

DATA SHEET

mos integrated circuit μ PD75P108B

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD75P108B is a version of the μ PD75108 in which the on-chip mask ROM is replaced by one-time PROM which can be written to once only, or EPROM which is capable of program write, erasure and rewrite. Also, since the μ PD75P108B is capable of program write by a user, it can easily be exchanged with the mask version, allowing evaluation at low voltage.

Detailed functional descriptions are shown in the following User's Manual. Be sure to read for designations. μ PD751×× Series User's Manual : IEM-922

FEATURES

- Version with on-chip PROM, allowing low-voltage operation $V_{DD} = 2.7$ to 6.0 V
- µPD75108 compatible
- Memory capacity
 - Program memory (PROM) : 8064 × 8 bits
 - Data memory (RAM) : 512 × 4 bits
- Correspondence to QTOP[™] microcomputer

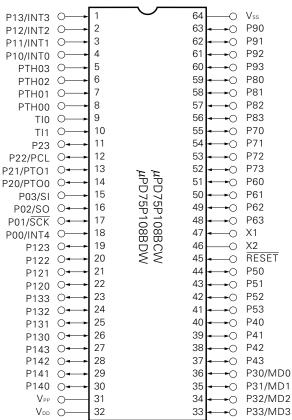
ORDERING INFORMATION

Ordering Code	Package	On-Chip ROM
μ PD75P108BCW	64-pin plastic shrink DIP (750 mil)	One-time PROM
μ PD75P108BDW	64-pin ceramic shrink DIP (with window)	EPROM
μ PD75P108BGF-3BE	64-pin plastic QFP (14 $ imes$ 20 mm, 1.0 mm pitch)	One-time PROM

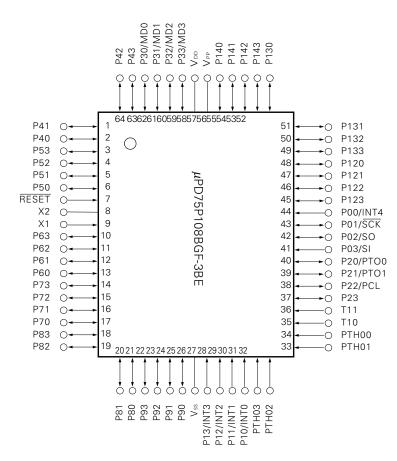
Note There is no on-chip pull-up resistor function by means of a mask option.

QUALITY GRADE

Standard

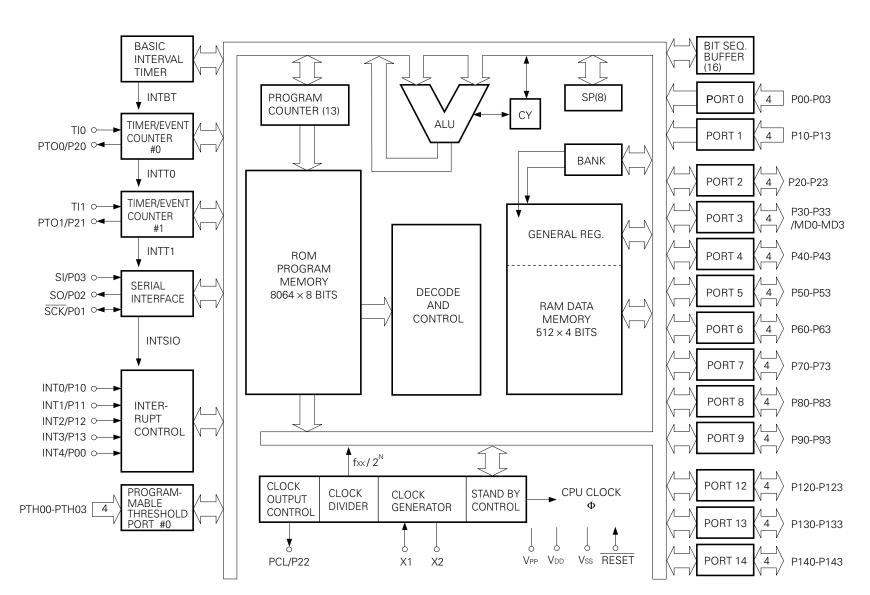

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

In this ducument, common parts of one-time PROM products and EPROM products are represented as PROM.


The information in this document is subject to change without notice.

PIN CONFIGURATION (TOP VIEW)

64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window)



64-pin plastic QFP (14 \times 20 mm, 1.0 mm pitch)

OVERVIEW OF FUNCTIONS

ltem		Description		
Basic instructions		43		
Minimum instruction execution time	on	0.95 μ s, 1.91 μ s, 15.3 μ s (4.19 MHz operation) 3-stage switching capability		
	ROM	8064 × 8		
Internal memory	RAM	512 × 4		
General register		4-bits \times 8 \times 4 banks (memory mapping)		
Accumulator		 3 types of accumulators corresponding to bit length of manipulated data 1-bit accumulator (CY), 4-bit accumulator (A), 8-bit accumulator (XA) 		
Input/output port		Total 58: 10• CMOS input pins: 10• CMOS input/output pins (LED direct drive capability): 32• Middle-high voltage N-ch open-drain input/output pins (LED direct drive capability): 12• Comparator input pins (4-bit precision): 4		
Timer/counter	 8-bit timer/event counter × 2 8-bit basic interval timer (watchdog timer applicable) 			
8-bit serial interface		 Two transfer modes Serial transmity receive mode Serial receive mode LSB-first/MSB-first switchable 		
Vectored interrupt		External : 3, internal : 4		
Test input		External : 2		
Standby		• STOP/HALT mode		
Instruction set		 Various bit manipulation instructions (set, reset, test, boolean operation) 8-bit data transfer, comparison, operation, increment/decrement instructions 1-byte relative branch instruction GETI instruction that can implement arbitrary 2-byte/3-byte instructions with 1 byte 		
Others		• Bit manipulation memory (bit sequential buffer : 16 bits) on-chip		
Package		 64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) 64-pin plastic QFP (14 × 20mm, 1.0 mm pitch) 		

BLOCK DIAGRAM

CONTENTS

	1.	PIN FU	NCTIONS	7
		1.1 PC	ORT PINS	7
			THER PINS	
			N INPUT/OUTPUT CIRCUITS	
			ECOMMENDED CONNECTION OF UNUSED PINS	
*		1.5 CA	AUTION ON USING P00/INT4 PIN AND RESET PIN	12
	2.	DIFFER	ENCES BETWEEN μ PD75P108B AND μ PD75P116	12
	3.	DIFFER	ENCES BETWEEN MASK VERSION (μ PD75108) AND PROM VERSION (μ PD75P108B)	13
	4.	PROM	(PROGRAM MEMORY) WRITE AND VERIFY	14
		4.1 PR	ROGRAM MEMORY WRITE/VERIFY OPERATING MODES	14
		4.2 PR	ROGRAM MEMORY WRITE PROCEDURE	15
		4.3 PR	ROGRAM MEMORY READ PROCEDURE	16
\star		4.4 ER	RASUER METHOD (µPD75P108BDW only)	17
		4.5 SC	CREENING OF ONE-TIME PROM PRODUCTS	17
	5.	ELECTF	RICAL SPECIFICATIONS	18
	6.	CHARA	CTERISTIC CURVE (REFERENCE VALUE)	30
	7.	RECOM	IMENDED SOLDERING CONDITIONS	36
	8.	РАСКА	GE INFORMATION	37
	AP	PENDIX	A. DEVELOPMENT TOOLS	39
*	AP	PENDIX	B. RELATED DOCUMENTATIONS	40
	AP	PENDIX	C. FONCTIONAL DIFFERENCE AMONG μ PD751×× SERIES	42

