$22.2 \mathrm{MHz}(\mathrm{SW}$ VCO) $\div 5 \mathrm{kHz}$ (fref) $=4440 \rightarrow 1158$ (HEX)

(3) MW 10 kHz steps (DVS $=0$, $\mathrm{SNS}=0$: AMIN low-speed side selected)

MW RF $=1000 \mathrm{kHz}(\mathrm{IF}=+450 \mathrm{kHz})$
MW VCO $=1450 \mathrm{kHz}$
PLL fref $=10 \mathrm{kHz}$ (R0 to R2=0, R3=1)
1450 kHz (MW VCO) $\div 10 \mathrm{kHz}$ (fref) $=145 \rightarrow 091$ (HEX)

IF Counter Structure

The LC72131K/KM IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.

GT1	GT0	Measurement time	
		Measurement time (GT) (ms)	Wait time (twu) (ms)
0	0	4	3 to 4
0	1	8	3 to 4
1	0	32	7 to 8
1	1	64	7 to 8

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.

$$
\mathrm{Fc}=\frac{\mathrm{C}}{\mathrm{GT}}(\mathrm{C}=\mathrm{Fc} \times \mathrm{GT}) \quad \mathrm{C}: \text { Count value (number of pulses) }
$$

IF Counter Frequency Calculation Examples

(1) When the measurement period (GT) is 32 ms , the count (C) is 53980 hexadecimal (342400 decimal): IF frequency $(\mathrm{Fc})=342400 \div 32 \mathrm{~ms}=10.7 \mathrm{MHz}$

(2) When the measurement period (GT) is 8ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency $(\mathrm{Fc})=3600 \div 8 \mathrm{~ms}=450 \mathrm{kHz}$

IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0 .
The IF count is started by changing the CTE bit in the serial data from 0 to 1 . The serial data is latched by the LC72131 when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1 . This is because the IF counter is reset when CTE is set to 0 .

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.
IFIN minimum input sensitivity standard

IFS	$0.4 \leq f<0.5$	$0.5 \leq f<8$	f [MHz]
1: Normal mode	$40 \mathrm{mVrms}(0.1$ to 3 mVrms$)$	40 mVrms	$8 \leq f \leq 12$
0 : Degradation mode	$70 \mathrm{mVrms}(10$ to 15 mVrms$)$	70 mVrms	$40 \mathrm{mVrms}(1$ to 10 mVrms$)$

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

Unlock Detection Determination Timing
Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

Figure 1 Unlocked State Detection Timing
For example, if fref is 1 kHz , i.e., the period is 1 ms , after changing the divisor N , the system must wait at least 2 ms before checking for the unlocked state.

Figure 2 Circuit Structure

Figure 3

Unlocked State Data Output Using Serial Data Output

In the LC72131, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output (1) point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.
Therefore, the unlocked state data acquired at data output (1), which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output (2)) and following outputs are valid data.
<Locked State Determination Flowchart Example>

Wait for at least two reference
frequency periods.

Valid data can be output at intervals of one reference frequency period or longer.
*: Locking state determination is more reliable if it is based on reading valid output data several times

Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data) Since the unlocked state (high=locked, low=unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin $(\overline{\mathrm{BO} 1})$ should be at least $100 \mathrm{k} \Omega$. This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter. Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

Other Items

[1] Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	--0 s
0	1	DZB	ON/ON	-0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	++0 s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.
The following problems may occur in the ON/ON state.
(1) Side band generation due to reference frequency leakage
(2) Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C / N ratio can be difficult. On the other hand, although it is easy to acquire a high C / N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100 dB , or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone
The phase comparator compares fp to a reference frequency (fr) as shown in Figure 1. Although the characteristics of this circuit (see Figure 2) are such that the output voltage is proportional to the phase difference ø (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S / N ratio.
However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularlypriced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

Figure 1

Figure 2
[2] Notes on the FMIN, AMIN, and IFIN Pins
Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.
[3] Notes on IF Counting \rightarrow SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can cause false detection where there is no signal due to overflow from the IF counter buffer.
[4] DO Pin Usage Techniques
In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.

Pin States After the Power ON Reset [LC72131K]

Pin States After the Power ON Reset [LC72131KM]

Application System Example [LC72131K]

Application System Example [LC72131KM]

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2009. Specifications and information herein are subject to change without notice.

[^0]: - CCB is a registered trademark of SANYO Semiconductor Co., Ltd.
 - CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.

