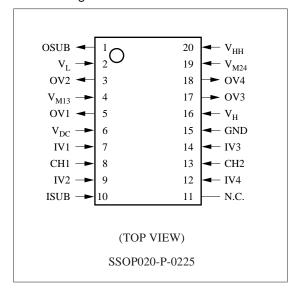
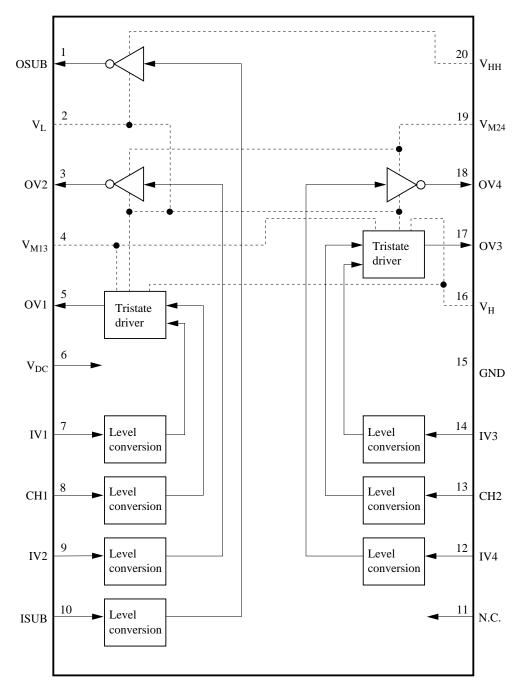
MN3112SA

Vertical Driver for Video-Camera CCD Area-Image-Sensor

Overview


The MN3112SA is a vertical driver LSI incorporating four vertical driver channels and one sub driver channel for a 2-dimensional interline CCD image sensor.

The MN3112SA enables low current dissipation and the part reductions.


Features

- 3V power supply for input section
- Applications
- Video cameras

■ Pin Assignment

■ Block Diagram

 \boldsymbol{V}_{DC} , \boldsymbol{V}_{L} , GND : Common power supply

 V_{M13}, V_{M24} : Binary and tristate independent power supplies for vertical driver section V_{HH}, V_{H} : Independent power supplies for sub driver section and vertical driver section

■ Pin Descriptions

Pin No.	Symbol	Pin Name	I/O	Function Description
6	V_{DC}	Input section high-level	I	5V high-level input
		power supply	1	3 v mgn-ievei mput
15	GND	Input section low-level	I	5V low-level input
		power supply	1	3 v 10w-level input
16	V_{H}	Vertical driver section	I	High-level input at high-voltage section
		high-level power supply	1	Trigit-level input at high-voltage section
20	V_{HH}	SUB driver section	I	High-level input at high-voltage section
		high-level power supply	1	Tright-level input at high-voltage section
4	V_{M13}	Middle-level power supply	I	Middle-level input at high-voltage section
19	V_{M24}	Middle-level power suppry	1	Input externally to both V_{M13} and V_{M24} .
2	V_L	Low-level power supply	I	Low-level input at high-voltage section
9	IV2	Transfer pulse input	I	Charge transfer pulse input pin
12	IV4	Transfer pulse input	I	Charge transfer pulse input pin
7	IV1	Transfer pulse input	I	Charge transfer pulse input pin
14	IV3	Transfer pulse input	I	Charge transfer pulse input pin
8	CH1	Charge pulse input	I	Charge read pulse input pin
13	CH1	Charge pulse input	I	Charge read pulse input pin
10	ISUB	SUB pulse input	I	Unwanted charge sourcing pulse input pin
18	OV4	Binary transfer pulse	О	Binary transfer pulse output pin
		output		(V_{M24}, V_L)
3	OV2	Binary transfer pulse	0	Binary transfer pulse output pin
		output		(V_{M24}, V_L)
17	OV3	Tristate transfer pulse	0	Tristate transfer pulse output pin
		output		(V_H, V_{M13}, V_L)
5	OV1	Tristate transfer pulse	О	Tristate transfer pulse output pin
		output		(V_H, V_{M13}, V_L)
1	OSUB	SUB pulse output	О	Unwanted charge sourcing pulse output pin
				(V_{HH}, V_L)
11	N.C.	No connection	_	