1. PIN FUNCTIONS

1.1 PORT PINS

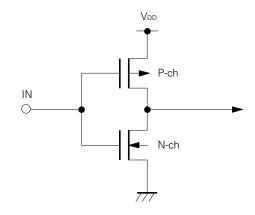
Pin Name	Input/Output	Dual- Function Pin	Function	8-bit I/O	After Reset	I/O Circuit Type * 1
P00	Input	INT4			Input	B
P01	Input/output	SCK	4-bit input port (PORT 0).			Ē
P02	Input/output	SO				E
P03	Input	SI				B
P10		INT0		×	×	
P11		INT1	4-bit input port (PORT 1).			
P12	- Input	INT2			Input	B
P13		INT3				
P20		PTO0				
P21		PTO1	4-bit input/output port (PORT 2).		Input	E
P22	Input/output	PCL		×		
P23		_	*2			
P30 to P33	Input/output	MD0 to MD3	Programmable 4-bit input/output port (PORT 3). Input/output can be specified bit-wise. *2		Input	E
P40 to P43	Input/output	_	4-bit input/output port (PORT 4). Data input/output pin for program memory (PROM) write/verify (low-order 4 bits). *2		Input	E
P50 to P53	Input/output	_	4-bit input/output port (PORT 5). Data input/output pin for program memory (PROM) write/verify (high-order 4 bits). *2	0	Input	E
P60 to P63	Input/output	_	Programmable 4-bit input/output port (PORT 6). Input/output can be specified bit-wise. *2	0	Input	E
P70 to P73	Input/output	_	4-bit input/output port (PORT 7). *2		Input	E
P80 to P83	Input/output	_	4-bit input/output port (PORT 8). *2		Input	E
P90 to P93	Input/output	-	4-bit input/output port (PORT 9). *2	0	Input	E
P120-P123	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 12). +12 V withstand voltage. *2		Input	M-A
P130-P133	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 13). +12 V withstand voltage. *2	0	Input	M-A
P140-P143	Input/output	_	N-ch open-drain 4-bit input/output port (PORT 14). +12 V withstand voltage. *2	_	Input	M-A

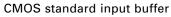
* 1. () indicates Schmitt-triggered input.

2. LED direct drive capability

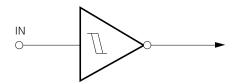
1.2 OTHER PINS

Pin Name	Input/Output	Dual- Function Pin	Function	After Reset	I/O Circuit Type * 1
PTH00 to PTH03	Input	—	Variable threshold voltage 4-bit analog input port.		N
тіо			External event pulse input to timer/event counter. Or edge detection vectored interrupt input pin, or 1-bit input		B
TI1	Input	_	is also possible.		
PTO0		P20	Timer/event counter output pin.		Е
PTO1	Input/output	P21		Input	L
SCK	Input/output	P01	Serial clock input/output pin.	Input	F
so	Input/output	P02	Serial data output pin.	Input	E
SI	Input	P03	Serial data input pin.	Input	B
INT4	Input	P00	Edge detection vector interrupt input pin (detection of both rising and falling edges).		B
INT0		P10 Edge detection vector interrupt input pin (detection edge selectable).			
INT1	Input	P11			B
INT2		P12	Edge detection testable input pin (rising edge detection)		B
INT3	Input P13		Luge detection testable input pin (nsing edge detection)		
PCL	Input/output	P22	Clock output pin	Input	E
X1, X2		_	System clock oscillation crystal/ceramic connection pin. When an external clock is used, the clock is input to X1 and the inverted clock is input to X2.		
RESET	Input	_	System reset input pin (low-level active).		B
MD0 to MD3	Input/output	P30 to P33	Mode selection pin for program memory (PROM) write/ verify.	Input	E
Vdd		_	Positive power supply pin. Applies +6 V for write/verify.		
Vss		_	GND potential pin.		
Vpp * 2		_	Program voltage impression pin for program memory (PROM) write/verify. Connected to VDD in normal operation. Applies +12.5 V for PROM write/verify.		

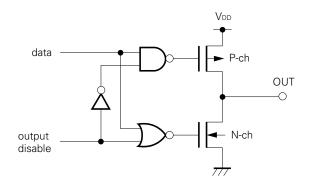

* 1. () indicates Schmitt-triggered input.


2. The device will not operate correctly unless V_{PP} is connected to V_{DD} in normal use.

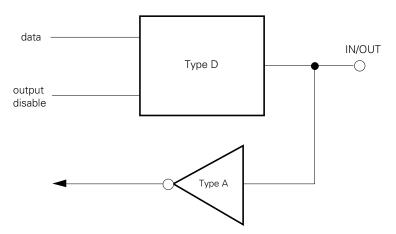
1.3 PIN INPUT/OUTPUT CIRCUITS


The input/output circuits of each pin of the μ PD75P108B are shown by in abbreviated form.

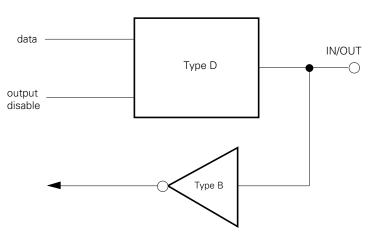
(1) Type A (for Type E)



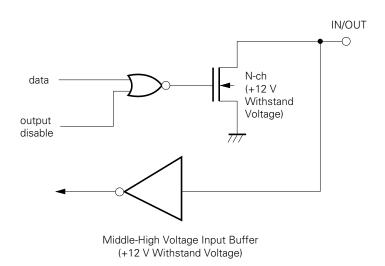
(2) Type B


Schmitt-triggered input with hysteresis characteristic

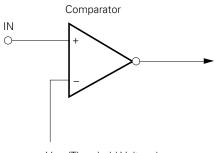
(3) Type D (for Type E, F)


Push-pull output that can be made high-impedance output (P-ch and N-ch OFF)

(4) Type E


This is an input/output circuit made up of a Type D push-pull output and Type A input buffer.

(5) Type F



This is an input/output circuit made up of a Type D push-pull output and Type B Schmitt-triggered input.

(6) Type M-A

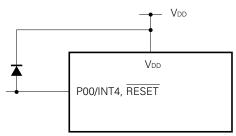
(7) Type N

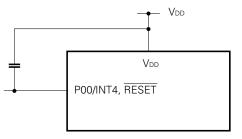
VREF (Threshold Voltage)

1.4 RECOMMENDED CONNECTION OF UNUSED PINS

Pin	Recommended Connection
PTH00 to PTH03	
тю	Connect to Vss or Vbb.
TI1	
P00	Connect to Vss.
P01 to P03	Connect to Vss or VDD.
P10 to P13	Connect to Vss.
P20 to P23	
P30 to P33	
P40 to P43	
P50 to P53	Input status : Connect to Vss or Vdd.
P60 to P63	
P70 to P73	Output status : Leave open.
P80 to P83	
P90 to P93	
P120 to P123	
P130 to P133	
P140 to P143	
RESET	Connect to VDD.

1.5 CAUTION ON USING P00/INT4 PIN AND RESET PIN


The P00/INT4 and RESET pins have a test mode setting function (for IC test) which tests internal operations of pin of the μ PD75P108B in addition to those functions given in 1.1 and 1.2.


The test mode is set when voltage greater than VDD is applied to either pin. Therefore, even during normal operation, the test mode is engaged when noise greater than VDD is added, thus causing interference with normal operation.

For example, this problem may occure if the P00/INT4 and RESET pins wiring is too long, causing line noise. To avoid this, try to suppress line noise in wiring. If line noise is still high, try elimminating the noise using the exterior add-on components shown in the Figures below.

\odot CONNECT A DIODE WITH LOW VF BETWEEN THE VDD AND THE PIN.

*** 2.** DIFFERENCES BETWEEN μ PD75P108B AND μ PD75P116

In addition to the μ PD75P108B, the μ PD75P116 is available as μ PD751×× series on-chip PROM device.

