

FDP13N50F / FDPF13N50FT **N-Channel MOSFET 500V**, **12A**, **0.54**Ω

Features

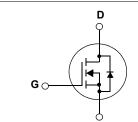
R_{DS(on)} = 0.42Ω (Typ.)@ V_{GS} = 10V, I_D = 6A

TO-220

FDP Series

- Low gate charge (Typ. 30nC)
- Low C_{rss} (Typ. 14.5pF)
- · Fast switching
- · 100% avalanche tested
- Improved dv/dt capability
- · RoHS compliant

GDS



GDS

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

Symbol		FDP13N50F	FDPF13N50FT	Units			
V _{DSS}	Drain to Source Voltage			500		V	
V _{GSS}	Gate to Source Voltage			±30		V	
ID	Drain Current	-Continuous (T _C = 25 ^o C)		12	12*	•	
		-Continuous (T _C = 100 ^o C)		7.2	7.2*	A	
I _{DM}	Drain Current	- Pulsed	- Pulsed (Note 1)			А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			684		mJ	
I _{AR}	Avalanche Current	(Note 1)	12		А		
E _{AR}	Repetitive Avalanche Energy		(Note 1)	19.5		mJ	
dv/dt	Peak Diode Recovery dv/dt (Not		(Note 3)	20		V/ns	
P _D	Power Dissipation	(T _C = 25 ^o C)		195	42	W	
		- Derate above 25°C		1.53	0.33	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150		°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			3	300	°C	

TO-220F

FDPF Series

Thermal Characteristics

Symbol	Parameter	FDP13N50F	FDPF13N50FT	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.65	3.0	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.	0.5	-	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	62.5	

May 2012

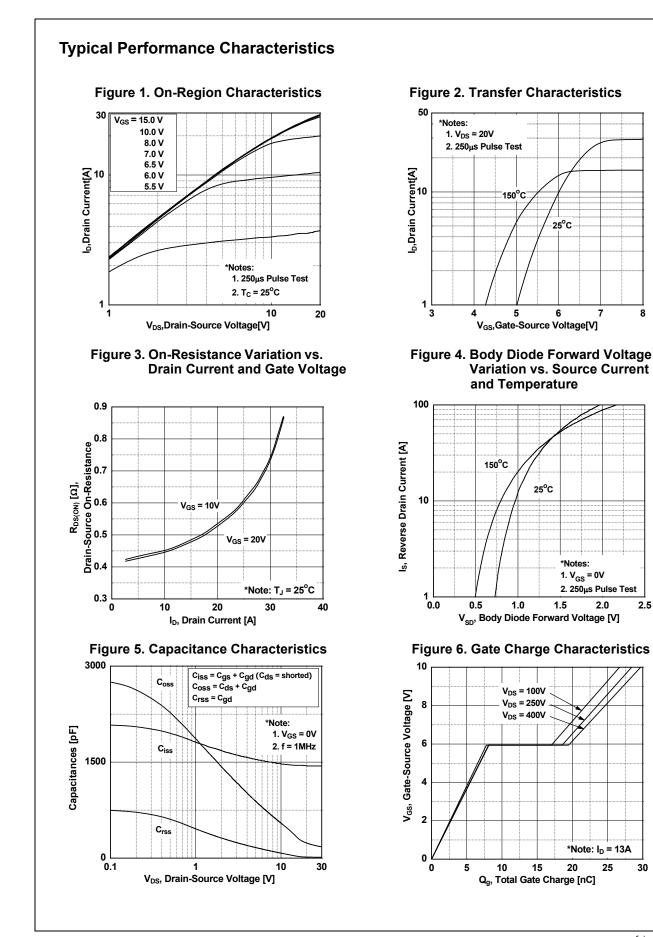
Device Marking		Device	Packa	nge	Reel Size	Таре	e Width		Quantit	у
_		TO-2	20	-		-		50		
FDPF13N50FT FDPF13N50FT TO-22		20F	-		-		50			
Electrica	l Char	acteristics								
Symbol		Parameter	Parameter		Test Conditions		Min.	Тур.	Max.	Units
Off Charac	teristic	S								
BV _{DSS}	Drain to	o Source Breakdown Vo	oltage	I _D = 2	50μA, V _{GS} = 0V, T _J	= 25°C	500	-	-	V
ΔBV_{DSS} ΔT_J	Breakd Coeffic	own Voltage Temperatu ient	ire		$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.7	-	V/ºC
 	Zero G	ate Voltage Drain Curre	nt	V _{DS} =	500V, V_{GS} = 0V		-	-	10	μA
DSS	Zeiu G			-	400V, T _C = 125 ^o C		-	-	100	
I _{GSS}	Gate to	Body Leakage Current	t	V _{GS} =	± 20 V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristic	S								
V _{GS(th)}	Gate T	ate Threshold Voltage		V _{GS} =	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		3.0	-	5.0	V
R _{DS(on)}	Static D	Drain to Source On Resistance			$V_{GS} = 10V, I_D = 6A$			0.42	0.54	Ω
9 _{FS}	Forwar	rward Transconductance			20V, I _D = 6A	(Note 4)	-	13.3	-	S
Dynamic C	haract	eristics								4
C _{iss}		apacitance					-	1450	1930	pF
C _{oss}		Capacitance			25V, V _{GS} = 0V	-	-	198	265	pF
C _{rss}		e Transfer Capacitance	f = 1MHz		-	-	14.5	22	pF	
Q _{g(tot)}		ate Charge at 10V				-	30	39	nC	
Q _{gs}	Gate to	Source Gate Charge			$V_{DS} = 400V, I_D = 13A$ $V_{GS} = 10V$ (Note 4, 5)		-	8	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge		V _{GS} =			-	12	-	nC
-						(1010 4, 0)				
Switching		n Delay Time					-	28	65	ns
t _{d(on)} t _r		n Rise Time			V _{DD} = 250V, I _D = 13A		_	54	120	ns
		ff Delay Time		$R_{G} = 25\Omega$ (Note 4, 5)		-	75	160	ns	
t _{d(off)} t _f		f Fall Time				-	47	105	ns	
•						(1010-1, 0)				
		de Characteristic		de Ferru	and Ourmont		1		10	•
I _S	Maximum Continuous Drain to Source Diode							-	12	A
SM		Maximum Pulsed Drain to Source Diode For						-	48	A
V _{SD}		Source Diode Forward	voitage		0V, I _{SD} = 12A		-	-	1.5	V
t _{rr}		e Recovery Time			0V, I _{SD} = 12A	()	-	154	-	ns
Q _{rr}	Reverse	e Recovery Charge		$dI_F/dt = 100A/\mu s$ (Note 4)		-	0.45	-	μC	

