
HT82A836R

USB Audio MCU

Rev. 1.10 1 August 5, 2011

General Description

The HT82A836R is an 8-bit high-performance RISC

microcontroller designed for USB phone product appli-

cations. To ensure a high level of functional integration

for USB phone applications, this 8-bit microcontroller in-

cludes important features such as 16-bit PCM A/D Con-

verter, USB transceiver, Serial Interface Engine, audio

class processing unit, � law Compander, 6-channel

12-bit ADC, 2-channel PWM and FIFO.

The DAC in the HT82A836R operates at a sampling

rate of 48kHz/8kHz and the 16-bit PCM ADC operates

at frequency of 8kHz/16kHz for the Microphone input,

with the options selected using software. The integrated

DAC also includes a digitally programmable gain ampli-

fier with a range of �32dB to +6dB. The digital gain

range of the ADC input is from 0dB to 19.5dB.

Features

� USB 2.0 full speed compatible

� USB spec V1.1 full speed operation and USB audio

device class spec V1.0

� Operating voltage at fSYS= 6M/12MHz: 3.3V~5.5V

� Low voltage reset function

� Embedded high-performance 16-bit PCM ADC

� Integrated Digital PGA � Programmable Gain Ampli-

fier

� 48kHz/8kHz sampling rate for audio playback se-

lected by software

� 8kHz/16kHz audio recording sampling rate selected

by software

� Embedded class AB power amplifier for speaker driv-

ing

� Embedded High Performance 16-bit audio DAC

� Audio playback digital volume control

� 5 endpoints supported including endpoint 0

� Supports 1 Control, 2 Interrupts and 2 Isochronous

transfers

� Two hardware implemented Isochronous transfers

� Total FIFO size: 496 bytes � 8, 8, 384, 64, 32 for

EP0~EP4

� 8192�16 Program Memory

� 352�8 Data Memory in two banks

� Programmable frequency divider function

� Integrated SPI hardware interface

� Port A wake-up on rising or falling transitions

� 6-channel 12-bit A/D converter

� 2-channel PWM function

� � Law Compander

� Power-down function and wake-up reduce power

consumption

� Up to of 44 bidirectional I/O lines

� Dual 16-bit programmable Timer/Event Counters

with overflow interrupts

� Watchdog Timer

� 16-level subroutine nesting

� Bit manipulation instruction

� 15-bit table read instruction

� 63 powerful instructions

� All instructions executed within one or two machine

cycles

� Low voltage reset function (3.0V�0.3V)

� 80-pin LQFP (10mm�10mm) package type

Technical Document

� Application Note
� HA0075E MCU Reset and Oscillator Circuits Application Note

http://www.holtek.com.tw/english/tech/appnote/appnote.htm#mcu
http://www.holtek.com.tw/english/tech/appnote/uc/pdf/ha0075ev110.pdf

Block Diagram

Pin Assignment

HT82A836R

Rev. 1.10 2 August 5, 2011

� � � � � �
� � 	
 �

� �
 � � � 	 	 � � �

� �
 � �
 � � �
�
 �
 � � �
 �

� � � � � �
 �
� � 	
 � � � � � � � � � �
 �

� �
!
 � "
 � �
 �

� � #
�
 �
 � � �
 �

$ % &

' � � � �
& () !
! *
!
 �

&
 �
 �
! � � � � � �

(� �
 � � � + �
!
 � � �
 � �
 �

) � � �
 	
� � � � � � � �
 �

(� �
�
 � � �

� � � � � �
� � 	
 �

�
 ,
 �
� 	 + -

) � � � .

� � �
� �
 � � � 	

 	
 � �

& � #
 � � � � #
 	 �
 �

*) /
(� �
 � 0 � �

) � (
(� �
 � 0 � �

� � � � � �
 �
� � 	
 �

 � !

