

HMC 148-1 Remington Blvd. Ronkonkoma, New York 11779 (516) 471-4040 ● FAX (516) 471-4044

HMC14C89

QUAD CMOS RS-232 LINE RECEIVER WITH 3-STATE OUTPUTS

FEATURES

- CMOS pin-for-pin replacement for the bipolar 1489/1489A Quad Line Receiver.
- Meets EIA RS-232-C/D and CCITT V.24/V.28 specifications.
- Low power dissipation: 0.05 mW.
- Needs no external components.

INPUTS

- Enable Input (with pull-up resistor) to control 3-state outputs.
- Variable receiver amplitude: 3V to 50V.
- 0.8V hysteresis for noise suppression.
- 3 to 7kohm internal resistance.
- Static protection.

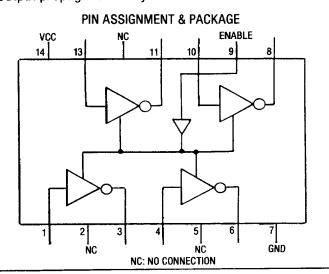
OUTPUTS

- 3-state operation.
- TTL & CMOS compatible.
- Propagation delay less than 600ns.
- Latch-up protection.

HMC14C89P 14 Pin Dual-In-Line Plastic HMC14C89S 14 Pin Small Outline Plastic HMC14C89S 14 Pin Small Outline Plastic

GENERAL DESCRIPTION

The HMC14C89 is the pin-for-pin, low power CMOS direct replacement for the bipolar 1489/1489A Quad Line Receiver.


In addition, it has 3-state outputs controlled by one Enable pin.

It is designed as a variable input line receiver for computers, peripherals, modems, printers, instruments and other data communication/terminal equipment. The inputs conform to RS-232-C/D and CCITT V.24/V.28 specifications, and outputs are compatible with standard TTL and CMOS levels.

The device does not require any external components, such as response control capacitors (hysteresis at inputs, filters noise), thereby simplifying new designs or pin-for-pin replacements of the bipolar 1489/1489A. Low power dissipation (0.05mW compared with 130mW for the bipolar) makes it ideal for battery operation, and 3-state outputs increase versatility.

Receiver inputs can accommodate a wide voltage range from a nominal 3V amplitude (0V, +3V) to 50V (-25V, +25V). Their typical on threshold of 1.8V and off threshold of 1.0V provide 0.8V d-c hysteresis for noise suppression which is further aided by the slow response of the inputs to noise near the threshold points. Inputs also have an equivalent of 4 to 5kohm internal resistance for the RS-232 line load.

Enable input may be left floating when 3-state operation is not needed. It has a pull-up resistor. Connecting it to GND will bring all 4 outputs to high impedance state. Output propagation delay is less 600ns.

HMC14C89 QUAD CMOS LINE RECEIVER

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

VCC GND-0.3V to 6V

Temperature Range

-40°C to +85°C

Receiver Inputs

-30V to +30V

GND

0V

Any Other Pin

GND-0.3V to VCC+0.3V

VCC

4.5V to 5.5V

Power Dissipation at 25°C

1.0W

Junction Temperature

150°C

Lead Temperature (solder 10s)

260°C

Storage Temperature

-65°C to 150°C

DC & AC ELECTRICAL CHARACTERISTICS

 $Ta = -40^{\circ}C \text{ to } +85^{\circ}C$, GND = OV, VCC = +4.5V to 5.5V

SYM	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Pd	Power Dissipation, Package	Vi & Vo floating			0.05	mW
lcc	VCC Supply Current	Vi & Vo floating			10	μΑ
lie Vie	Enable Input — Current — Voltage, "0" "1"	Vie = 0V Enable may be left floating for "1"	0 2.4		- 20 0.8 VCC	μA V V
Rir Vir	Receiver Input — Resistance — Voltage, On Threshold	To GND From "0" to "1"	3 1.35	5.5 1.8	7 2.35	kohm V
	Off Threshold Hysteresis	From "1" to "0" Between On & Off Thresholds	0.75 0.6	1.0 0.8	1.25	V V
	"0" "1"		-25 2.35		0.75 +25	V V
Vo	Receiver Output — Voltage, "0" "1"	$I_0 = 10\mu A$, $V_{CC} = 5V$ $I_0 = 2mA$, $V_{CC} = 5V$ $I_0 = -10\mu A$, $V_{CC} = 5V$ $I_0 = -0.5mA$, $V_{CC} = 5V$	4.9 3.8		0.1 0.5	V V V
tp	— Propagation Delay	From Vir ="0" to Vo = "0" or Vir ="1" to Vo = "1" Vir = -5V to +5V			600	ns

HMC 148-1 Remington Blvd. Ronkonkoma, New York 11779 (516) 471-4040 ● FAX (516) 471-4044

Printed in USA