International **ICR** Rectifier

IGBT PIM MODULE

Features

- Low V_{CE} (on) Non Punch Through IGBT Technology
- Low Diode V_F
- 10µs Short Circuit Capability
- Square RBSOA
- · HEXFRED Antiparallel Diode with Ultrasoft Reverse Recovery Characteristics
- Positive V_{CE} (on) Temperature Coefficient
- · Ceramic DBC Substrate
- · Low Stray Inductance Design

Benefits

- Benchmark Efficiency for Motor Control
- Rugged Transient Performance
- · Low EMI, Requires Less Snubbing
- · Direct Mounting to Heatsink
- PCB Solderable Terminals
- · Low Junction to Case Thermal Resistan
- UL Approved E78996

Absolute Maximum Ratings

	N1D N2D N3D 0 23
ice	

ECONO2PIM

R1	NR	F1	2	∩K

Bulletin I27152 Rev.A 07/03

GE

	Parameter	Symbol	Test Conditions		Ratings	Units
Inverter	Collector-to-Emitter Voltage	V _{CES}				V
-	Gate-to-Emitter Voltage	V _{GES}			±20	
	Collector Current	Ι _C	Continuos	25°C / 80°C	20 / 13	
		I _{CM}	Pulsed	25°C	40	А
	Diode Maximum Forward Current	I _{FM}	Pulsed	25°C	40	
	Power Dissipation	PD	One IGBT	25°C	88	W
Input Rectifier	Repetitive Peak Reverse Voltage	V _{RRM}			1600	V
	Average Output Current	I _{F(AV)}	50/60Hz sine pulse	80°C	13	А
	Surge Current (Non Repetitive)	I _{FSM}	Rated V _{RR}	_M applied, 10ms,	120	
	I ² t (Non Repetitive)	l ² t	sine pulse		72	A ² s
Brake	Collector-to-Emitter Voltage	V _{CES}			1200	V
	Gate-to-Emitter Voltage	V _{GES}			±20	
	Collector Current	Ι _C	Continuous	25°C/80°C	10 / 8	А
		I _{CM}	Pulsed	25°C	20	
	Power Dissipation	PD	One IGBT	25°C	77	W
	Repetitive Peak Reverse Voltage	V _{RRM}			1200	V
	Maximum Operating Junction Temperature	TJ			150	°C
	Storage Temperature Range	T _{STG}			-40 to +125	
	Isolation Voltage	VISOL	AC (1 n	nin)	2500	V

Thermal and Mechanical Characteristics

Parameter	Symbol	Min	Typical	Maximum	Units
Junction-to-Case Inverter IGBT Thermal Resistance		-	-	1.42	°C/W
Junction-to-Case Inverter FRED Thermal Resistance		-	-	1.97 3.73	
Junction-to-Case Brake DIODE Thermal Resistance	R _{0JC}	-	-		
Junction-to-Case Brake IGBT Thermal Resistance		-	-	1.62	
Junction-to-Case Input Rectifier Thermal Resistance		-	-	1.11	
Case-to-Sink, flat, greased surface	R _{0CS}	-	0.05	-	
Mounting Torque (M5)		2.7	-	3.3	Nm
Weight			170		a

