

LS4416A N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix 2N4416A The LS4416A is a N-Channel high frequency JFET amplifier

The LS4416A N-channel JFET is designed to provide high-performance amplification at high frequencies.

The hermetically sealed TO-72 package is well suited for military applications. The TO-92 package provides a lower cost commercial option

LS4416A Benefits:

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

LS4416A Applications:

- High-Frequency Amplifier / Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

FEATURES				
DIRECT REPLACEMENT FOR SILICONIX 2N4416A				
EXCEPTIONAL GAIN (400 MHz) 10dB (min)				
VERY LOW NOISE FIGURE (400 MHz)	4dB (max)			
VERY LOW DISTORTION				
HIGH AC/DC SWITCH OFF-ISOLATION				
ABSOLUTE MAXIMUM RATINGS				
@ 25°C (unless otherwise noted)				
Maximum Temperatures				
Storage Temperature	-65°C to +200°C			
Operating Junction Temperature	-55°C to +135°C			
Maximum Power Dissipation				
ontinuous Power Dissipation 300mW				
MAXIMUM CURRENT				
Gate Current (Note 1) 10mA				
MAXIMUM VOLTAGES				
Gate to Drain or Gate to Source	-35V			

LS4416A ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage	-35		-	V	$I_{G} = -1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage	-2.5		-6	V	$V_{DS} = 15V, I_{D} = 1nA$
I _{DSS}	Gate to Source Saturation Current	5	4-	1 5	mA	$V_{DS} = 15V, V_{GS} = 0V$
I _{GSS}	Gate <mark>Le</mark> akage Current			-0.1	nA	$V_{GS} = -20V, V_{DS} = 0V$
g _{fs}	Forward <mark>T</mark> rans <mark>co</mark> nd <mark>uc</mark> tance	4500		750 <mark>0</mark>	μS	$V_{DS} = 15V, V_{GS} = 0V, f = 1kHz$
g _{os}	Outp <mark>ut</mark> Con <mark>d</mark> uct <mark>an</mark> ce			50	μS	
C _{iss}	Input Capacitance ²			0.8	pF	
C_{rss}	Reverse Transfer Capacitance ²			4	pF	$V_{DS} = 15V, \ V_{GS} = 0V, f = 1MHz$
C _{oss}	Output Capacitance ²			2	pF	
e _n	Equivalent Input Noise Voltage		6		nV/√Hz	$V_{DS} = 10V$, $V_{GS} = 0V$, $f = 1kHz$

LS4416A HIGH FREQUENCY ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

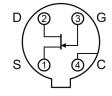
SYMBOL	CHARACTERISTIC	100 Mhz		400 Mhz		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
g _{Iss}	Input Conductance		100		1000		
b _{Iss}	Input Susceptance ²		2500		10000	c	V = 15V V = 0V
g oss	Output Conductance		75		100	μS	$V_{DS} = 15V$, $V_{GS} = 0V$
b _{oss}	Output Susceptance ²		1000		4000		
G _{fs}	Forward Transconductance			4000			
G _{ps}	Power Gain ²	18		10		dB	$V_{DS} = 15V, I_{D} = 5mA$
NF	Noise Figure ²		2		4		$V_{DS} = 15V$, $I_D = 5mA$, $R_G = 1k\Omega$
NOTEC	1. About the required we state on the state of the state						

1. Absolute maximum ratings are limiting values above which LS4416A serviceability may be impaired.

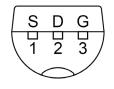
2. Not production tested, guaranteed by design

Micross Components Europe

micross


Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution Available Packages:


LS4416A in TO-72 LS4416A in TO-92 LS4416A in bare die.

Please contact Micross for full package and die dimensions

TO-72 (Bottom View)

TO-92 (Bottom View)

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.