2. L = 9.5mH, I_{AS} = 12A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

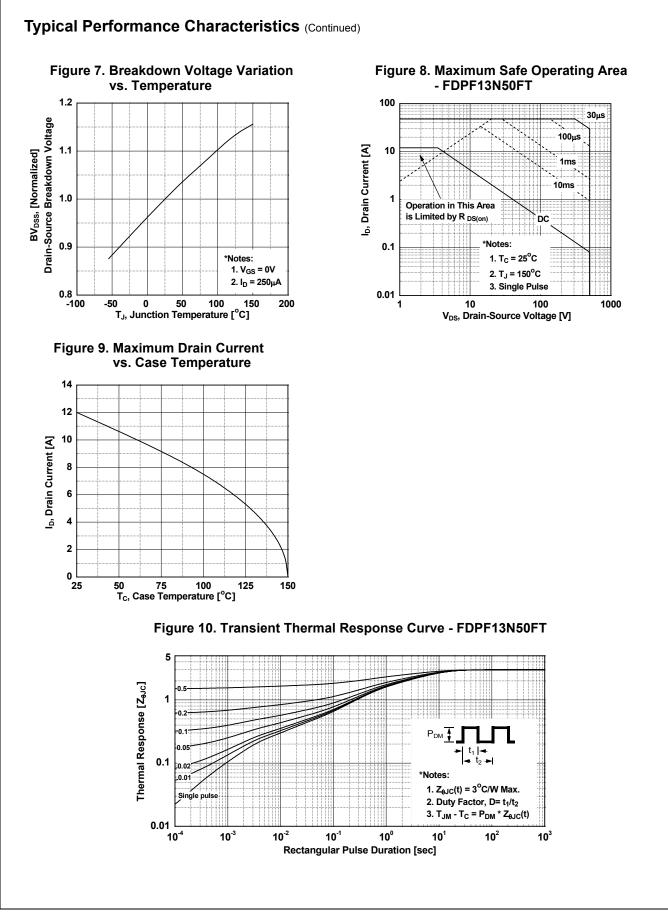
3. $I_{SD} \le 12A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

