

LS3250C MONOLITHIC DUAL NPN TRANSISTOR

Linear Systems Log Conformance Monolithic Dual NPN

The LS3250C is a monolithic pair of NPN transistors mounted in a single TO-71 package. The monolithic dual chip design reduces parasitics and is ideal for use in tracking applications.

The hermetically sealed TO-71 is well suited for hi-rel and harsh environment applications.

(See Packaging Information).

LS3250C Features:

- Tight matching
- Low Output Capacitance

FEATURES						
TIGHT MATCHING	≤ 10mV					
THERMAL TRACKING	≤ 15μV / °C					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25°C (unless otherwise noted)						
Maximum Temperatures						
Storage Temperature	-65°C to +150°C					
Operating Junction Temperature	-55°C to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation TBD						
Maximum Currents						
Collector Current 50mA						
Maximum Voltage						
Collector to Collector Voltage	80V					

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} – V _{BE2}	Base Emitter Voltage Differential			10	mV	$I_C = 10 \text{mA}, V_{CE} = 5 \text{V}$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential		-	15	μV/°C	$I_C = 10 \mu A$, $V_{CE} = 5 V$
	Change with Temperature					$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
I _{B1} - I _{B2}	Base Current Differential			10	nA	$I_C = 10\mu A$, $V_{CE} = 5V$
$ \Delta (I_{B1}-I_{B2}) /\Delta T$	Base Current Differential			1.0	nA/°C	$I_{C} = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
h _{FE1} /h _{FE2}	DC Current Gain Differential			-15	%	$I_C = 10 \mu A, V_{CE} = 5 V$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	20	_		V	$l_{c} = 10 \text{mA}, l_{E} = 0$
BV _{CEO}	Collector to Emitter Voltage	20	-	1	٧	l _C = 10μΑ, l _B = 0
BV _{EBO} ²	Emitter-Base Breakdown Voltage	6.2			٧	$I_{E} = 10 \mu A$, $I_{C} = 0$
BV_{CCO}	Collector to Collector Voltage	80			٧	$I_{C} = 10 \mu A, I_{E} = 0$
		50				$I_{C} = 10 \mu A, V_{CE} = 5 V$
h _{FE}	h _{FE} DC Current Gain	40				$I_C = 100 \mu A, V_{CE} = 5 V$
		40				$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
V _{CE} (SAT)	Collector Saturation Voltage			1.2	V	I _C = 100mA, I _B = 10mA
I _{EBO}	Emitter Cutoff Current			0.2	nA	$I_{C} = 0A, V_{CB} = 3V$
I _{CBO}	Collector Cutoff Current			0.2	nA	$I_{E} = 0A, V_{CB} = 20V$
C _{OBO}	Output Capacitance			2	pF	$I_{E} = 0A, V_{CB} = 10V$
I _{C1C2}	Collector to Collector Leakage Current			1	nA	$V_{CC} = \pm 80V$
f_T	Current Gain Bandwidth Product			600	MHz	$I_{C} = 1mA, V_{CE} = 5V$
NF	Narrow Band Noise Figure			3	dB	$I_C = 100 \mu A$, $V_{CE} = 5V$, BW=200Hz, $R_B = 10 \Omega$,
						f = 1KHz

Notes

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.

Available Packages:

LS3250C in TO-71 LS3250C available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com Web: www.micross.com/distribution.aspx TO-71 (Bottom View)