Parameter	μPD75P108B	μPD75P116
PROM capacity	8064 × 8 bits	16256 × 8 bits
Operating voltage range	2.7 to 6.0 V	5 V ±10%
Write voltage	12.5 V	12.5 V
Operating temperature range	−40 to +85 °C	−40 to +85 °C
Supply current TYP. value during operation	4 mA	5 mA
Supply current TYP. value in STOP mode	0.1 <i>μ</i> Α	0.5 <i>µ</i> A
Power-on reset function	No	No
Package	 64-pin plastic shrink DIP 64-pin ceramic shrink DIP (with window) 64-pin plastic QFP (14 × 20 mm, 1.0 mm pitch) 	 64-pin plastic shrink DIP 64-pin plastic QFP (14 × 20 mm, 1.0 mm pitch)

 \star

3. DIFFERENCES BETWEEN MASK VERSION (µPD75108) AND PROM VERSION (µPD75P108B)

	Parameter	μPD75P108B (PROM product)	μPD75108 (Mask ROM product)	
Program memo	ry	• 0000H to 1F7FH • 8064 × 8 bits		
Pull-up resistor	of ports 12,13 and 14	No	Mask option	
Power-on reset	Power-on reset circuit		Mask option	
Power-on reset				
Power-on Flag	Power-on Flag		2.7 to 6.0 V	
Operating voltage	ge range			
Pin connection	SDIP (Nos. 33 to 36) QFP (Nos. 39 to 62)	P33/MD3 to P30/MD0	P33 to P30	
Fin connection	SDIP (No. 31) QFP (No. 57)	Vpp	NC	
Electrical specification		Different consumption current, etc. Refer to the parameter for each data sheet for details.		
Other		Different noise resistance, noise radiation, etc., due to difference in the size of circuits and mask layout		

Note The PROM and ROM products differ in noise resistance and noise radiation. If you are considering replacement of the PROM product by the ROM product in the transition from preproduction to volume production, this should be evaluated thoroughly with the mask ROM CS product (not ES product).

4. PROM (PROGRAM MEMORY) WRITE AND VERIFY

The ROM built into the μ PD75P108B is a 8064 × 8-bit PROM. The pins shown in the table below are used to write/verify this PROM. There is no address input; instead, a method to update the address by the clock input from the X1 pin is adopted.

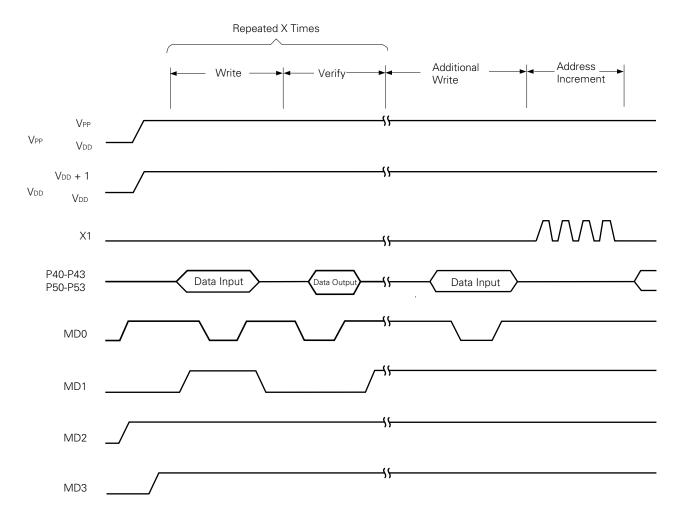
Pin Name	Function		
Vpp	Voltage applecation pin for program memory write/verify (normally V_{DD} potential).		
X1, X2	Address update clock inputs for program memory write/ verify. Inverse of X1 pin signal is input to X2 pin.		
MD0 to MD3	Operating mode selection pin for program memory write/ verify.		
P40 to P43 (low-order 4 bits) P50 to P53 (high-order 4 bits)	8-bit data input/output pins for progrm memory write/ verify.		
Vdd	Supply voltage application pin. Applies 2.7 to 6.0 V in normal operation, and 6 V for program memory write/verify.		

Note Pins not used in a program memory write/verify operation should be connected to Vss with a pulldown resistor.

4.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES

The μ PD75P108B assumes the program memory write/verify mode is +6 V and +12.5 V are applied respectively to the V_{DD} and V_{PP} pins. The table below shows the operating modes available by the MD0 to MD3 pin setting in this mode.

	Operating	Mode	Setting		Operating Mode		
Vpp	Vdd	MD0	MD1	MD2	MD3	Operating Mode	
	_	Н	L	Н	L	Program memory address zero-clear	
		L	н	Н	Н	Write mode	
+12.5 V +6 V	L	L	Н	Н	Verify mode		
		Н	×	Н	Н	Program inhibit mode	


$\times\colon$ L or H

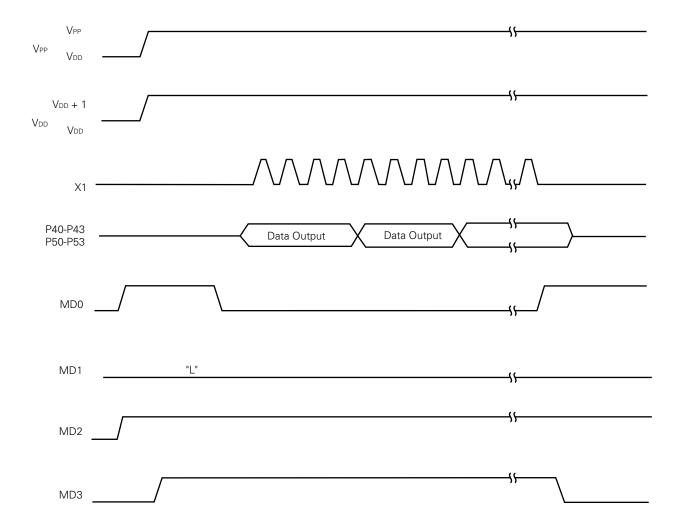
4.2 PROGRAM MEMORY WRITE PROCEDURE

The program memory writing procedure is shown below. High-speed write is possible.

- (1) Pull down a pin which is not used to Vss via the resistor. A low-level signal is input to the X1 pin.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) 10 µs wait.
- (4) The program memory address 0 clear mode.
- (5) Supply +6 V and +12.5 V respectively to VDD and VPP.
- (6) The program inhibit mode.
- (7) Write data in the 1-ms write mode.
- (8) The program inhibit mode.
- (9) The verify mode. If written, proceed to (10); if not written, repeat (7) to (9).
- (10) (Number of times written in (7) to (9): X) x 1-ms additional write.
- (11) The program inhibit mode.
- (12) Update (+1) the program memory address by inputting 4 pulses to the X1 pin.
- (13) Repeat (7) to (12) up to the last address.
- (14) The program memory address 0 clear mode.
- (15) Change the VDD and VPP pins voltage to +5 V.
- (16) Power off.

The diagram below shows the procedure of the above (2) to (12).

4.3 PROGRAM MEMORY READ PROCEDURE


The μ PD75P108B can read the content of the program memory in the following procedure.

- (1) Pull down a pin which is not used to Vss via the resistor. A low-level signal is input to the X1 pin.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) 10 μs wait.

NEC

- (4) The program memory address 0 clear mode.
- (5) Supply +6 V and +12.5 V respectively to VDD and VPP.
- (6) The program inhibit mode.
- (7) The verify mode. If clock pulses are input to the X1 pin, data is output sequentially 1 address at a time at the period of inputting 4 pulses.
- (8) The program inhibit mode.
- (9) The program memory address 0 clear mode.
- (10) Change the VDD and VPP pins voltage to +5 V.
- (11) Power off.

The diagram below shows the procedure of the above (2) to (9).

\star

4.4 ERASURE METHOD (μPD75P108BDW only)

The data contents programmed in the μ PD75P108BDW can be erased by exposure to ultra-violet rays via the upper window.

The wavelength of erasable UVR is approx. 250 nm. The irradiation amount required for complete erasure is $15Ws/cm^2$ (UVR intensity × erasure time).

Erasure requires approx. 15 to 20 minutes if a commercially available UVR lamp (wavelength 254 nm, intensity 12 mW/cm²).