4. Pulse Test: Pulse width $\leq 300 \mu s,$ Duty Cycle $\leq 2\%$

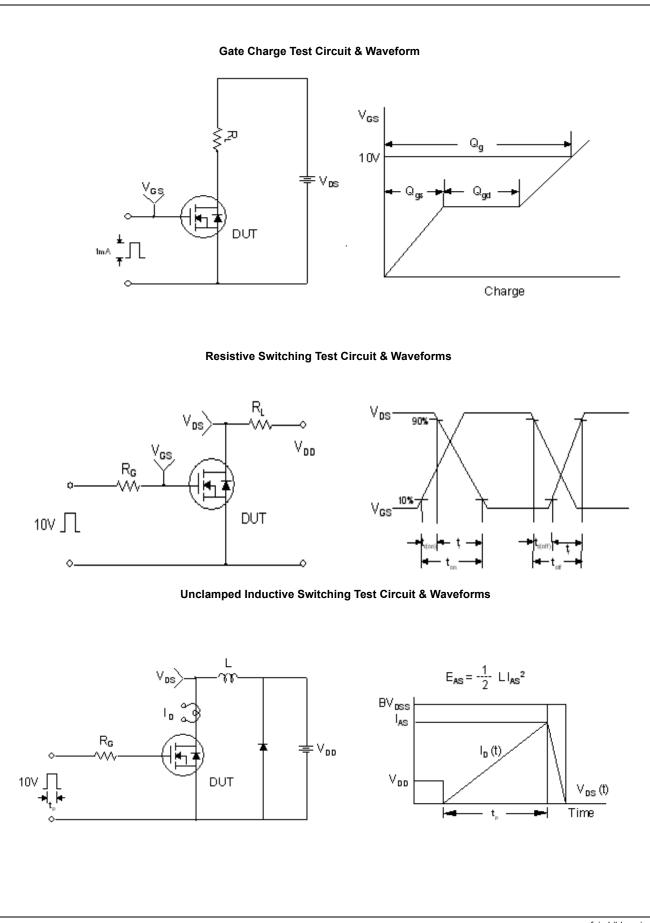
5. Essentially Independent of Operating Temperature Typical Characteristics