� ! #
� � � !
 � "
 � �
 �

� � � � � � � � 	
�
 � �
 � � � �

1 2

1 �

1 3

1 1

1 4

1 5

1 �

�

5

4

1

3

�

2

'

6

� 7

� �

� 5

� 4

� 1

� 3

� �

� 2

� '

� 6

5 7
5 � 5 5 5 4 5 1 5 3 5 � 5 2 5 ' 5 6 4 7 4 � 4 5 4 4 4 1 4 3 4 � 4 2 4 ' 4 6 1 7

' 7 2 6 2 ' 2 2 2 � 2 3 2 1 2 4 2 5 2 � 2 7 � 6 � ' � 2 � � � 3 � 1 � 4 � 5 � �
� 7

3 6

3 '

3 2

3 �

3 3

3 1

3 4

3 5

3 �

3 7

1 6

1 '

$ � * �

� %)) 5

� %)) �

/ (�)

*) (! 8 (9

� % �

� % 1

� 9 3

� 9 1

� 9 4

� 9 5

� 9 �

� 9 7

� %)) 1

� % 4

% � � &
 0

% � �

� (:

� (�

� �

�) ! �

�) ! (

� ; 7

� ; �

� ; 5

� ; 4

� ; 1

� ; 3

� ; �

� ; 2 � (9 �

 %)) 5

� 7

� �

� 5

� 4

� 1

� 3

� �

� 2

 % 5

�
!
7
�/
<

�
!
�
��
#
&
7

�
!
5
��
#
&
�

�
!
4

�
!
1
�)

�

�
!
3
�)

(

�
!
�
�)
!
)

�
!
2
�)
!
=

%
)
)
4

�
/
7

�
/
�

�
/
5

�
/
4

�
/
1

�
/
3

�
/
�

�
/
2

�
�
#
7

�
�
#
�

�
%
)
)
4

&
;
)
;
�

%

�

*
)
/

9

*
)
/

�

%
4
4
�

%
)
)
�

�
�
4

�
�
5

�
�
�

�
�
7

�
�
2

�
�
�

�
�
3

�
�
1

�
�
4

�
�
5

�
�
�

�
�
7

�
%

5

&
�
*
�

Pin Description

Pin Name I/O
Configuration

Option
Description

ROUT O � Right driver analog output

LOUT O � Left driver analog output

AVSS4 � � 12-bit ADC negative power supply, ground

AVSS3 � PCM ADC negative power supply, ground

AVSS2 � � Audio power amplifier negative power supply, ground

AVSS1 � � Audio DAC negative power supply, ground

BIAS � � A capacitor should be connected to ground to increase half-supply stability

MUSIC_IN I �

Power amplifier input signal source if register bit SELW= �1�. The analog signal

input will amplify by the power amp then output to ROUT and LOUT at the same

time.

AVDD4 � � 12-bit ADC positive power supply

AVDD3 � � PCM ADC positive power supply

AVDD2 � � Audio power amplifier positive power supply

AVDD1 � � Audio DAC positive power supply

AN0~AN5 I � 12-bit ADC analog inputs

VAGRef I �
PCM ADC analog ground reference voltage (should left open or connected

by a bypass capacitor (Ex:100pF) to ground)

VAG O �
PCM ADC analog ground voltage (should connected by a bypass capacitor

(Ex:10�F) to ground)

TI+ I � OP AMP non-inverting input

TI- I � OP AMP inverting input

TG O � OP AMP gain setting output

PWM0~PWM1 O � PWM outputs

PA0~PA7 I/O

Pull-high

Wake-up

NMOS/CMOS

Output

Bidirectional 8-bit input/output port. Each bit can be configured as a wake-up

input by a configuration option. Software instructions determine if the pin is a

CMOS output or Schmitt trigger input. Configuration options determine which

pins on this port have pull-high resistors. The output structure can be either

NMOS or CMOS types determined via configuration option.

PB0~PB7 I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt trigger input. Configuration options determine which

pins on this port have pull-high resistors.

PC0/BZ

PC1/TMR0

PC2/TMR1

PC3

PC4/SDO

PC5/SDI

PC6/SCS

PC7/SCK

I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt trigger input. Configuration options determine which

pins on this port have pull-high resistors. Pin PC0 is shared with the buzzer pin

BZ. Pins PC1/PC2 are shared with timer input pins TMR0/TMR1. Pins PC4/

PC5 are shared with Serial Interface pins SDO/SDI. Pin PC6 is shared with the

Serial Interface Slave Select pin. Pin PC7 is shared with the Serial Interface

clock signal.

PD0~PD7 I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt trigger input. Configuration options determine which

pins on this port have pull-high resistors.

HT82A836R

Rev. 1.10 3 August 5, 2011

Pin Name I/O
Configuration

Option
Description

PE0~PE6

PE7/INT
I/O

Pull-high

Wake-up

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt trigger input. Configuration options determine which

pins on this port have pull-high resistors. PE7 is shared with external interrupt

input INT.