- Note 1. If exposed directly to sunshine or a fluorescent light for a long period, the contents may be erased. For protection of the contents, mask the upper window with the lightshield cover film. Use the lightshield cover film provided by NEC for UV EPROM products.
 - 2. When performing erasure, ensure that the distance between the UV lamp and the μ PD75P108BDW is 2.5 cm or less.
- **Remarks** The erasure time may be increased due to deterioration of the UV lamp, dirt or stains on the package window surface.

4.5 SCREENING OF ONE-TIME PROM PRODUCTS

Due to the nature of their construction, it is not possible for NEC to fully test one-time PROM products (μ PD75P108BCW, μ PD75P108BGF-3BE) before shipment. It is therefore recommended that screening which performs PROM verification be carried out after high-temperature storage under the conditions shown below once the necessary data has been written to the device.

Storage Temperature	Storage Time
125 °C	24 hours

NEC offers a fee-paying service under the QTOP microcomputer name which covers one-time PROM writing, marking, screening and verification. Please contact our salesman for details.

5. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

PARAMETER	SYMBOL	TEST CONDITIONS		RATING	UNIT
Supply voltage	Vdd			-0.3 to + 7.0	V
Supply voltage		Vpp		-0.3 to 13.5	V
Input voltage	Vıı	Except ports 12	to 14	-0.3 to V _{DD} + 0.3	V
input voltage	V12 *1	Ports 12 to 14		-0.3 to +13	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
		1 pin		-15	mA
Output current high	Іон	Total pins		-30	mA
	lot* 2	1 pin IoL*2 Ports 0, 2 to 4, 12 to 14 total	Peak value	30	mA
			Effective value	15	mA
Output current low			Peak value	100	mA
			Effective value	60	mA
		Ports 5 to 9	Peak value	100	mA
		total	Effective value	60	mA
Operating temperature	Topt			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

- * 1. The power supply impedance (pull-up resistor) should be 50 kΩ or more when the voltage exceeding 10 V applied to ports 12, 13 and 14.
 - 2. Effective value should be calculated as follows: [Effective value] = [Peak value] $\times \sqrt{duty}$

OPERATING VOLTAGES (Ta = -40 to +85 °C)

PARAMETER	TEST CONDITIONS	MIN.	MAX.	UNIT
CPU *1		*2	6.0	v
Programmable threshold port (comparator input)		4.5	6.0	V
Other hardware *1		2.7	6.0	v

- * 1. Excluding system clock oscillation circuit and programmable threshold ports.
 - 2. The operating voltage range varies depending on the CPU clock cycle time. See "AC characteristics".

CAPACITANCE (Ta = 25 °C, V_{DD} = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Cin	f = 1 MHz Unmeasured pins returned to			15	pF
Output capacitance	Соит	0 V.			15	pF
I/O capacitance	Сю				15	pF

COMPARATOR CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 4.5 to 6.0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Comparison accuracy	Vacomp				±100	mV
Threshold voltage	VTH		0		Vdd	V
PTH input voltage	Vipth		0		Vdd	V
Comparator circuit current consumption		PTHM7 set to "1"		1		mA

	RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT			
*	Ceramic		Oscillator frequency (fxx) *1	V _{DD} = Oscillation voltage range	2.0		* 3 5.0	MHz			
	resonator (C2 = = C1	Oscillation stabilization time *2	After V _{DD} reaches oscil- lator voltage range MIN.			4	ms			
*	Crystal	Oscillator frequency (fxx) * 1		2.0	4.19	* 3 5.0	MHz				
	resonator					Oscillation	V _{DD} = 4.5 to 6.0 V			10	ms
			stabilization time *2				30	ms			
	External clock	X1 input frequency (fx) *1		2.0		5.0	MHz				
		μPD74HCU04	X1 input high/low level width (txH , txL)		100		250	ns			

SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

- Indicates only oscillation circuit characteristics.
 Refer to "AC Characteristics" for instruction execution time.
 - **2.** Time required to stabilize oscillation after V_{DD} impression or STOP mode release.
- ★ 3. When using a value of fx such that 4.19MHz<fxx≤5.0MHz, if the maximum speed mode:Φ=fx/4 is set as the CPU clock frequency, 1 machine cycle becomes less than 0.95µs, with the result that the specified MIN value of 0.95 cannot be observed.

★ Note When the system clock oscillator is used, the following points should be noted concerning wiring in the section enclosed by dots, in order to prevent the effects of wiring capacitance, etc.

- Keep the wiring as short as possible.
- Do not cross any other signal lines, and keep clear of lines in which a high fluctuating current flows.
- Ensure that oscillator capacitor connection points are always at the same potential as Vss. Do not ground in a ground pattern in which a high current flows.
- Do not take a signal from the oscillator.

RECOMMENDED CERAMIC RESONATOR

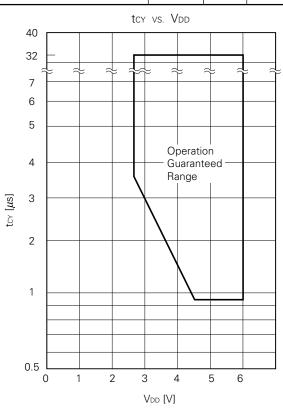
			EXTERNAL C	APACITANCE	OSCILLATION VC	LTAGE RANGE
MANUFACTURER	PART NAME	FREQUENCY (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
	CSAx.xxMG	2.00 to 5.00	30	30		
Murata Mfg. Co., Ltd.	CSTx.xxMG	2.00 to 5.00	30	30	2.7	6.0
	CSTx.xxMGW	2.45 to 5.00	30	30		
Kyocera Corporation	KBR-x.xMS	2.0 to 2.5	100	100	0.7	
		2.6 to 6.0	33	33	2.7	6.0
Toko, Inc.	CRHFx.xx	3.00 to 4.19	27	27	3.0	6.0

RECOMMENDED CRYSTAL RESONATOR

MANUFACTURER PART NAME			EXTERNAL C	APACITANCE	OSCILLATION VOLTAGE RANGE		
	FREQUENCY (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)		
Kinseki, Ltd.	HC-49/U	2.00 to 5.00	22	22	2.7	6.0	

PARAMETER	SYMBOL	TEST CON	DITION	S	MIN.	TYP.	MAX.	UNIT
	VIH1	Other than below			0.7VDD		Vdd	V
Input voltage high	VIH2	Ports 0 & 1, TI0 &	1, RESE	Г	0.8VDD		Vdd	V
input voltago ingli	Vінз	Ports 12 to 14			0.7Vdd		12	V
	VIH4	X1, X2			Vdd-0.5		Vdd	v
	VIL1	Other than below			0		0.3VDD	V
Input voltage low	VIL2	Ports 0 & 1, Tl0 &	1, RESE	Ē	0		0.2VDD	V
	Vінз	X1, X2			0		0.4	V
Output voltage high	Vон	V _{DD} = 4.5 to 6.0 V,	Іон = –	1 mA	Vdd-1.0			v
output voltage high	• on	Iон = -100 <i>µ</i> А			Vdd-0.5			V
		Vdd =	Ports (0, 2, to 9, lo _L = 15 mA		0.35	2.0	V
Output voltage low	Vol	4.5 to 6.0 V	Ports '	12 to 14, IoL = 10 mA		0.35	2.0	V
Output voltage low	VOL	V _{DD} = 4.5 to 6.0 V,	IoL = 1	.6 mA			0.4	V
			Iol = 4	00 µA			0.5	V
Input leakage -	Ілні	VIN = VDD	Other	than below			3	μA
current high	LIH2		X1, X2				20	μA
	Іінз	V _{IN} = 12 V	Ports 12 to 14				20	μA
Input leakage			Except	t X1 & X2			-3	μA
current low		$V_{IN} = 0 V$	X1, X2				-20	μA
Output leakage	ILOH1	Vout = Vdd	Other	than below			3	μA
current high	ILOH2	Vout = 12 V	Ports '	12 to 14			20	μA
Output leakage current low	Ilol	Vout = 0 V					-3	μΑ
	1		VDD =	5 V ± 10 % * 2		4	10	mA
Device events	IDD1	4.19 MHz Crystal oscillation	VDD = 3	3 V ± 10 % * 3		1	2.5	mA
Power supply		C1 = C2 = 22 pF	HALT	$V_{\text{DD}} = 5 \text{ V} \pm 10 \text{ \%}$		600	1800	μA
current *1	IDD2		mode	$V_{\text{DD}} = 3 \text{ V} \pm 10 \text{ \%}$		200	600	μA
	DD3	STOP mode, V_{DD} = 3 V ± 10 %				0.1	10	μΑ

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

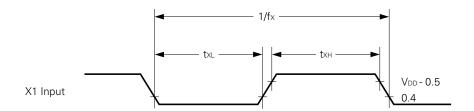

- * 1. Not including current flowing in comparator.
 - 2. When processor clock control register (PCC) is set to 0011 and CPU is operating in high-speed mode.
 - **3**. When PCC is set to 0000 and CPU is operating in low-speed mode.

