

General Description

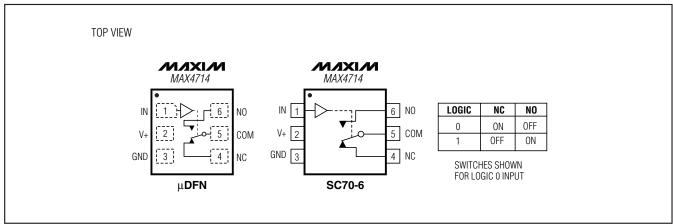
The MAX4714 is a low on-resistance, low-voltage single-pole/double-throw (SPDT) analog switch that operates from a single +1.6V to +3.6V supply. The MAX4714 has break-before-make switching. This device also has fast switching speeds (ton = 18ns, max, tOFF = 12ns, max).

When powered from a +3V supply, the MAX4714 features 0.8Ω (max) on-resistance (RON), with 0.18Ω (max) Ron matching and flatness. The digital logic input is 1.8V CMOS compatible when using a single +3V supply.

The MAX4714 is pin compatible with the MAX4599 and is available in a 6-pin SC70 or µDFN package.

Applications

Power Routing Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Communications Circuits **PCMCIA Cards** Cellular Phones Modems


Features

- **♦ Low Ron**
 - 0.8Ω (max) (+3V Supply) 2.5 Ω (max) (+1.8V Supply)
- ♦ 0.18Ω max Ron Flatness (+3V Supply)
- ♦ +1.6V to +3.6V Single-Supply Operation
- ♦ Available in 6-Pin µDFN (1.5mm x 1mm) and SC70 **Packages**
- ◆ Fast Switching: toN = 18ns (max), toFF = 12ns (max)
- ♦ 1.8V CMOS Logic Compatible (+3V Supply)
- ♦ Pin Compatible with MAX4599
- Guaranteed Break-Before-Make

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK		
MAX4714EXT-T	-40°C to +85°C	6 SC70-6	AAY		
MAX4714ELT-T	-40°C to +85°C	6 µDFN-6	AJ		

Pin Configurations/Functional Diagrams/Truth Table

Hard Drives

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND V+, IN0.3V to +4V	6-Pin SC70 (derate 3.1mW/°C above +70°C)247mW 6-Pin µDFN-6 (derate 2.1mW/°C above +70°C)167mW
COM, NC, NO (Note 1)0.3V to (V+ + 0.3V)	Operating Temperature Range
Continuous Current NO, NC to COM±150mA	MAX4714EXT40°C to +85°C
Peak Current NO, NC to COM	Junction Temperature+150°C
(pulsed at 1ms, 10% duty cycle max)±300mA	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation	Lead Temperature (soldering, 10s)+300°C

