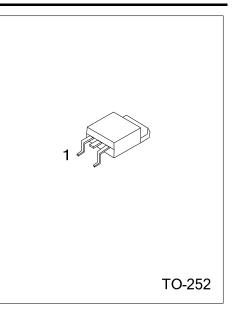


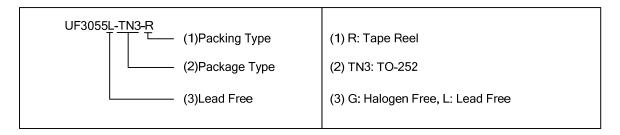
UTC UNISONIC TECHNOLOGIES CO., LTD


UF3055 **Preliminary Power MOSFET**


N-CHANNEL ENHANCEMENT MODE POWER MOSFET

DESCRIPTION

As an N-channel enhancement mode power MOSFET, the UTC UF3055 is designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.


- **FEATURES**
- * $R_{DS(ON)}$ <110 m Ω @ V_{GS} =10V
- **SYMBOL**

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free Plating	Halogen Free	Package	1	2	3	Packing	
UF3055L-TN3-R	UF3055G-TN3-R	TO-252	G	D	S	Tape Reel	

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_C =25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain Source Voltage		$V_{ extsf{DSS}}$	60	V
Drain Gate Voltage ($R_{GS} = 10M\Omega$)		V_{DGR}	60	V
Gate Source Voltage	Continuous	\/	±20	V
	Non-Repetitive (t _P ≤10 ms)	V_{GSS}	±30	V
Continuous Drain Current (T _a = 25°C)		I_{D}	3.0	Α
Pulsed Drain Current (t _P ≤10 μs)		I_{DM}	9.0	Α
Single Pulsed Avalanche Energy (Note 2)		Eas	74	mJ
Power Dissipation (T _a = 25°C)		P_{D}	2	W
Junction Temperature		T_J	175	°C
Strong Temperature		T _{STG}	-55 ~ + 175	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. T_J = 25°C , V_{DD} = 25V, V_{GS} = 10V, I_L = 7.0A, L = 3.0mH, V_{DS} = 60V

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note)	θja	62.5	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain Source Breakdown Voltage (Note 1)	BV _{DSS}	V_{GS} = 0V, I_D =250 μ A	60	68		V
Temperature Coefficient (Positive)	DVDSS			66		mV/°C
Drain-Source Leakage Current	I _{DSS}	V _{GS} =0V, V _{DS} =60V			1.0	μΑ
Gate-Source Leakage Current	I _{GSS}	V_{GS} = ±20 V, V_{DS} =0V			±100	nA
ON CHARACTERISTICS (Note 1)						
Gate Threshold Voltage	.,	$V_{GS}=V_{DS}$, $I_D=250\mu A$	2.0	3.0	4.0	V
Temperature Coefficient (Negative)	$V_{GS(TH)}$			6.6		mV/°C
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10 V, I _D =1.5A		88	110	mΩ
Static Drain-to-Source On-Resistance	V _{DS(ON)}	V_{GS} =10 V, I_D =3A		0.27	0.40	V
Forward Tran conductance	g FS	V_{DS} =8.0V, I_{D} =1.7A		3.2		M
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			324	455	pF
Output Capacitance	Coss	V _{GS} =0 V, V _{DS} =25 V, f=1.0MHz		35	50	pF
Reverse Transfer Capacitance	C _{RSS}	<u>] </u>		110	155	pF
SWITCHING PARAMETERS (Note 2)						
Turn-ON Delay Time	t _{D(ON)}			9.4	20	ns
Turn-ON Rise Time	t _R	V_{GS} =10V, V_{DD} =30V, I_D =3.0A ,		14	30	ns
Turn-OFF Delay Time	t _{D(OFF)}	R _G =9.1Ω (Note 1)		21	45	ns
Turn-OFF Fall-Time	t _F			13	30	ns
Total Gate Charge	Q_G	V _{GS} =10V, V _{DS} =48V, I _D =3.0A		10.6	22	nC
Gate-Source Charge	Qgs	(Note 1)		1.9		nC
Gate-Drain Charge	Qgd	(Note 1)		4.2		nC
DRAIN-SOURCE DIODE CHARACTERIS	TICS AND	MAXIMUM RATINGS				
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =3.0A		0.89	1.0	V
	t _{RR}			30		ns
Body Diode Reverse Recovery Time	t _A	V _{GS} =0V, I _S =3.0A,		22		ns
	t _B	dl/dt=100 A/µs (Note 1)		8.6		ns
Body Diode Reverse Recovery Charge	Q_{RR}			0.04		nC

Notes: 1. Pulse Test: Pulse Width ≤300 s, Duty Cycle ≤2.0%.

2. Switching characteristics are independent of operating junction temperatures.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