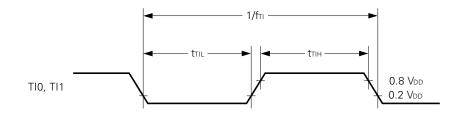
★

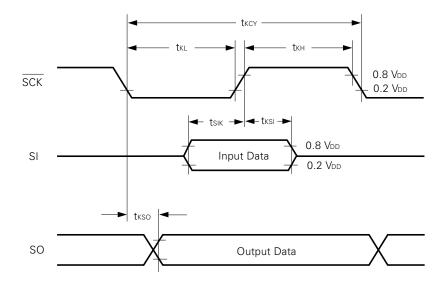
AC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = 2.7 to 6.0 V)

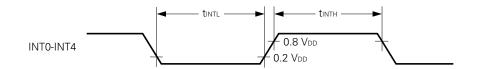
PARAMETER	SYMBOL	TEST CONDI	TIONS	MIN.	TYP.	MAX.	UNIT
CPU clock cycle time* (minimum instruction execution time = 1 ma-	tcy	V _{DD} = 4.5 to 6.0 V		0.95		32	μs
chine cycle)				3.8		32	μs
TI0, TI1 input frequency	fтı	V _{DD} = 4.5 to 6.0 V		0		1	MHz
no, ni input nequency	111			0		275	kHz
TI0, TI1 input high/low-	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
level width	t⊤ı∟			1.8			μs
		V _{DD} = 4.5 to 6.0 V	Input	0.8			μs
SCK cycle time	tĸcy	VDD - 4.3 to 0.0 V	Output	0.95			μs
	Like I		Input	3.2			μs
			Output	3.8			μs
		V _{DD} = 4.5 to 6.0 V	Input	0.4			μs
SCK high/low-level width	tкн,	V DD = 4.3 to 0.0 V	Output	tксу/2–50			ns
SCK mgn/low-level width	tĸ∟		Input	1.6			μs
			Output	tксу/2–150			ns
SI setup time (to \overline{SCK})	tsıк			100			ns
SI hold time (from SCK [↑])	tĸsi			400			ns
SO output delay time	tĸso	VDD = 4.5 to 6.0 V				300	ns
from SCK ↓	LKSU					1000	ns
INT0 to INT4 high/low- level width	tinth, tintl			5			μs
RESET low level width	tRSL			5			μs

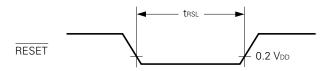
* The cycle time of the CPU clock (Φ) is determined by the oscillator frequency of the connected resonator and the processor clock control register (PCC). The graph on the right shows cycle time tcy characteristics against supply voltage V_{DD} when system clock is operated.




AC Timing Test Point (Excluding ports 0 & 1, TI0, TI1, X1, X2, RESET)


Clock Timing

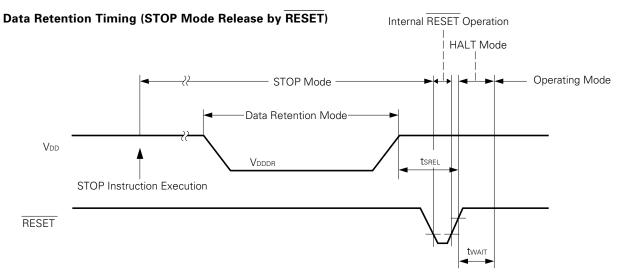

TIO, TI1 Input Timing


Serial Transfer Timing

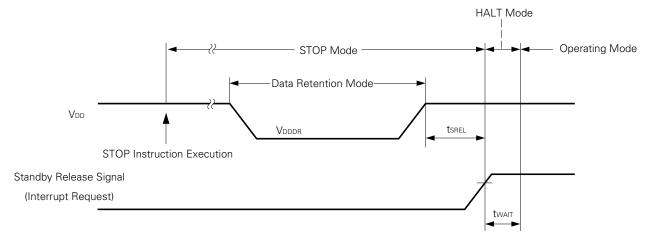
Interrupt Input Timing

RESET Input Timing

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = -40 to


+85 °C)

NEC


PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention supply voltage	Vdddr		2.0		6.0	V
Data retention power supply current *1	Idddr	$V_{DDDR} = 2.0 V$		0.1	10	μA
Release signal set time	t srel		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /f×		ms
		Release by interrupt request		*3		ms

- **1.** Does not include current flowing in the comparator.
 - **2.** The oscillator stabilization wait time is the time during which CPU operation is halted to prevent unstable operation when oscillation begins.
 - 3. Depends on the setting of the basic interval timer mode register (BTM) (table below).

BTM3	BTM2	BTM1	BTM0	WAIT Time (Figure in Parentheses is for fxx = 4.19 MHz)
-	0	0	0	2 ²⁰ /fxx (Approx. 250 ms)
-	0	1	1	2 ¹⁷ /fxx (Approx. 31.3 ms)
-	1	0	1	2 ¹⁵ /fxx (Approx. 7.82 ms)
-	1	1	1	2 ¹³ /fxx (Approx. 1.95 ms)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage high		Except X1 & X2	0.7V _{DD}		Vdd	V
input voltage nigh	VIH2	X1, X2	VDD-0.5		Vdd	V
Input voltage low	VIL1	Except X1 & X2	0		0.3VDD	V
Input voltage low	VIL2	X1, X2	0		0.4	V
Input leakage current	Iц	VIN = VIL or VIH			10	μA
Output voltage high	Vон	Іон = -1 mA	VDD-1.0			V
Output voltage low	Vol	IoL = 1.6 mA			0.4	V
VDD supply current	loo				30	mA
VPP supply current	Ірр	MD0 = VIL, MD1 = VIH			30	mA

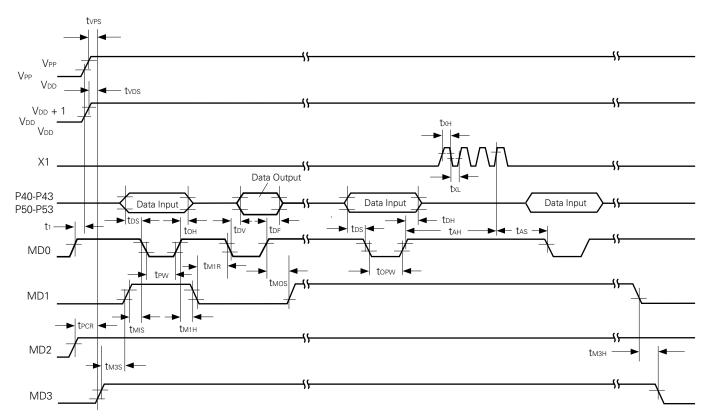
DC PROGRAMMING CHARACTERISTICS (Ta = 25 °C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{ss} = 0 V)

Note 1. Ensure that V_{PP} does not reach +13.5 V or above including overshot.