Note 1: Signals on NC, NO, and COM exceeding V+ or GND are clamped by internal diodes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+=+3.0V \text{ and } T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V
On-Resistance (Note 4)	Ron	V+ = 2.7V, I _{COM} = 100mA,	+25°C		0.6	0.8	Ω
	TION	V_{NO} or $V_{NC} = 1.5V$	T _{MIN} to T _{MAX}			0.9	22
On-Resistance Match	ΔRON	$V+ = 2.7V$, $I_{COM} = 100mA$,	+25°C		0.03	0.06	Ω
Between Channels (Note 5)	ΔΠΟΝ	V_{NO} or $V_{NC} = 1.5V$	T _{MIN} to T _{MAX}			0.08	52
On-Resistance Flatness	RFLAT(ON)	$V+ = 2.7V$, $I_{COM} = 100mA$,	+25°C		0.1	0.18	Ω
(Note 6)	TIFLAT(ON)	V_{NO} or $V_{NC} = 0.6V$, 1.5V, 2.1V	T _{MIN} to T _{MAX}			0.2	32
NO or NC Off-Leakage	INO(OFF),	$V+ = 3.3V, V_{COM} = 0.3V, 3V,$	+25°C	-1		+1	nΛ
Current	INC(OFF)	V_{NO} or $V_{NC} = 3V$, 0.3V	T _{MIN} to T _{MAX}	-5		+5	nA
COM On Lookaga Current	ICOM(ON)	$V+ = 3.3V, V_{COM} = 0.3V, 3V, V_{NO} \text{ or } V_{NC} = 0.3V, 3V \text{ or floating}$	+25°C	-2		+2	l nA
COM On-Leakage Current			T _{MIN} to T _{MAX}	-10		+10	IIA
DYNAMIC							
Turn-On Time	ton	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C		13	18	ns
ruin-on nine	ιΟΝ	$C_L = 35pF$, Figure 1	T _{MIN} to T _{MAX}			20	115
Turn-Off Time	torr	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C		6	12	no
ruiti-Oii fiifile	toff	C _L = 35pF, Figure 1	T _{MIN} to T _{MAX}			15	ns
Break-Before-Make Delay	toou	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C	1	9		no
(Note 7)	t _{BBM}	$C_L = 35pF$, Figure 2	T _{MIN} to T _{MAX}	1			ns
Charge Injection	Q	V_{GEN} , R_{GEN} , $C_L = 1.0$ nF, Figure 3	+25°C		22		рС
Off-Isolation (Note 8)	V _{ISO}	$f = 1MHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 4	+25°C		-54		dB
Crosstalk (Note 9)		$f = 1MHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 4	+25°C		-54		dB
Total Harmonic Distortion	THD	$\begin{aligned} & \text{f} = 20 \text{Hz to } 20 \text{kHz, V}_{COM} = 2 \text{V}_{\text{P-P}}, \\ & \text{R}_{\text{L}} = 32 \Omega \end{aligned}$	+25°C		0.01		%

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at V+ = +3.0V and $T_A = +25^{\circ}C$.) (Notes 2, 3)

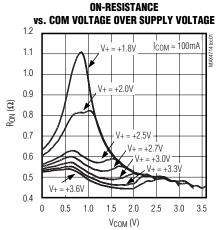
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
NC or NO Off-Capacitance	C _{NO} (OFF), C _{NC} (OFF)	f = 1MHz, Figure 5	+25°C		30		рF
COM On-Capacitance	CCOM(ON)	f = 1MHz, Figure 5	+25°C		65		рF
LOGIC INPUT							
Input Voltage Low	V _{IL}					0.5	V
Input Voltage High	VIH			1.4			V
Input Leakage Current	I _{IN}	$V_{IN} = 0V \text{ or } V+$		-1		+1	μΑ
SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current I-	1.	$V+ = +3.6V, V_{IN} = 0V \text{ or } V+$	+25°C		0.04	0.2	
	1+		T _{MIN} to T _{MAX}			2	μΑ

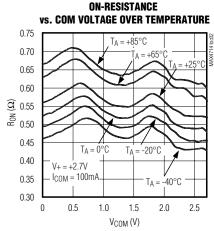
ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

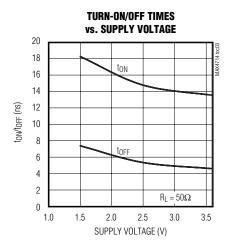
 $(V+=+1.8V, V_{IH}=+1V, V_{IL}=+0.4V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V
On-Resistance	Pov	I _{COM} = 10mA,	+25°C		1.2	2.5	Ω
On-nesistance	Ron	V_{NO} or $V_{NC} = +0.9V$	T _{MIN} to T _{MAX}			5	22
NO or NC Off-Leakage	INO(OFF),	V _{COM} = 0.3V, 1.5V,	+25°C	-1	0.01	+1	nA
Current	INC(OFF)	V_{NO} or $V_{NC} = 1.5V, 0.3V$	T _{MIN} to T _{MAX}	-5		+5	TIA.
COM On-Leakage Current	ICOM(ON)	$V_{COM} = 0.3V, 1.5V, V_{NO} \text{ or } V_{NC} = 0.3V, 1.5V \text{ or floating}$	+25°C	-2		+2	^
			T _{MIN} to T _{MAX}	-10		+10	nA
DYNAMIC							
Turn-On Time		V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, Figure 1	+25°C		18	25	200
rum-on nine	ton		T _{MIN} to T _{MAX}			30	ns
Turn Off Time	4	V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, Figure 1	+25°C		9	15	
Turn-Off Time	tOFF		T _{MIN} to T _{MAX}			18	ns
Break-Before-Make Delay			+25°C	2			
(Note 7)	tBBM	C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}	2			ns
Charge Injection	Q	V _{GEN} = 0V, R _{GEN} = 0, C _L = 1nF, Figure 3	+25°C		12		рС

