
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

2NI651 2NI652 2NI653 TELEPHONE: (973) 376-2922 (212) 227-8006 FAX: (973) 376-8960

The 2N1651, 2N1652, and 2N1653 DAP transistors are designed for efficient high current switching at high frequencies. The diffused base gives very low input resistance and high cutoff frequency while still maintaining high breakdown voltage. The low input resistance gives better circuit stabilization at high temperatures and greatly increases the maximum available power gain. These transistors are capable of switching up to 1600 watts.

The diffused base alloy power transistors feature welded construction with a vacuum-tight seal to insure long life and stable operation.

Absolute Maximum Ratings:

	V _{CE} Vdc	V _{CB} Vdc	V _{EB} Vdc	I _C	P _C *	$\mathbf{o}_{\mathbf{C}}^{\mathbf{T}}$ stg	J oC
2N1651 2N1652 2N1653	60 100 120	60 100 120	2.0 See	25	100	-60 to +110	110

*Po is the maximum average power dissipation. It can be exceeded during the switching time.

Electrical Characteristics: Mounting base temperature 25°C unless otherwise specified.

			Symb.	Min.	Max.	Units
Current Gain	h	20				
V _{CE} = -1.5 Vdc; I _C = 25 Adc	r _{FE}		_	-		
Current Gain	h	35	1710			
V _{CE} =-2 Vdc; I _C =-10 Adc	$^{ m h}_{ m FE}$	"	1110	•		
Collector Saturation Voltage	٧	_	1.0	Vdc		
I _C = 25 Adc; I _B = 2.5 Adc	${f v}_{ m BE}^{ m CE}$	_	1.5	Vde		
	BE	_	1.00	vae.		
Emitter-Base Voltage						
I _{EBO} - 50 mAdc; I _C - 0	$^{\mathtt{BV}}_{\mathtt{EBO}}$	1.5	-	Vdc		
Collector-Emitter Breakiown Vol	BVCEO					
$I_C = 500 \text{ mAdc}; R_{BE} = \infty$	2N1651	30	_	Vdc		
O Br,			2N1652	60		Vdc
•			2N1653	80	=	Vdc
Typical Switching Characteristi	.cs:					740
Switching Times	Fall Time		Storage	Time	Rise Time	Units
	$t_{\mathbf{f}}$		Ë_		t _r	
	1.1		1.8			
Condition	+++		1.0	-	19	μsec
Conditions:	v _{cc}	Ic	I _B (on)	I _R (of	r) R	
	Vdc	Adc	Adc	Adc	ohms	
		-:		nuc	- Otuns	

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

2.5

0.5