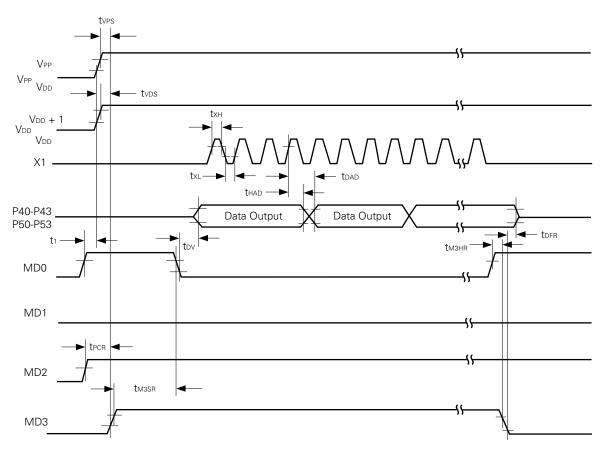
2. Ensure that V_{DD} is applied before V_{PP} and cut off after V_{PP} .

AC PROGRAMMING CHARACTERISTICS (Ta = 25 °C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{ss} = 0 V)

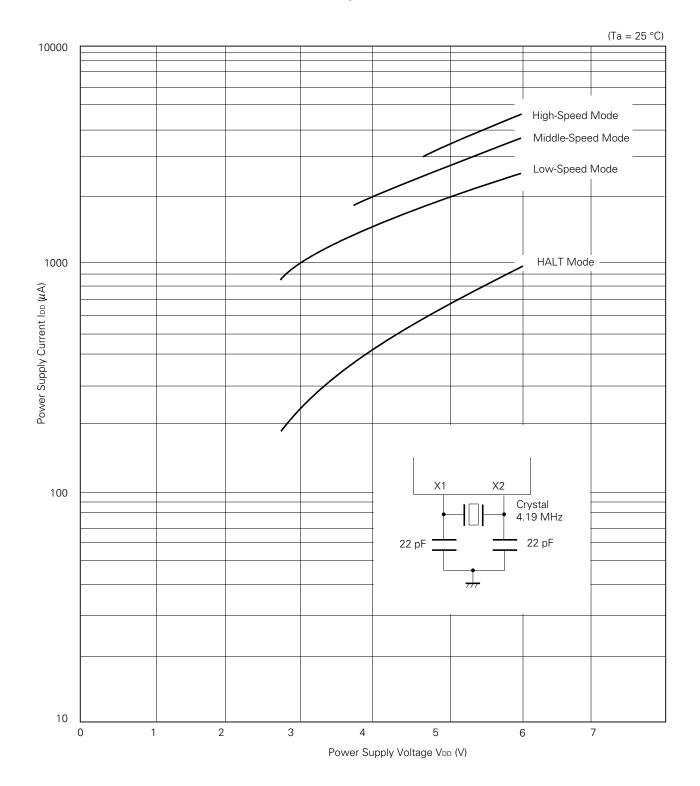
PARAMETER	SYMBOL	*1	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address setup time *2 (to MD0↓)	tas	tas		2			μs
MD1 setup time (to MD0↓)	tмıs	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time *2 (from MD0↑)	tан	tан		2			μs
Data hold time (from MD0↑)	tdн	tdн		2			μs
Data output float delay time from MD0↑	tdf	tdf		0		130	ns
V₽₽ setup time (to MD3↑)	tvps	tvps		2			μs
V₀₀ setup time (to MD3↑)	tvds	tvcs		2			μs
Initial program pulse width	tpw	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 [↑])	tмos	tces		2			μs
Data output delay time from MD0 \downarrow	tov	tdv	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0 [↑])	tм1н	tоен		2			μs
MD1 recovery time (from MD0 \downarrow)	tm1R	tor	tm1H + tm1R ≥ 50 μs	2			μs
Program counter reset time	t PCR	_		10			μs
X1 input high-/low-level width	tхн, tх∟			0.125			μs
X1 input frequency	fx					4.19	MHz
Initial mode setting time	tı	_		2			μs
MD3 setup time (to MD1↑)	tмзs			2			μs
MD3 hold time (from MD1↓)	tмзн			2			μs
MD3 setup time (to MD0↓)	tмзsr	_	In program memory read	2			μs
Address *2 data output delay time	tdad	tacc	In program memory read			2	μs
Address *2 data output hold time	t had	tон	In program memory read	0		130	ns
MD3 hold time (from MD0 [↑])	tмзнк	_	In program memory read	2			μs
Data output float delay time from MD3 \downarrow	t dfr		In program memory read			2	μs

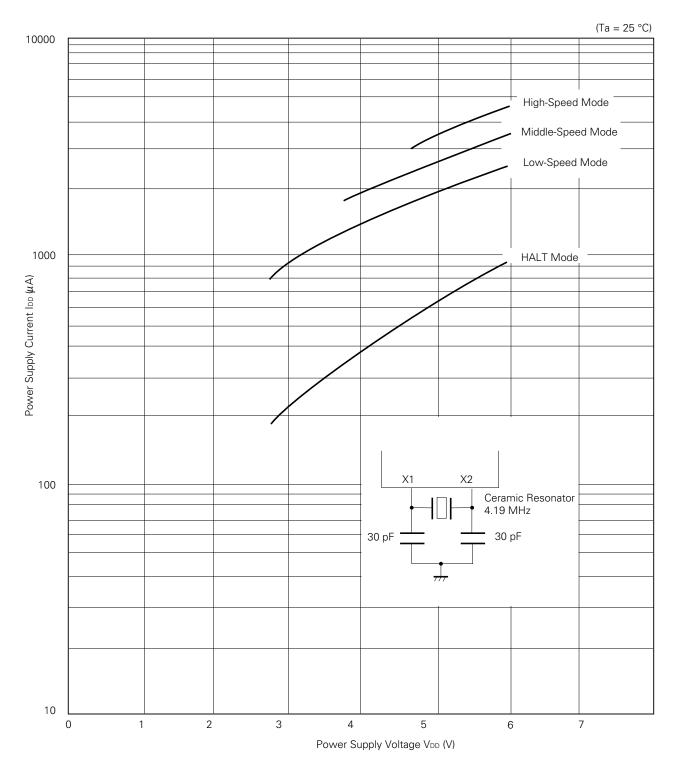

*** * 1**. Corresponding to μ PD27C256A symbol.

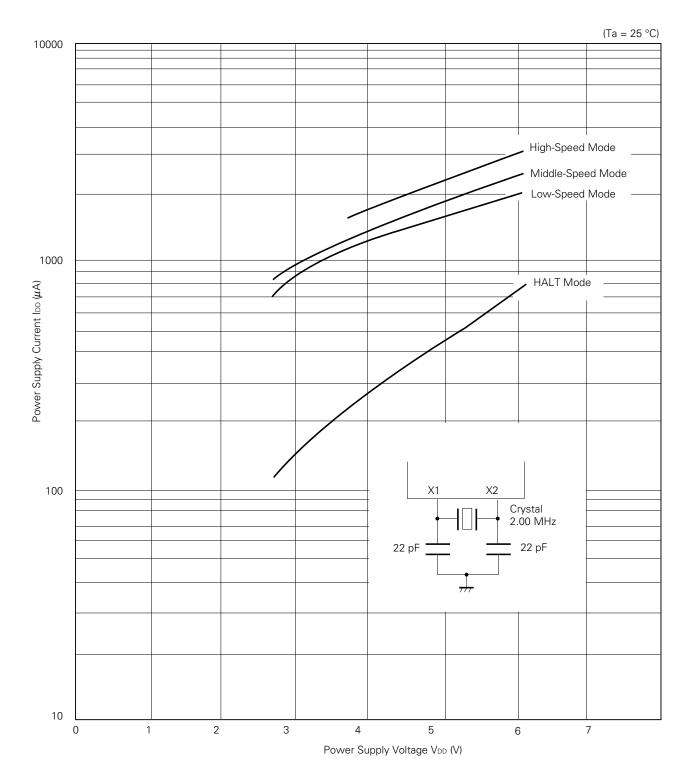
2. Internal address signal is incremented by 1 on rise of 4th X1 input, and is not connected to a pin.