3

Functions

Binary transfer pulse (vertical driver section)

IV2	OV2		
IV4	OV4		
Н	L		
L	M		

Tristate transfer pulse (vertical driver section)

CH1	IV1	OV1		
CH2	IV3	OV3		
Н	Н	L		
п	L	M		
Ţ	Н	L		
L	L	Н		

^{*1} IV1, IV2, IV3, IV4, CH1, CH2

 $H: V_{DC}$

L: GND

OV1, OV2, OV3, OV4

 $H: V_H$

M: V_{M13} or V_{M24}

L: V_L

Unwanted charge sourcing pulse (SUB driver section)

ISUB	OSUB
Н	L
L	Н

^{*1} ISUB

H: V_{DC}

L: GND

OSUB

 $H: V_{HH}$

L: V_L

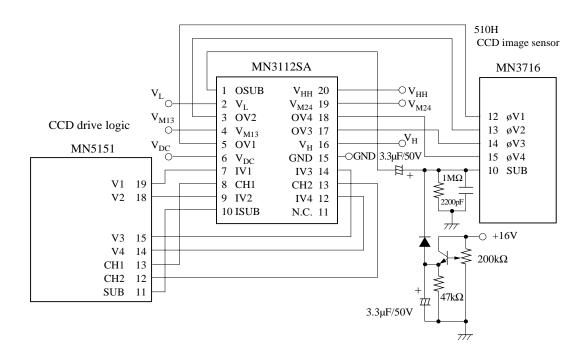
■ Electrical Characteristics

(1) DC characteristics

 $V_{HH}\!\!=\!18.0V \; , \; V_{H}\!\!=\!13.0V \; , \; V_{M13}\!\!=\!\!V_{M24}\!\!=\!1.0V \; , \; V_{L}\!\!=\!-7.0V,$

 $V_{DC}\!\!=\!5.00V$, GND=0.0V , Ta= $-10^{\circ}C$ to $+70^{\circ}C$

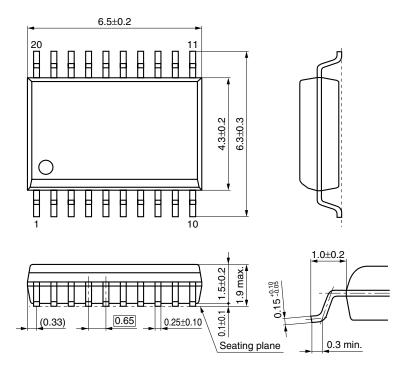
Parameter	Symbol	Test Conditions	min	typ	max	Unit
Quiescent supply current	I_{DDST}	$V_I = GND$, $V_{DC} = 3.0V$			2.5	mA
		V _I =GND, V _{DC} =5.0V			4	
Operating supply current	I_{DDDYN}	V _I =GND , V _{DC}			7	mA
Input pins IV1 , IV2 , IV3	IV4, CH	1, CH2, ISUB				
Voltage "H" level	V_{IH}		$0.7 \times V_{DC}$		V _{DC}	V
Voltage "L" level	V_{IL}		GND		$0.3 \times V_{DC}$	V
Input leakage current	I_{LI}	$V_I=0$ to 5V			±1	μΑ
Output pins 1 (binary output)	OV2	, OV4				
Output voltage middle level	V _{OM1}	$I_{OM1} = -1 \text{mA}$	0.9		V _{M24}	V
Output voltage "L" level	V _{OL1}	I _{OL1} =1mA	V_{L}		_	V
Output on-resistance middle level	R _{ONM1}	I _{OM1} =-50mA			40	Ω
Output on-resistance "L" level	R _{ONL1}	I _{OL1} =50mA			40	Ω
Output pins 2 (tristate output)	OV1	, OV3				
Output voltage "H" level	V _{OH2}	I _{OH2} =-1mA	12.9		V _H	V
Output voltage middle level	V _{OM2}	I _{OM2} =-1mA	0.9		V _{M13}	V
Output voltage "L" level	V_{OL2}	I _{OL2} =1mA	V_{L}		_	V
Output on-resistance "H" level	R _{ONH2}	I _{OH2} =-50mA			50	Ω
Output on-resistance middle level	R _{ONM2}	I _{OM2} =±50mA			40	Ω
Output on-resistance "L" level	R _{ONL2}	I _{OL2} =50mA			40	Ω
Output pin 3 (SUB output)	OSUB					
Output voltage "H" level	V _{OHH3}	I _{OHH3} =-1mA	17.9		V_{HH}	V
Output voltage "L" level	V_{OL3}	I _{OL3} =1mA	V_{L}		_	V
Output on-resistance middle level	R _{ONHH3}	I _{ONHH3} =-50mA			50	Ω
Output on-resistance "L" level	R _{ONL3}	I _{ONL3} =50mA			40	Ω