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

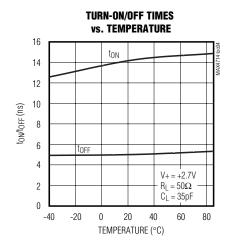

(V+ = +1.8V, V_{IH} = +1V, V_{IL} = +0.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)

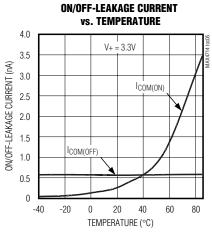

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	VIL					0.4	V
Input Voltage High	V _{IH}			1			V
Input Leakage Current	I _{IN}	V _{IN} = 0V or V+				1	μΑ
SUPPLY							
Positive Supply Current I+	1.	V _{IN} = 0V or V+	+25°C		0.04	0.2	
	I+ 		T _{MIN} to T _{MAX}			2	μΑ

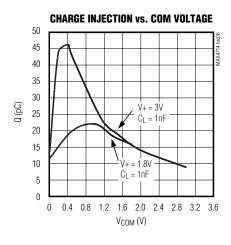

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
- Note 3: Parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.
- Note 4: Guaranteed by design for µDFN package.
- **Note 5:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 6:** Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
- Note 7: Guaranteed by design.
- Note 8: Off-Isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to off switch.
- Note 9: Between the two switches.

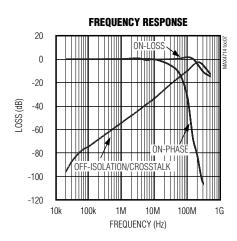
Typical Operating Characteristics

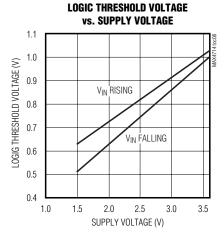
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

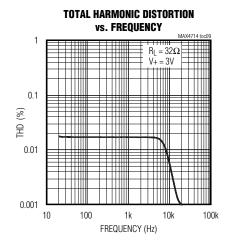







Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



Pin Description

PIN	NAME	FUNCTION
1	IN	Digital Control Input
2	V+	Positive Supply Voltage Input
3	GND	Ground
4	NC	Analog Switch—Normally Closed
5	COM	Analog Switch—Common
6	NO	Analog Switch—Normally Open

Detailed Description

The MAX4714 is a low-on-resistance (R_{ON}), low-voltage, single-pole/double-throw (SPDT) analog switch that operates from a +1.6V to +3.6V supply. The MAX4714 has break-before-make switching. This device also has fast switching speeds (t_{ON} = 18ns, max, t_{OFF} = 12ns, max).

When powered from a +3V supply, the 0.8Ω (max) R_{ON} allows high continuous currents to be switched in a variety of applications.

_Applications Information

Logic Inputs

The MAX4714 logic input can be driven up to +3.6V regardless of the supply voltage. For example, with a

+3.3 V supply, IN may be driven low to GND and high to +3.6 V. Driving IN rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-resistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Chip Information