 \star

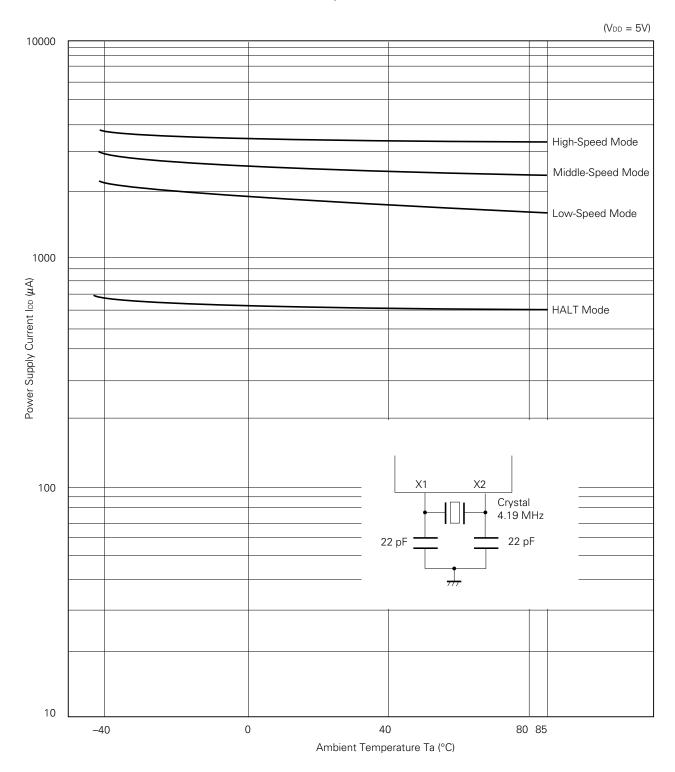
 \star

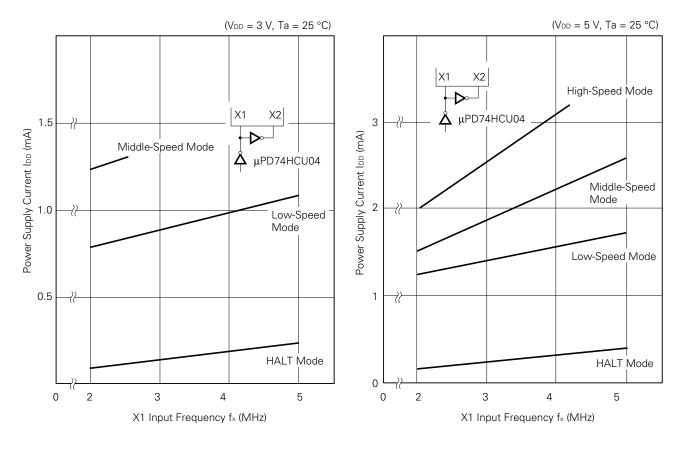

Program Memory Write Timing

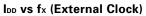

Program Memory Read Timing

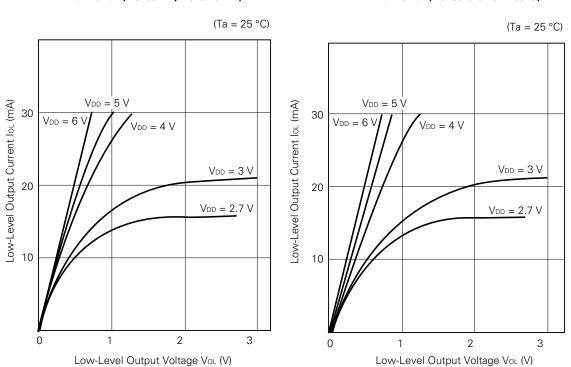

6. CHARACTERISTIC CURVE (REFERENCE VALUE)

IDD vs VDD (Crystal Oscillation)

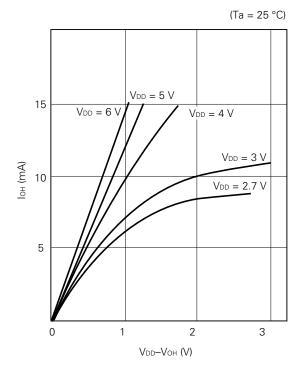



IDD vs VDD (Ceramic Oscillation)


IDD vs VDD (Crystal Oscillation)


IDD vs Ta (Crystal Oscillation)

IDD vs fx (External Clock)



Vol vs lol (Ports 12, 13 and 14)

 $V_{DD} - V_{OH} vs I_{OH}$

35

★ 7. RECOMMENDED SOLDERING CONDITIONS

The μPD75P108B should be mounted under the conditions recommended in the table below. For details of recommended soldering conditions for the surface mounting type, refer to the information document "Surface Mount Technology Manual" (IEI-1207)

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 7-1 Surface Mount Type Soldering Conditions

$\mu\text{PD75P108BGF-3BE}$: 64-pin plastic QFP (14 \times 20 mm, 1.0 mm pitch)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Once Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	IR30-162-1
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: 0nce Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	VP15-162-1
Wave soldering	Solder bath temperature: 260°C max., Duration: 10 sec. max Number of times: Once Preheating temperature: 120°C max. (package surface temperature), Time limit: 2days* (thereafter 16 hours prebaking required at 125°C)	WS60-162-1
Pin part heating	Pin part temperature: 300°C max., Duration 3 sec. max. (per device lead)	Pin part heating

* For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% 1H.

Note Use of more than one soldering method should be avoided (except in the case of pin part heating).

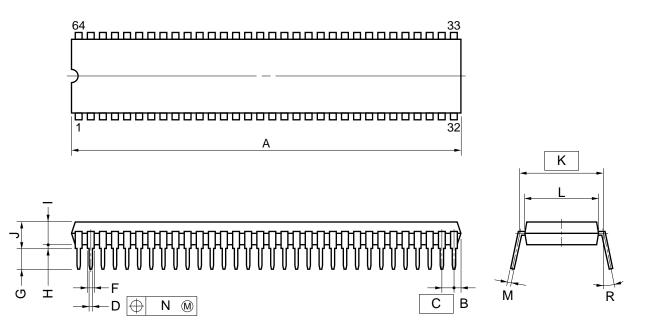
Table 7-2 Insertion Type Soldering Conditions

μ PD75P108BCW : 64-pin plastic shrink DIP (750 mil) μ PD75P108BDW : 64-pin ceramic shrink DIP (with window)

Soldering Method	Soldering Conditions
Wave Soldering (lead part only)	Solder bath temperature: 260°C max., Duration: 10sec. max.
Pin part heating	Pin part temperature: 260°C max., Duration: 10sec. max.

Note Ensure that the application of (wave soldering) is limited to the lead part and no solder touches the main unit directly.

- For Your Information -


Products to improve the recommended soldering conditions are available.

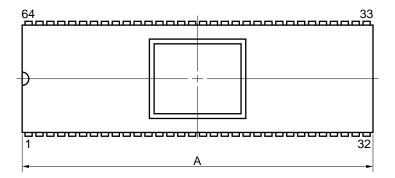
(Improvements: Extension of the infrared reflow peak temperature to 235°C, doubled frequency, increased life, etc.)

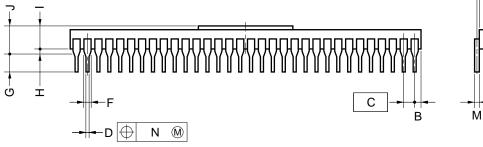
For further details, consult our sales personnel.

