Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 STANDARD CLOCK GENERATOR #### DESCRIPTION M66236 is produced using the silicon gate CMOS process. It is able to output clock input signal in sync with optional external trigger input signal. It features excellent synchronizing precision (jitter) over a wide frequency band range. #### **FEATURES** - 5V single power supply (5V ±5%) - Frequency band: 12 ~ 25MHz - · Synchronizing precision (jitter): ±5ns - · Output types - Output of the same frequency as input clock, and its inversion - (2) 1/2 divider clock output and its inversion - (3) One-shot pulse output - (4) Continuous clock output - Noise in the positive direction to trigger input is removed by built-in noise killer circuit #### **APPLICATION** Clock phase control for horizontal synchronization 1 #### STANDARD CLOCK GENERATOR #### **FUNCTION** M66236 standard clock generator outputs clock input signal, which is input to CLK IN, synchronously with optional trigger signal, which is input to TR. Sync clock output timing is determined by trigger input signal fall edge. Time-lag between trigger input signal fall edge and sync clock output equals the sum of clock input signal "L" pulse width and M66236 internal delay. Variation in this lag (Δt) is ± 5 ns, ensuring excellent synchronizing accuracy. There are six types of outputs: synchronous clock output (CKO), synchronous clock inverted output (CKO), 1/2 divider synchronous clock output (CKO/2), 1/2 divider synchronous clock inverted output (CKO/2), one-shot pulse output (PULSE) and continuous clock output (CNTCK). From synchronous clock output (CKO), sync clock of the same frequency as clock input signal is output. From synchronous clock inverted output (CKO), inverted signal of sync clock output from CKO is output. From 1/2 divider synchronous clock output (CKO/2), 1/2 divider signal of sync clock output from CKO is output. From 1/2 divider synchronous clock inverted output (CKO/2), inverted signal of that output from CKO/2 is output. From one-shot pulse output (PULSE), one-shot pulse which is almost equal to two cycles of clock input signal is output after trigger input signal falls. From continuous clock output (CNTCK), sync clock is output when trigger input signal is on "L" level; when trigger input signal is on "H" level, clock input signal, which is input to CLK IN, is output. All these outputs but continuous clock output are suspended when trigger input signal is on "H" level: Synchronous clock output, 1/2 divider synchronous clock output and one-shot pulse output stay on "L" level, and synchronous clock inverted output and 1/2 divider synchronous clock inverted output stay on "H" level. Note 1:tss (CKO, CKO/2, CKO/2, CKO/2 and PULSE) equals the sum of input clock "L" width and α. Value α refers to internal delay in M66236. Under environment where temperature and Vcc do not change, value α and tss are kept constant. Dispersion of tss under such conditions is defined as Δt [synchronizing precision (jitter)]. Note 2: Outputs (CKO, CKO, CKO/2, CKO/2 PULSE and CNTCK) are unknown until trigger input TR reaches "H" level for the first time after power-on. # STANDARD CLOCK GENERATOR #### After Power-on Procedure After power-on, M66236 status is unknown till the trigger input being set to the "H" level. To get a accurate sync clock output, please keep a following procedure. Please hold the trigger input "H" level during more than tw(TR) after the input clock frequency being stable. Also, in case of changing the clock input frequency(fin), please keep the same procedure. # M66236FP # STANDARD CLOCK GENERATOR #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Conditions | Ratings | Unit | |--------|---------------------|--------------|------------------|------| | Vcc | Supply voltage | | −0.5 ~ +7.0 | V | | VI | Input voltage | | -0.5 ~ Vcc + 0.5 | V | | Vo | Output voltage | | -0.5 ~ Vcc + 