TRANSISTOR COUNT: 135

PROCESS: CMOS

Test Circuits/Timing Diagrams

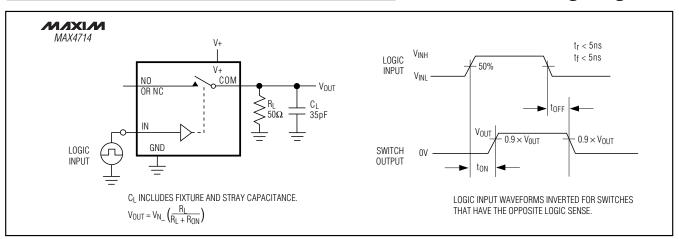


Figure 1. Switching Time

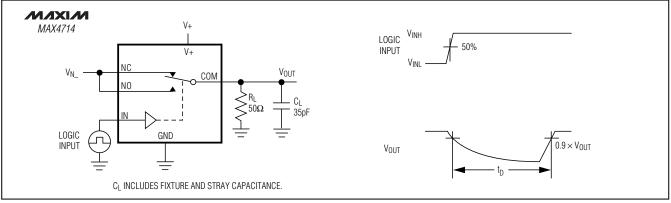


Figure 2. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

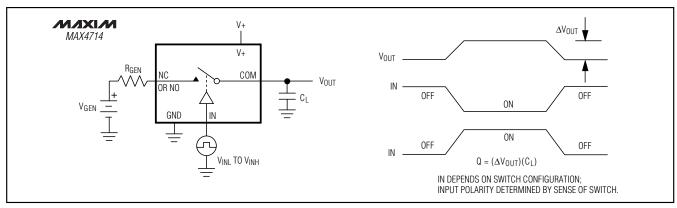


Figure 3. Charge Injection

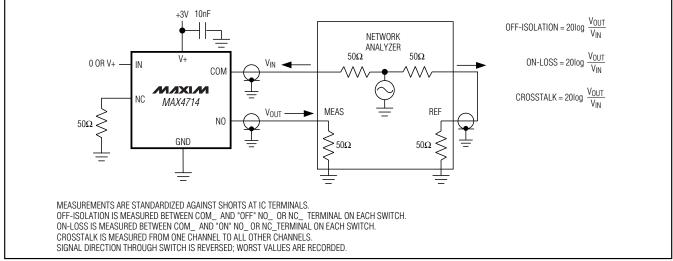


Figure 4. On-Loss, Off-Isolation, and Crosstalk

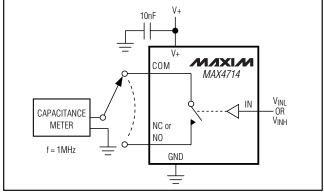
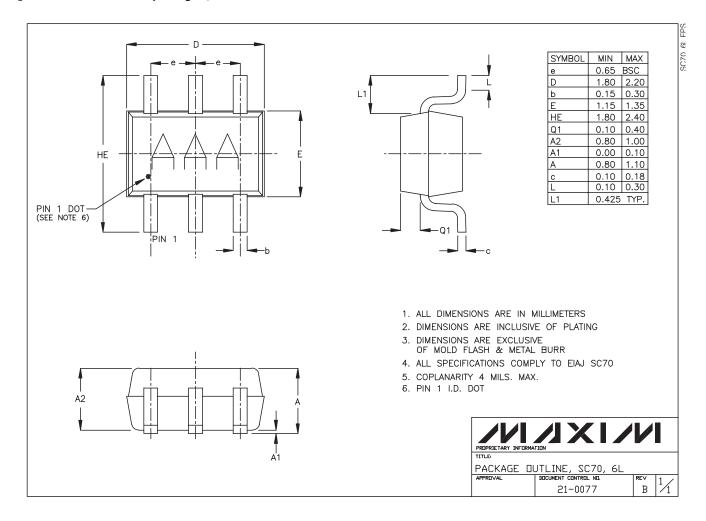
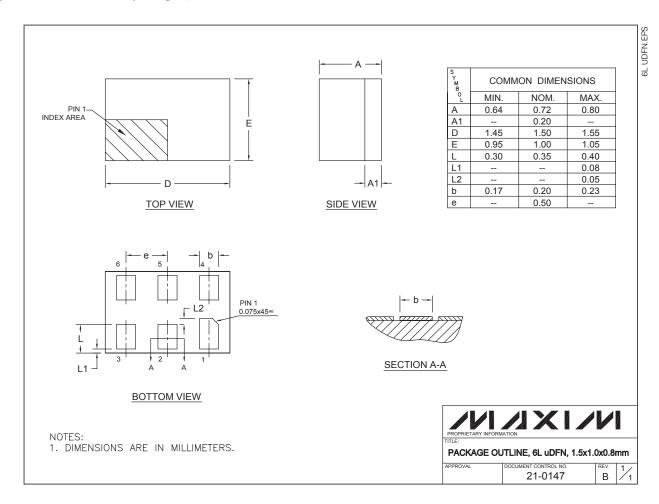



Figure 5. Channel Off/On-Capacitance


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.