

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LV0229XA — For Optical Pickups Front Monitor OE-IC

Overview

The LV0229XA is a front monitor optoelectronic IC for optical pickups that has a built-in photo diode compatible with three waveforms. LV0229XA is small size and type CSP packages.

Functions

- Pin photodiode compatible with three wavelengths incorporated.
- Gain adjustment (-5dB to +5dB in 256 steps) through serial communication.
- Amplifier to amplify differential output.

Features

- Photodiode compatible with three wavelengths incorporated, high-speed process employed.
- Compact, thin CSP package employed.
- Use AR coated glass for three-wavelength (One side).

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VCC		6	V
Allowable power dissipation	Pd	substrate *1, Ta = 75°C	105	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +100	°C

^{*1:} Glass epoxy both-side substrate $55\text{mm} \times 45\text{mm} \times 1\text{mm}$, Copper foil area (head: about 85% tail: about 70%)

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV0229XA

Recommended Operating Conditions at Ta = 25°C

Dorometer	Cumb al	Conditions		1.1-24			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Operating supply voltage	Vcc		4.5	5	5.5	V	
Output load capacitance	Со		12	20	33	pF	
Output load resistance	Zo		3			kΩ	

Electrical and Optical Characteristics at $Ta=25^{\circ}C,\ V_{CC}=5V,\ R_{L}=6k\Omega,\ C_{L}=20pF$

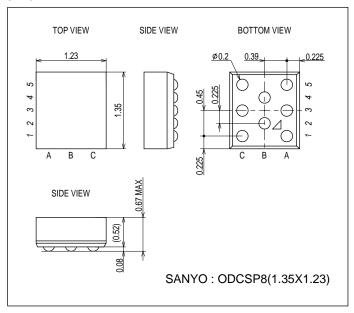
Parameter	Symbol	Conditions	IV Gain		Unit		
ranneter	Cymbol	Conditions	TV Gain	min	typ	max	Onit
Current dissipation	Icc			9	14	19	mA
Sleep current	Islp				0.2	0.5	mA
Output voltage when shielded	Vc	At shielding		1.85	2	2.15	V
Output offset voltage	Vofs	At shielding, voltage between VOP-VON		-30	0	30	mV
Temperature dependence of offset voltage *1	Vofs	Ta = -10 to +75°C		-60	0	60	μV/°C
Optical output voltage *1	VLC		Low	1.93	2.41	2.90	
Voltage between VOP-VON	VH1C	λ = 780nm, G = 0dB	Middle	4.58	5.73	6.87	
	VH2C		High	10.86	13.58	16.29	
	VLD		Low	2.03	2.54	3.05	
	VH1D	$\lambda = 650$ nm, G = 0dB	Middle	4.82	6.02	7.23	mV/μW
	VH2D		High	11.42	14.28	17.13	
	VLB		Low	1.27	1.59	1.90	
	VH1B	$\lambda = 405$ nm, G = 0dB	Middle	3.01	3.76	4.52	
	VH2B		High	7.14	8.92	10.71	
Light output voltage adjustment range *1	G	G = 0dB reference, absolute value of adjustment width		4.5	5	5.5	dB
Output saturation voltage *1	VoD	Voltage between VOP-VON		2000			mV
Frequency characteristics *1, *2	FcC	-3dB (1MHz reference), λ = 780nm Light input = 40μW (DC) + 20μW (AC)		40	60		
	FcD1	-3dB (1MHz reference), λ = 650nm Light input = 40 μ W (DC) + 20 μ W (AC)	Low Middle	60	85		
	FcD2	-3dB (1MHz reference), λ = 650nm Light input = 40 μ W (DC) + 20 μ W (AC)	High	50	70		MHz
	FcB1	-3dB (1MHz reference), λ = 405nm Light input = 40 μ W (DC) + 20 μ W (AC)	Low Middle	60	85		
	FcB2	-3dB (1MHz reference), λ = 405nm Light input = 40 μ W (DC) + 20 μ W (AC)	High	50	70		
Settling time *1	Tset				10	15	ns
Response time *1	Tr, Tf	Vo = 0.9Vp-p, output level 10 to 90% fc = 10MHz, duty = 50%			4	10	ns
Linearity *1	Lin	At output voltage 0.5V and 1.0V (Between VOP-VON)		-1	0	1	%
Light-output voltage temperature dependence	TC	λ = 780nm, 25°C reference		4	7	10	%
Voltage between VOP-VON *1, *3	TD	λ = 650nm, 25°C reference		-3	0	3	%
	ТВ	λ = 405nm, 25°C reference		-4	-1	2	%

Item with *1 mark indicate the design reference value.

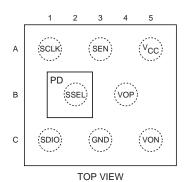
Item with *2 mark indicate the frequency characteristics when VOP and VON are applied individually.

The frequency characteristics are for the output voltage adjustment range is -5 to +5dB.

Item with *3 mark indicates the temperature dependence for the case of High / Middle / Low gain and for the case when the temperature is 25 to 75°C for the output voltage adjustment range of -5 to +5dB.