0.5 | V | | Pd | Power dissipation | When mounted | 600 | mW | | Tstg | Storage temperature | | −65 ~ 150 | °C | # RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C unless otherwise noted) | Symbol | Parameter | | Limits | | | | |--------|-----------------------|------|--------|------|------|--| | Symbol | Parameter | Min | Тур | Max | Unit | | | Vcc | Supply voltage | 4.75 | 5 | 5.25 | V | | | GND | Supply voltage | | 0 | | V | | | Vi | Input voltage | 0 | | Vcc | V | | | Vo | Output voltage | 0 | | Vcc | V | | | Topr | Operating temperature | 0 | | 70 | °C | | # ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V ±5%, GND = 0V) | Symbol | Parameter | T-11-1-11-11-1 | Limits | | | | |---------|-------------------------|--|-----------|-----|-----------|------| | | | Test conditions | Min | Тур | Max | Unit | | ViH | "H" input voltage | TD | 2 | | | V | | VIL | "L" input voltage | TR | | | 0.8 | V | | ViH | "H" input voltage | CLK IN | 0.8 × Vcc | | | V | | VIL | "L" input voltage | OLK IN | | | 0.2 × Vcc | V | | Vон | "H" output voltage | GND = 0 V , $10\text{H} = -4\text{mA}$ | Vcc-0.8 | | | V | | Vol | "L" output voltage | GND = 0V, IOL = 4mA | | | 0.55 | V | | lcc (s) | Supply current (static) | GND = 0V, | | | 50 | μА | | | | VI = VCC or GND | | | | | | lcc(a) | Supply current (active) | GND = 0V, $fin = 25MHz$, | | | 65 | mΑ | | | | VI = VCC or GND | | | | | | JiH. | "H" input current | GND = 0V, VI = Vcc | | | +1 | μА | | liL | "L" input current | GND = 0V, VI = 0V | | | -1 | μΑ | | CI | Input capacitance | | | | 10 | рF | #### TIMING REQUIREMENTS (Ta = 0 ~ 70°C, Vcc = 5V ±5%, GND = 0V) | Symbol | Parameter | Total conditions | Limits | | | 01222 | |---------|-------------------------------|------------------|--------|-----|-----|-------| | | | Test conditions | Min | Тур | Max | Unit | | fin | Clock input frequency | | 12 | | 25 | MHz | | fDUTY . | Clock input duty | | 40 | | 60 | % | | tw(TF) | Trigger input "H" pulse width | | 400 | | | ns | | tr | Clock input rise time | | | | 8 | ns | | tf | Clock input fall time | | | | 8 | ns | 4 # M66236FP #### STANDARD CLOCK GENERATOR #### SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V ±5%, GND = 0V) | Symbol | Parameter | Test conditions | | 1.1002900 | | | |--------------------------|---|-----------------|--------------|-----------|----------|------| | | | | Min | Тур | Max | Unit | | Δt | Synchronizing precision (jitter) | CL=15pF | | | ±5 | ns | | tss(CKO) | Sync clock output start time | | | | # EO | ns | | tss(CKO) | Sync clock inverted output start time | | | | tLp + 50 | ns | | tss(CKO/2) | 1/2 divider sync clock output start time | | | | tLp + 50 | ns | | tss(CKO/2) | 1/2 divider sync clock inverted output start time | | | | | ns | | tss(PULSE) | One-shot pulse output start time | | | | tLp + 50 | ns | | tss(CNTCK) | Continuous clock output start time | | | | tLp + 50 | ns | | tsp(CKO) | Sync clock output stop time | | | | 40 | ns | | tsp(CKO) | Sync clock inverted output stop time | | | 40 | 40 | ns | | tsp(CKO/2) | 1/2 divider sync clock output stop time | | | | 40 | ns | | tsp(CKO/2) | 1/2 divider sync clock inverted output stop time | | | | 40 | ns | | tw(PULSE) | One-shot pulse output width | | 2tp - 10 | | 2tp + 10 | ns | | tcH | Sync clock-Input clock switching time | | The state of | | 40 | ns | | toL | Input clock-Sync clock switching time | | | | 30 | ns | | fODUTY(CKO) | Sync clock output duty | | 00 | | 70 | % | | fODUTY(CKO) | Sync clock inverted output duty | | 30 | | | % | • tp = 1/fIN, $tLp = tp \times (100 - fDUTY)/100$ · Switching test waveform Input pulse level CLK IN: 0 to Vcc TR: 0 to 3V Input pulse rise time: 3ns Input pulse fall time: 3ns Criterial voltage Input voltage CLK IN: Vcc/2 TR: 1.3V Output voltage: Vcc/2 for all outputs Capacitance: CL includes stray wiring capacitance and probe input capacitance. # **TEST CIRCUIT** ### **TIMING DIAGRAM**