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		Parameter	Min.	Тур.	Max.	Units	Conditions
Inverter	BV _(CES)	Collector-to-Emitter Breakdown Voltage	1200	-	-	V	V _{GE} = 0 I _C = 500μA
IGBT	$\Delta V_{(BR)CES}/\Delta T$	Temp. Coefficient of Breakdown Voltage	-	1.33	-	V/°C	V _{GE} = 0 I _C = 1mA (25°C - 125°C)
	V _{CE(ON)}	Collector-to-Emitter Voltage	-	2.68	3.03	V	I _C = 10A V _{GE} = 15V
			-	3.68	4.55		I _C = 20A V _{GE} = 15V
			-	3.19	3.61		$I_{C} = 10A$ $V_{GE} = 15V$ $T_{J} = 125^{\circ}C$
			-	4.52	5.17		$I_{C} = 20A V_{GE} = 15V T_{J} = 125^{\circ}C$
	V _{GE} (th)	Gate Threshold Voltage	4	-	6		$V_{CE} = V_{GE}$ I _C = 250µA
	$\Delta V_{GE}(th)/\Delta T_J$	Thresold Voltage temp. coefficient	-	-9.7	-	mV/°C	$V_{CE} = V_{GE}$ I _C = 1mA (25°C-125°C)
	I _{CES}	Zero Gate Voltage Collector Current	-	-	100	μA	V _{GE} = 0 V _{CE} = 1200V
			-	750	-]	V _{GE} = 0 V _{CE =} 1200V Tj = 125°C
	I _{GES}	Gate-to-Emitter Leakage Current	-	-	±200	nA	$V_{GE} = \pm 20V$
	Q _G	Total Gate Charge (turn-on)	-	48	72		I _C = 10A
	Q _{GE}	Gate-to-Emitter Charge (turn-on)	-	8	15	nC	V _{CC} = 600A
	Q _{GC}	Gate-to-Collector Charge (turn-on)	-	22	33		V _{GE} = 15V
	E _{ON}	Turn-On Switching Loss	-	0.96	1.44	mJ	$I_{\rm C} = 10 \text{A}$ $V_{\rm CC} = 600 \text{V}$
	E _{OFF}	Turn-Off Switching Loss	-	0.46	0.70	Ť	V_{GE} = 15V R_G = 22 Ω L = 1mH
	ETOT	Total Switching Loss	-	1.42	2.14	İ l	Tj = 25°C ¹
	E _{ON}	Turn-On Switching Loss	-	1.25	1.88	mJ	$I_{\rm C} = 10 {\rm A} {\rm V}_{\rm CC} = 600 {\rm V}$
	E _{OFF}	Turn-Off Switching Loss	-	0.69	0.95	Ī	V_{GE} = 15V R_G = 22 Ω L = 1mH
	ETOT	Total Switching Loss	-	1.94	2.83		Tj = 125°C ¹
	t _{d(on)}	Turn-On delay time	-	86	130	ns	$I_{\rm C} = 10 {\rm A} {\rm V}_{\rm CC} = 600 {\rm V}$
	t _r	Risetime	-	21	32		V_{GE} = 15V R_G = 22 Ω L = 1mH
	t _{d(off)}	Turn-Off delay time	-	118	180	Ī	Tj = 125°C
	t _f	Falltime	-	274	410		
	Cies	Input Capacitance	-	750	1150	pF	V _{GE} = 0
	Coes	Output Capacitance	-	190	290		$V_{CC} = 30V$
	C _{res}	Reverse Transfer Capacitance	-	20	35		f = 1Mhz
	RBSOA	Reverse Bias Safe Operating Area	FU	LSQL	JARE		$Tj = 125^{\circ}C I_{C} = 40A$
							$R_G = 22\Omega$ $V_{GE} = 15V$ to 0
	SCSOA	Short Circuit Safe Operating Area	10	-	-	μs	Tj = 150°C
							$V_{CC} = 960V V_{P} = 1200V$
							$R_G = 22\Omega$ $V_{GE} = 15V \text{ to } 0$
Inverter	Irr	Diode Peak Rev. Recovery Current	-	22	-	A	Tj = 125°C
IGBT							$V_{CC} = 600V I_F = 10A L = 1mH$
							$V_{GE} = 15V R_G = 22\Omega$
	V _{FM}	Diode Forward Voltage Drop		2.02	2.50	V	I _F = 10A
				2.53	3.35		I _F = 20A
				2.13	2.63		I _F = 10A Tj = 125°C
				2.81	3.57		I _F = 20A Tj = 125°C