(2) AC characteristics

 $V_{HH}\!\!=\!18.0V\;,\,V_{H}\!\!=\!13.0V\;,\,V_{M13}\!\!=\!\!V_{M24}\!\!=\!1.0V\;,\,V_{L}\!\!=\!\!-7.0V,$

 $V_{DC}\!\!=\!\!3.0V$, GND=0.0V , Ta=-10°C to +70°C

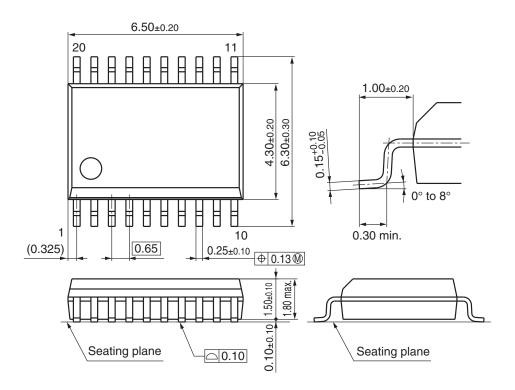
Parameter	Symbol	Test Conditions	min	typ	max	Unit
Output pins 1 (binary output)	OV2	, OV4				
Transmission delay time	t _{PLM}	No load		100	200	
	t _{PML}	"L" level — middle level		100	200	ns
Rise time	t _{TLM}			200	200	20
Fall time	t _{TML}			200	300	ns
Output pins 2 (tristate output	OV1	, OV3				
Transmission delay time	t _{PLM}	No load		100	200	ns
	t _{PML}	"L" level — middle level				
Transmission delay time	t _{TMH}	No load		200	400	
	t _{THM}	middle level — "H" level		200	400	ns
Rise time	t_{TLM}			200	300	
Fall time	t _{TML}			200	300	ns
Rise time	t _{TMH}			200	200	
Fall time	t _{THM}			200	300	ns
Output pin 3 (SUB output)	OSUB					
Transmission delay time	t _{PLHH}	No load		100	200	
	t _{PHHL}	"L" level — "H" level		100	200	ns
Rise time	t _{TLHH}			200	200	
Fall time	t _{THHL}			200	300	ns


■ Application Circuit Example

Note *1: Connect a bypass capacitor as close as possible to each of the MN3112SA's power supply pins (V_{HH} , V_{H} , V_{M13} , V_{M24} , V_{L} , V_{DC}).

■ Package Dimensions (Unit: mm)

SSOP020-P-0225



Note) The package of this product will be changed to lead-free type (SSOP020-P-0225C). See the new package dimensions section later of this datasheet.

Usage Notes

- (1) When the sub driver is not used
 - 1. Connect V_{HH} (pin 20) to V_H (pin 16).
 - 2. Connect ISUB (pin 10) to V_{DC} (pin 6) or GND (pin 15).
 - 3. Make no connection for OSUB (pin 1).
- (2) Connect a bypass capacitor as close as possible to MN3112SA power supply pins V_{HH} (pin 20), V_{H} (pin 16), V_{M13} (pin 4), V_{M24} (pin 19), V_{L} (pin 2), and V_{DC} (pin 6).
- (3) Guarantee period after unsealing
 - The guarantee period after opening the dry-sealed packaging is three weeks under the environment conditions of 30°C/70% (temperature/humidity).
- (4) The recommended reflow temperature is 230°C.

- New Package Dimensions (Unit: mm)
- SSOP020-P-0225C (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license.
- (3) We are not liable for the infringement of rights owned by a third party arising out of the use of the product or technologies as described in this material.
- (4) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (5) The products and product specifications described in this material are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (7) When using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged.
- (8) This material may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.