8

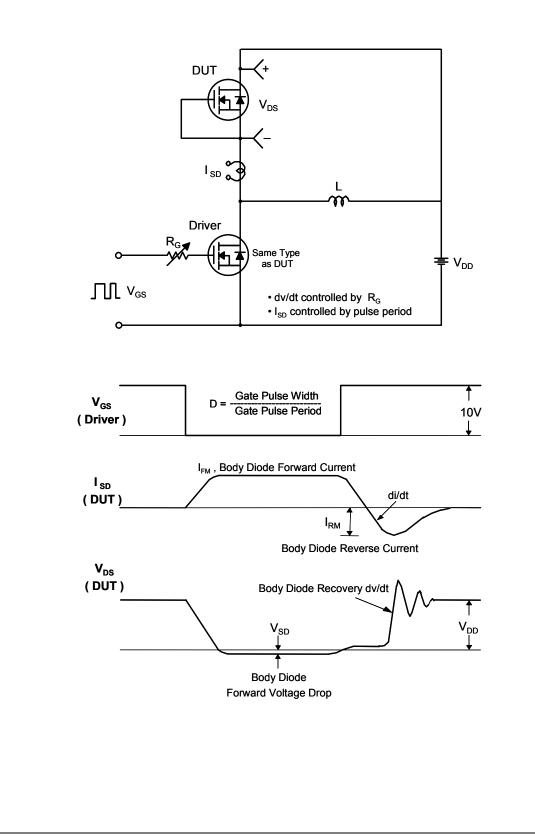
7

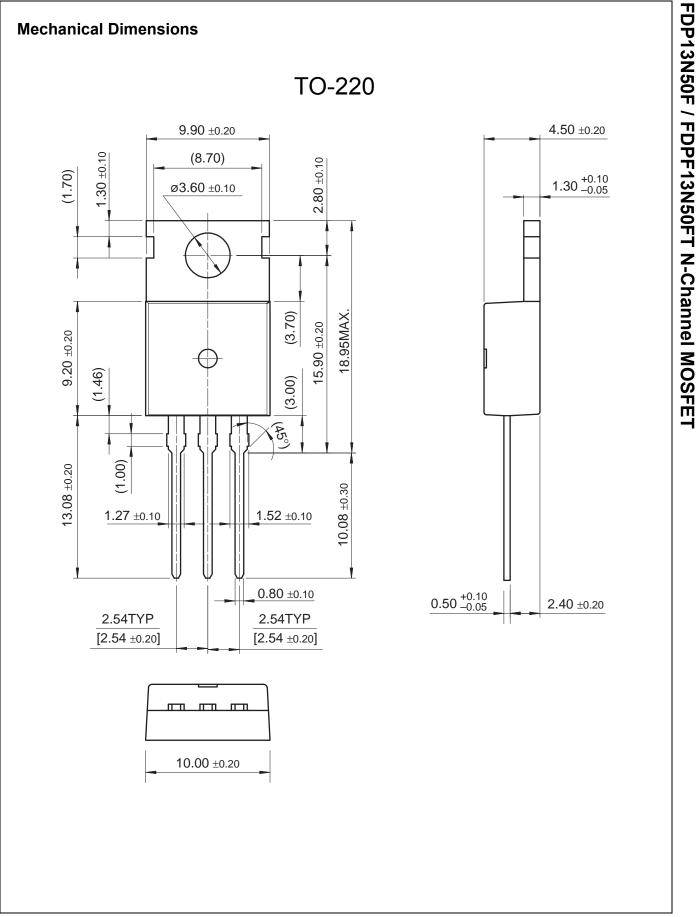

2.0

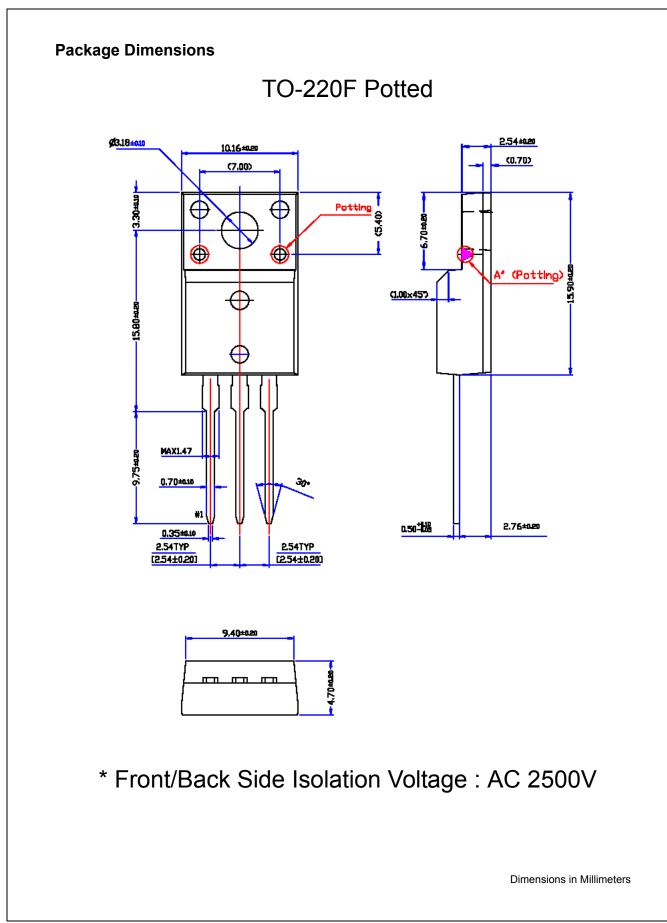
25


2.5

30






FDP13N50F / FDPF13N50FT N-Channel MOSFET

FDP13N50F / FDPF13N50FT Rev.C1

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	F-PFS™	PowerTrench®	The Power Franchise [®]
AccuPower™	FRFET®	PowerXS™	the . ®
AX-CAP™*	Global Power Resource SM	Programmable Active Droop™	purent franchise TinyBoost™
BitSiC [®]	Green Bridge™	QFET®	franchise
Build it Now™	Green FPS™	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™
CorePOWER™	Gmax™	RapidConfigure™	TinyCalc™
CROSSVOLT™	GTO™	TM	TinyLogic [®]
CTL™	IntelliMAX™		TINYOPTO™
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPower™
DEUXPEED®	Marking Small Speakers Sound Louder	SignalWise™	TinyPWM™
Dual Cool™	and Better™	SmartMax™	TinyWire [™]
EcoSPARK [®]	MegaBuck™	SMART START™	TranSiC [®]
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TriFault Detect™
ESBC™	MicroFET ^M	SPM [®]	TRUECURRENT [®] *
ESBC	MicroPak™	STEALTH™	µ <u>SerD</u> es™
E ^R	MicroPak2™	SuperFET®	\mathcal{M}
	MillerDrive™	SuperSOT™-3	∕ Ser <mark>Des</mark> ™
Fairchild®	MotionMax [™]	SuperSOT™-5	UHC®
Fairchild Semiconductor®	Motion-SPM™	SuperSOT™-8	Ultra FRFET™
FACT Quiet Series™		SupreMOS [®]	UniFET™
FACT®	mWSaver™		VCX™
FAST®	OptoHiT™ OPTOL OCIO®	SyncFET™ Suma Lash™	VisualMax™
FastvCore™	OPTOLOGIC [®]	Sync-Lock™	VoltagePlus™
FETBench™	OPTOPLANAR®	SYSTEM ®*	XS™
FlashWriter [®] *	®	GENERAL	A0
FPS™			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev

6