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		Parameter	Min.	Тур.	Max.	Units	Conditions
Input	V _{FM}	Maximum Forward Voltage Drop	-	-	1.12	V	I _F = 10A
Rectifier	I _{RM}	Maximum Reverse Leakage Current	-	-	0.05	mA	Tj = 25°C V _{R =} 1600V
			-	-	1		Tj = 150°C V _{R =} 1600V
	r _T	Forward Slope Resistance	-	18.1	-	mΩ	Tj = 150°C
	V _{F(TO)}	Conduction Thresold Voltage	-	0.78	-	V	
Brake	BV _(CES)	Collector-to-Emitter Breakdown Voltage	1200	-	-	V	V _{GE} = 0 IC = 250µA
IGBT	$\Delta V_{(BR)CES}/\Delta T_J$	Temp. Coefficient of Breakdown Voltage	-	1.2	-	V/°C	V _{GE} = 0 IC = 1mA (25°C - 125°C)
	V _{CE(ON)}	Collector-to-Emitter Voltage	-	2.04	2.21	V	I _C = 5A V _{GE} = 15V
			-	2.61	2.85	-	I _C = 10A V _{GE} = 15V
			-	2.34	2.58	-	$I_{C} = 5A V_{GE} = 15V T_{J} = 125^{\circ}C$
			-	3.12	3.44	-	$I_{C} = 10A$ $V_{GE} = 15V$ $T_{J} = 125^{\circ}C$
	V _{GE} (th)	Gate Threshold Voltage	4	-	6		$V_{CE} = V_{GE}$ I _C = 250µA
	$\Delta V_{GE}(th)/\Delta T_J$	Thresold Voltage temp. coefficient	-	-10	-	mV/°C	$V_{CE} = V_{GE}$ I _C = 1mA (25°C-125°C)
	I _{CES}	Zero Gate Voltage Collector Current	-	-	100	μA	V _{GE} = 0 V _{CE} = 1200V
			-	750	-		V _{GE} = 0 V _{CE} = 1200V Tj = 125°C
	I _{GES}	Gate-to-Emitter Leakage Current	-	-	±200	nA	V _{GE} = ±20V
	Q _G	Total Gate Charge (turn-on)	-	48	72		$I_{\rm C} = 5A$
	Q _{GE}	Gate-to-Emitter Charge (turn-on)	-	8	15	nC	$V_{CC} = 600V$
	Q _{GC}	Gate-to-Collector Charge (turn-on)	-	22	33	-	V _{GE} = 15V
	E _{ON}	Turn-On Switching Loss	-	0.38	0.60	mJ	$I_{\rm C} = 5A$ $V_{\rm CC} = 600V$
	E _{OFF}	Turn-Off Switching Loss	-	0.37	0.55		V_{GE} = 15V R _G = 22 Ω L = 1mH
	E _{TOT}	Total Switching Loss	-	0.75	1.15		Tj = 25°C ¹
	E _{ON}	Turn-On Switching Loss	-	0.50	0.75	mJ	$I_{\rm C} = 5A$ $V_{\rm CC} = 600V$
	E _{OFF}	Turn-Off Switching Loss	-	0.49	0.73	1	V_{GE} = 15V R _G = 22 Ω L = 1mH
	ETOT	Total Switching Loss	-	0.99	1.48	1	Tj = 125°C ¹
	t _{d(on)}	Turn-On delay time	-	85	130	ns	$I_{\rm C} = 5A$ $V_{\rm CC} = 600V$
	tr	Risetime	-	8	15		V_{GE} = 15V R_G = 22 Ω L = 1mH
	t _{d(off)}	Turn-Off delay time	-	110	210	1	Tj = 125°C
	t _f	Falltime	-	440	660	Ī	
	Cies	Input Capacitance	-	750	1150	pF	V _{GE} = 0
	Coes	Output Capacitance	-	190	290		$V_{CC} = 30V$
	C _{res}	Reverse Transfer Capacitance	-	20	35		f = 1Mhz
	RBSOA	Reverse Bias Safe Operating Area	FU	LLSQ	JARE		Tj = 150°C I _C = 20A
							$R_G = 22\Omega$ V _{GE} = 15V to 0
	SCSOA	Short Circuit Safe Operating Area	10	-	-	μs	Tj = 150°C
							$V_{CC} = 960V$ $V_{P} = 1200V$
							$R_G = 22\Omega$ V _{GE} = 15V to 0
Brake	Irr	Diode Peak Rev. Recovery Current	-	12	-	A	$V_{CC} = 600V$ I _F = 5A L = 1mH
Diode							V_{GE} = 15V to 0 R _G = 22 Ω
	V _{FM}	Diode Forward Voltage Drop	-	2.08	2.29	V	I _F = 5A
			-	2.64	2.92		I _F = 10A
			-	2.25	2.48		$I_F = 5A$ Tj = 125°C
			-	3.01	3.34		I _F = 10A Tj = 125°C
NTC	R	Resistance	-	5000	-	Ω	Tj = 25°C
			-	4933	-		Tj = 100°C
	В	B Value	-	3375	-	К	Tj = 25°C / 50°C

¹ Energy Losses include "tail" and diode reverse recovery

Inverter

20

16

14

Fig. 10 - Typ. Switching Time vs. I_C $T_J = 125^{\circ}C$; L=1mH; $V_{CE}= 600V$; $R_G= 22\Omega$; $V_{GE}= 15V$

T_J = 125°C; L=1mH; V_{CE}= 600V; I_{CE}= 10A; V_{GE}= 15V

Inverter

Fig. 17- Typ. Diode Forward Characteristics tp = 80µs

Brake

16

Brake

GB10RF120K

Bulletin I27152 Rev.A 07/03

Fig. 29 - Typ. Switching Time vs. I_C T_J = 125°C; L=1mH; V_{CE}= 600V; R_G= 22\Omega; V_{GE}= 15V

Brake

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.5 - Resistive Load Circuit

Econo2 PIM Package Outline

Dimensions are shown in millimeters (inches)

Econo2 PIM Part Marking Information

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/02