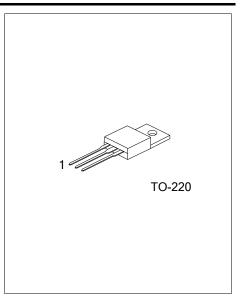
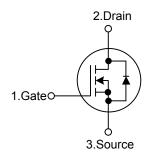


UNISONIC TECHNOLOGIES CO., LTD

UTT75N75 Preliminary Power MOSFET

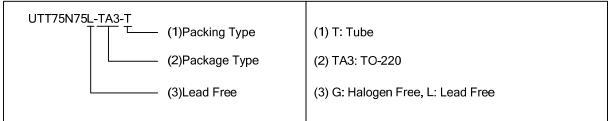

80A, 75V N-CHANNEL POWER MOSFET

■ DESCRIPTION


The UTC **UTT75N75** is n-channel enhancement mode power field effect transistors with stable off-state characteristics including fast switching speed and low thermal resistance. It is usually used in the telecom and computer applications.

■ FEATURES

- * $R_{DS(ON)}$ = 10m Ω @ V_{GS} = 10 V
- * Ultra low gate charge (typical 117 nC)
- * Fast switching capability
- * Low reverse transfer Capacitance (C_{RSS} = typical 240 pF)
- * Avalanche energy Specified
- * Improved dv/dt capability, high ruggedness


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Deales	Pin Assignment			Dealine	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT75N75L-TA3-T	UTT75N75G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 5

■ ABSOLUTE MAXIMUM RATINGS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	75	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous ($T_C = 25^{\circ}C$)	I_{D}	80	Α	
	Pulsed (Note 2)	I_{DM}	320	Α	
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	700	mJ	
Power Dissipation		P_D	300	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature Range		T_{STG}	-55~+150	°C	

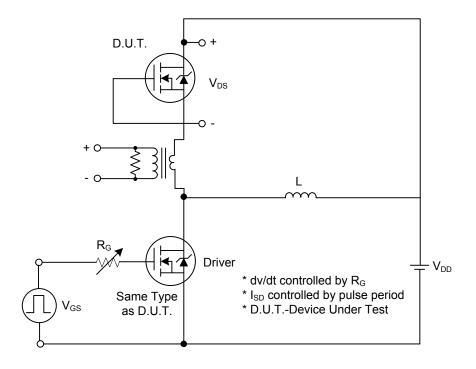
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

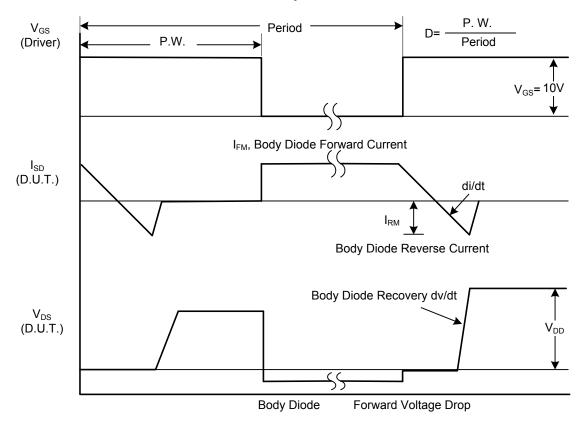
- 2. Pulse width limited by safe operating area
- 3. Starting $T_J=25^{\circ}C$, $I_D=40A$, $V_{DD}=37.5V$
- 4. $I_{SD}\leq 80A$, di/dt $\leq 300A/\mu s$, $V_{DD}\leq BV_{DSS}$, $T_{J}\leq T_{JMAX}$