[Expression of output voltage]

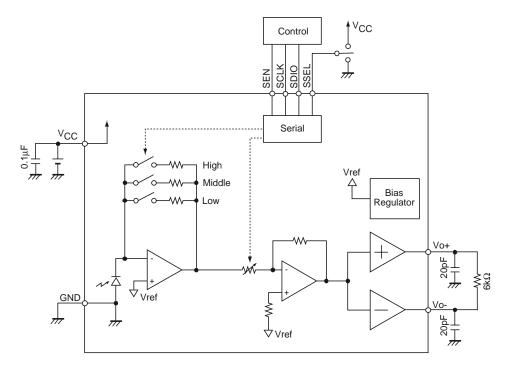
Vn = (sensitivity / 1.78) \times 5221 / (5221 - 14 \times GCAstep) \times light intensity (µW)


Package Dimensions

unit: mm (typ)

3446

Pin Assignment



Pin No.	Pin name	Function
A1	SCLK	Serial communication Clock pin
А3	SEN	Serial communication Enable pin
A5	Vcc	Power supply voltage pin
B2	SSEL	Register selection pin
		SSEL = Low : Address 00 to 0Fh used
		SSEL = High : Address 10 to 1Fh used
		SSEL = Open : Address 70 to 7Fh used
B4	VOP	Positive side output pin
C1	SDIO	Serial communication Data pin
С3	GND	GND pin
C5	VON	Negative side output pin

PD assignment

Block diagram and Test circuit diagram

^{*} Please place decoupling capacitors within 3mm from pin

Resister table

Enable selection of the register group from the SSEL pin.

SSEL = Low

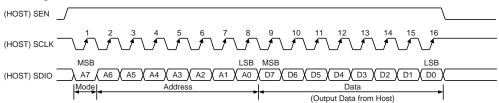
	Address	7	6	5	4	3	2	1	0
Name		POV	POWER		IV GAIN SEL				
Default		0	00		00		0	0	0
Value	00h	11: Power on 00/01/10: Sleep		00/01: High 10: Middle 11: Low					
Name			GAIN						
Default	01h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	0Eh		TEST1 (*1)						

SSEL = High

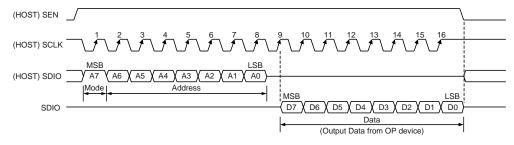
SSEL = I	Address	7	6	5	4	3	2	1	0
Name		POWER		IV GAIN SEL					
Default		00		0	0	0	0	0	0
Value	10h	11: Power on 00/01/10: Sleep		00/01: High 10: Middle 11: Low					
Name			GAIN						
Default	11h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	1Eh		TEST1 (*1)						

SSEL = Open

SSEL - C	Address	7	6	5	4	3	2	1	0
Name		PO	POWER		IV GAIN SEL				
Default		(00		00		0	0	0
	70h	11: Power on		00/01: High					
Value		00/01/10: Sleep		10: Middle					
					11: Low				
Name			GAIN						
Default	71h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	7Eh		TEST1 (*1)						

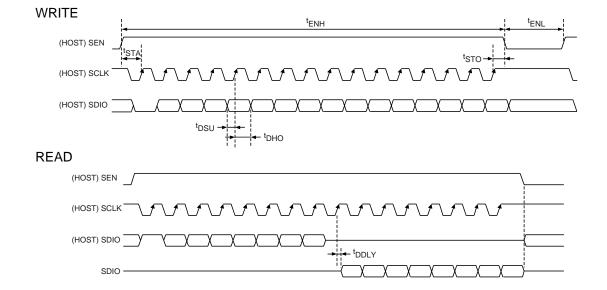

^{*1} TEST1 are either the time when power is applied or "00000000" is set. Do not attempt to change "00000000" during operation. "00000000" is returned when reading is made.

^{*2} No problem in terms of operation occurs even when writing is made to the address 02h to 0Dh & 0Fh, 12h to 1Dh & 1Fh and 72h to 7Dh & 7Fh. "00000000" is returned when this address is read.


^{*3} When I performed address reading except the register group set by an SSEL terminal, I keep Hi-Z without paying a value.

Serial protocol

WRITE timing chart



READ timing chart

SDIO pin load / C_L = 20pF. The table below shows the design reference value.

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency Write	fSCL	0		10	MHz
SCL clock frequency Read	fscl	0		4	MHz
SDIO data setup time	t _{DSU}	50			ns
SDIO data hold time	t _{DHO}	50			ns
SDIO output delay	^t DDLY		10	80	ns
SEN "H" period	^t ENH	1.6			μs
SEN "L" period	t _{ENL}	200			ns
SCL rise time after SEN rise	^t STA	60			ns
SEN fall time after final SCL rise	^t STO	100			ns
Serial input "H" voltage	V _I H	2.4		VCC	V
Serial input "L" voltage	V _I L			0.6	V
SDIO output "H" voltage	V _O H	2.5	2.9	3.3	V
SDIO output "L" voltage	V _O L	0	0.3	0.8	V

Pin	Туре	Equivalent circuit diagram
SDIO	Input Output	3V 3V \$125kΩ 100kΩ 100kΩ
VOP VON	Output	$\frac{20\Omega}{m}$
SCLK SEN	Input	3V 100kΩ W
SSEL	Input	$\begin{array}{c c} \hline & 800 \text{k}\Omega \\ \hline & 200 \text{k}\Omega \\ \hline & 200 \text{k}\Omega \end{array}$

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co..Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned

This catalog provides information as of October, 2012. Specifications and information herein are subject to change without notice.