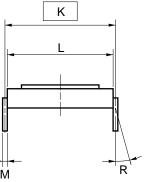
8. PACKAGE INFORMATION

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

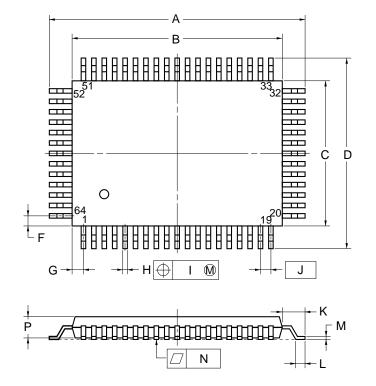

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

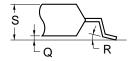

0

P64C-70-750A,C-1

64 PIN CERAMIC SHRINK DIP (SEAM WELD) (750 mil)


NOTES

- 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.310 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.46±0.05	0.018±0.002
F	0.8 MIN.	0.031 MIN.
G	3.5±0.3	0.138±0.012
Н	1.0 MIN.	0.039 MIN.
I	2.62	0.103
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	18.8	0.740
М	0.25±0.05	$0.010^{+0.002}_{-0.003}$
N	0.25	0.01
R	0~15°	0~15°
		D64D-70-750A-1

P64D-70-750A-1

64 PIN PLASTIC QFP (14×20)

detail of lead end

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
	WILLIWEIERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.008}_{-0.009}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
н	0.40±0.10	$0.016^{+0.004}_{-0.005}$
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P)
к	1.8±0.2	$0.071\substack{+0.008\\-0.009}$
L	0.8±0.2	$0.031\substack{+0.009\\-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
	P64GF-10	0-3B8,3BE,3BR-2

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD75P108B.

	IE-75000-R * 1 IE-75001-R		In-circuit emulator for 75X series	
	IE-75000-R-EM *2		Emulation board for IE-75000-R and IE-75001-R	
	EP-75108CW-R		Emulation probe for μ PD75P108BCW	
Hardware	EP-75108GF-R		Emulation probe for µPD75P108BGF	
Hard		EV-9200G-64	A 64-pin conversion socket EV-9200G-64 is provided.	
	PG-1500		PROM programmar	
	PA-75P108CW		This is a PROM programmar adopter for μ PD75P108BCW and connects to PG-1500.	
	PA-75P116GF		This is a PROM programmar adopter for μ PD75P108BGF and connects to PG-1500.	
e	IE control program		Host machine	
oftware	PG-1500 controller		PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A *3)	
So	RA75X relocatable assembler		PC/AT™ series (PC-DOS™ Ver.3.10)	

* 1 Maintenance product

- 2 This is not incorporated in the IE-75001-R.
- **3** A task swap function is not provided with Ver.5.00/5.00A; however, a task swap function cannot be used with this software.

APPENDIX B. RELATED DOCUMENTATIONS

List of Device-Related Documentations

	Document No.	
User's Manual		IEM-922
Instruction Using Table		IEM-902
Application Note	(I) Introductory Volume	IEM-980
	(II) Remote-Controlled Reception Volume	IEM-5003
	(III) Bar-Code Reade-Volume	IEM-5065
	(IV) IC Control for MSK Transmission/Reception Volume	IEA-694
75X Series Selection Guide		IF-151

List of Development Tool Related Documentations

	Document Name	Document No.	
	IE-75000-R/IE-75001-R User's Manual	EEU-846	
are	IE-75000-R-EM User's Manual		EEU-673
rdwa	EP-75108CW-R User's Manual		EEU-696
На	EP-75108GF-R User's Manual		EEU-695
	PG-1500 User's Manual		EEU-651
e		EEU-731	
Software	RA75X Assembler Package User's Manual	EEU-730	
So	PG-1500 Controller User's Manual		EEU-704

Other Documentations

Document Name	Document No.
Package Manual	IEI-635
Surface Mount Technology Manual	IEI-1207
Quality Grade on NEC Semiconductor Devices	IEI-1209
NEC Semiconductor Device Reliability Quality Control	IEM-5068
Static Discharge (ESD) Test	MEM-539
Semiconductor Device Quality Guarantee Guide	MEI-603
Microcomputer Related Product Guide Other Manufacturer Volume	MEI-604

Note The above related documentations may be changed without notice. Be sure to use the latest documentations for designations.

[MEMO]

APPENDIX C. FONCTIONAL DIFFERENCES AMONG μ PD751×× SERIES

lter	Product Name	μPD75104/106/108/112/116	μPD75104A/108A	μPD75108F/112F/116F	
BO	M (byte)	4K/6K/8K/12K/16K	4K/8K	8K/12K/16K	
	W (Dyte)	(Mask ROM)	(Mask ROM)	(Mask ROM)	
RA	M (× 4 bits)	320/320/512/512/512	320/512	512	
Instruction set		75X High-End			
	Total		58		
	CMOS input	10	10 (Pull resistor mask option : 4)	10	
÷-	CMOS input/output	32 (LED can be driver	32 (Pull-up resistor mask option	32 (LED can be driver	
Port		directly)	: 24, LED can be driverndirectly)	directly)	
1/0	N-ch open-drain output	12 (LED can be driven directly)			
	Withstand Voltage	+12 V		+10 V	
	Pull-up resistor	Can be incorporated by mask optic		on	
	Analog input	4 (4-bit accuracy)			
Ρον	wer-on reset circuit	Incorporated (mask option)		No	
Ρον	ver-on flag				
Op	erating voltage	2.7 to 6.0 V		2.7 to 5.0 V (Ta = -40 to +50°C) 2.8 to 5.0 V	
Op ran	erating temperature g	−40 to 85C°		−40 to +60 °C	
	nimum instruction ution time		0.95 μ s (Operation at 4.5 to 6.0 V) 3.8 μ s (Operation at 2.7 V)		
Pac	kage * 3	• 64-pin plastic shrink DIP • 64-pin plastic QFP (GF-3BE)	 64-pin plastic QFP (GC-AB8) 64-pin plastic QFP (G-22) : μPD75108A only 	• 64-pin plastic QFP (GF-3BE)	

- * 1. Under development
 - 2. Can be used as 75X High-End by 16K-byte mode/24K-byte mode switching function
 - 3. There are four kinds of plastic QFP.

•GC-AB8......14 \times 14 \times 2.55 mm, 0.8 mm pitch

•GF-3BE14 \times 20 \times 2.7 mm, 1.0 mm pitch

-G-2214 \times 14 \times 1.5 mm, 0.8 mm pitch

•GK-8A8 12 \times 12 \times 1.4 mm, 0.65 mm pitch

μPD75116H/117H	μ PD75P108B	μPD75P116	μ PD75P117H
16K/24K	8K	8K	24K
(Mask ROM)	(One-time PROM, EPROM)	(One-time PROM)	(One-time PROM)
768	5	12	768
75X High-End/expanded High-End	75X Hi	gh-End	75X expanded High-End *2
	Ę	68	1
	1	0	
32 (LED can be driver directly : 8)	32 (LED can be	driver directly)	32 (LED can be driver directly : 8)
12	12 (LED can be driver directly)		12
+6 V	+12 V		+6 V
Can be incorporated by mask option	No		
	4 (4-bit a	ccuracy)	
No	No		
1.8 to 5.0 V	2.7 to 6.0 V	5 V ±10%	1.8 to 5.0 V
–40 to +60 °C	–40 to +85 °C		–40 to +60 °C
0.95 μ s (Operation at 2.7 V) 1.91 μ s (Operation at 1.8 V)	0.95 μs (Operation at 4.5 to 6.0 V) 3.8 μs (Operation at 2.7 V)	0.95 μ s (Operation at 4.75 to 5.5 V)	0.95 μ s (Operation at 2.7 V) 1.91 μ s (Operation at 1.8 V)
 64-pin plastic QFP (GC-AB8) 64-pin plastic QFP (GK-8A8) 	 64-pin plastic shrink DIP 64-pin ceramic shrink DIP (with window) 64-pin plastic QFP (GF-3BE) 	• 64-pin plastic shrink DIP • 64-pin plastic QFP (GF-3BE)	 64-pin plastic QFP (GC-AB8) 64-pin plastic QFP (GK-8A8) *1

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

```
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
```

Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

QTOP is a trademark of NEC Corporation. MS-DOS is a trademark of MicroSoft Corporation. PC/AT, PC DOS is a trademark of IBM Corporation. M4 92.6