

LS122 MONOLITHIC DUAL NPN TRANSISTOR

Linear Systems replaces discontinued Intersil IT122

The LS122 is a monolithic pair of NPN transistors mounted in a single TO-71 package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching. The LS122 is a direct replacement for discontinued Intersil IT122.

The hermetically sealed TO-71 is well suited for hi-rel and harsh environment applications.

(See Packaging Information).

LS122 Features:

- High h_{fe} at low current
- Tight matching
- Tight V_{BE} tracking
- Low Output Capacitance

FEATURES							
Direct Replacement for INTERSIL IT122							
HIGH h _{FE} @ LOW CURRENT	≥ 80 @ 10µA						
OUTPUT CAPACITANCE	≤ 2.0pF						
V _{BE} tracking	≤ 20µV°C						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage Temperature	-65°C to +200°C						
Operating Junction Temperature -55°C to +150°C							
Maximum Power Dissipation							
Continuous Power Dissipation (One side)	250mW						
Continuous Power Dissipation (Both sides) 500mW						
Linear Derating factor (One side)	2.3mW/°C						
Linear Derating factor (Both sides)	4.3mW/°C						
Maximum Currents							
Collector Current	10mA						

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} - V _{BE2}	Base Emitter Voltage Differential			5	mV	$I_C = 10 \mu A, V_{CE} = 5 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential			20	μV/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
I _{B1} - I _{B2}	Base Current Differential			_25	nA	$I_C = 10 \mu A$, $V_{CE} = 5 V$

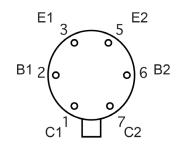
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	45			٧	$I_{c} = 10 \mu A, I_{E} = 0$
BV_{CEO}	Collector to Emitter Voltage	45	-)!	>	$I_{C} = 10 \mu A, I_{B} = 0$
BV_{EBO}	Emitter-Base Breakdown Voltage	6.2			٧	$I_{E} = 10 \mu A$, $I_{C} = 0^{2}$
BV_{CCO}	Collector to Collector Voltage	60			٧	$I_{C} = 10 \mu A, I_{E} = 0$
h _{FE}	DC Current Gain	80				$I_C = 10 \mu A, V_{CE} = 5 V$
		100				I _C = 1.0mA, V _{CE} = 5V
V _{CE} (SAT)	Collector Saturation Voltage	1		0.5	V	$I_{C} = 0.5 \text{mA}, I_{B} = 0.05 \text{mA}$
I _{EBO}	Emitter Cutoff Current	1		1	nA	$I_{C} = 0, V_{EB} = 3V$
I _{CBO}	Collector Cutoff Current	-		1	nA	$I_E = 0$, $V_{CB} = 45V$
C _{OBO}	Output Capacitance	1		2	pF	$I_{E} = 0, V_{CB} = 5V$
C _{C1C2}	Collector to Collector Capacitance	-		2	pF	$V_{CC} = 0V$
I _{C1C2}	Collector to Collector Leakage Current	1		10	nA	$V_{CC} = \pm 60V$
f _T	Current Gain Bandwidth Product	180			MHz	$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
NF	Narrow Band Noise Figure			3	dB	$I_C = 100 \mu A$, $V_{CE} = 5V$, BW=200Hz, $R_G = 10 K \Omega$,
						f = 1KHz

Notes

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.

Available Packages:


LS122 in TO-71 LS122 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

TO-71 (Bottom View)