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	0.5	°C/W	

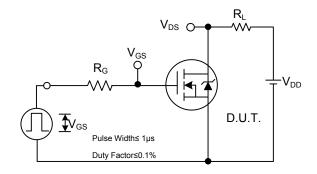

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	75			V
Drain-Source Leakage Current		I_{DSS}	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
Gate-Source Leakage Current	Forward	- 1000	$V_{GS} = 20V, V_{DS} = 0 V$			100	nA
	Reverse		$V_{GS} = -20V, V_{DS} = 0 V$			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.4		3.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V_{GS} = 10 V, I_{D} = 40 A		10	30	mΩ
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}	1/ = 0\/ \/ = 25\/		3700		pF
Output Capacitance		Coss	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		730		pF
Reverse Transfer Capacitance		C_{RSS}	-		240		pF
SWITCHING CHARACTERISTICS							
Turn-On Delay Time		$t_{D(ON)}$	$V_{DD} = 37.5V, I_D = 45A,$		25		ns
Turn-On Rise Time		t _R			100		ns
Turn-Off Delay Time		t _{D(OFF)}	V_{GS} =10V, R_{G} =4.7 Ω		66		ns
Turn-Off Fall Time		t_{F}			30		ns
Total Gate Charge		Q_G	$V_{DS} = 60V, V_{GS} = 10V$ $I_{D} = 80A$		117	160	nC
Gate-Source Charge		Q_GS			27		nC
Gate-Drain Charge		Q_GD	ID - 00A		47		nC
SOURCE-DRAIN DIODE RATINGS	AND CHA	RACTERISTICS	3				
Drain-Source Diode Forward Voltage (Note 2)		V_{SD}	$V_{GS} = 0V, I_{S} = 80A$			1.5	V
Continuous Source Current		I _S				80	Α
Pulsed Source Current (Note 1)		I_{SM}				320	Α


Notes: 1. Pulse width limited by safe operating area

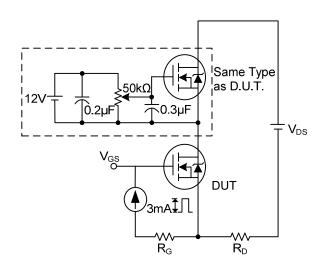
2. Pulsed: pulse duration=300µs, duty cycle 1.5%

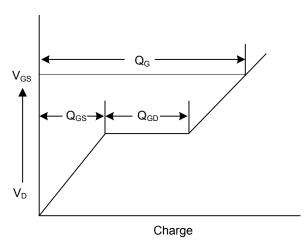
■ TEST CIRCUITS AND WAVEFORMS



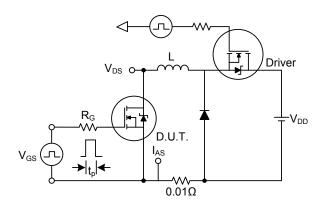

Peak Diode Recovery dv/dt Test Circuit

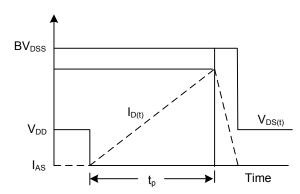
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS(Cont.)



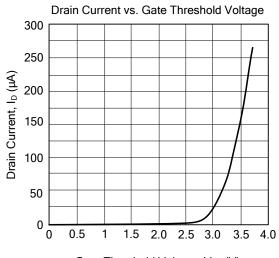
Switching Test Circuit

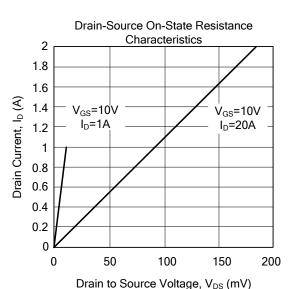

Switching Waveforms



Gate Charge Test Circuit

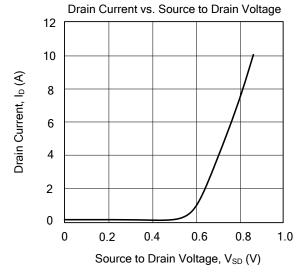
Gate Charge Waveform




Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS



Gate Threshold Voltage, $V_{TH}\left(V\right)$

Drain Current vs. Drain-Source Breakdown Voltage 450 400 350 Drain Current, I_D (μA) 300 250 200 150 100 50 0 0 20 40 60 80 100

Drain-Source Breakdown Voltage, BV_{DSS} (V)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.