PF0~PF3 I/O
Pull-high

Wake-up

Bidirectional 4-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt trigger input. Configuration options determine which

pins on this port have pull-high resistors.

DVDD2 � � Positive digital power supply

DVSS2 � � Negative digital & I/O power supply, ground

DVDD1 � � Positive digital power supply

DVSS1 � � Negative digital power supply, ground

OSCI

OSCO

I

O
�

OSCI, OSCO are connected to an 6MHz or 12MHz crystal/resonator,

determined by software instructions, for the internal system clock.

RESET I � Schmitt trigger reset input, active low

USBDN I/O � USBD- line

USBDP I/O � USBD+ line

V33O O � 3.3V regulator output

Absolute Maximum Ratings

Supply VoltageVSS�0.3V to VSS+6.0V Storage Temperature�50	C to 125	C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature...........................�40	C to 85	C

IOL Total ..150mA IOH Total..�100mA

Total Power Dissipation500mW

Note: These are stress ratings only. Stresses exceeding the range specified under �Absolute Maximum Ratings� may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed

in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics Ta=25	C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage � � 3.3 5.0 5.5 V

IDD1 Operating Current 5V
No load, fSYS=12MHz

ADC on, DAC on
� 12 � mA

IDD2 Operating Current 5V
No load, fSYS=12MHz

ADC off, DAC off
� 8 � mA

ISUS Suspend Current 5V

No load, system HALT,

USB transceiver and

3.3V regulator on

� 330 � �A

VIL1 Input Low Voltage for I/O Ports � � 0 � 0.3VDD V

VIH1 Input High Voltage for I/O Ports � � 0.7VDD � VDD V

VIL2 Input Low Voltage (RESET) � � 0 � 0.4VDD V

VIH2 Input High Voltage (RESET) � � 0.8VDD � VDD V

IOL I/O Port Sink Current 5V VOL=0.1VDD � 5 � mA

HT82A836R

Rev. 1.10 4 August 5, 2011

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

IOH I/O Port Source Current 5V VOH=0.9VDD � �5 � mA

RPH Pull-high Resistance 5V � 30 40 80 k

VLVR0 Low Voltage Reset 5V � 2.7 3.0 3.3 V

VV33O 3.3V Regulator Output 5V IV33O= �5mA 3.0 3.3 3.6 V

DAC+Power Amp:

Test Condition: Measurement bandwidth 20Hz to 20kHz, fS= 48kHz. Line output series capacitor with 220�F.

THD+N THD+N(Note) 5V
4
 load � �30 � dB

8
 load � �35 � dB

SNRDA Signal to Noise Ratio Note1 5V
4
 load � 81 � dB

8
 load � 82 � dB

DR Dynamic Range 5V
4
 load � 87 � dB

8
 load � 88 � dB

POUT Output Power 5V
4
 load, THD=10% � 400 � mW/ch

8
 load, THD=10% � 200 � mW/ch

PCM ADC:

SNRAD Signal to Noise Ratio 5V � � 77 � dB

VAG Reference Voltage 5V � � 2.0 � V

VPEAK
Peak Single Frequency Tone

Amplitude without Clipping
5V � � 1.575 � VPK

Note: Sine wave input at 1kHz, �6dB

A.C. Characteristics Ta=25	C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock (Crystal OSC) 5V � 0.4 � 12 MHz

tWDTOSC Watchdog Oscillator Period 5V � � 100 � �s

tRES Reset Low Pulse Width � � 1 � � �s

tSST System Start-up Timer Period � � � 1024 � *tSYS

tINT Interrupt Pulse Width � � 1 � � �s

tADC A/D Conversion Time � � � 80 � tAD

tADCS A/D Sampling Time � � � 32 � tAD

Note: *tSYS=1/fSYS

HT82A836R

Rev. 1.10 5 August 5, 2011

HT82A836R

Rev. 1.10 6 August 5, 2011

System Architecture

A key factor in the high-performance features of the

Holtek range of microcontrollers is attributed to the inter-

nal system architecture. The range of devices take ad-

vantage of the usual features found within RISC

microcontrollers providing increased speed of operation

and enhanced performance. The pipelining scheme is

implemented in such a way that instruction fetching and

instruction execution are overlapped, hence instructions

are effectively executed in one cycle, with the exception

of branch or call instructions. An 8-bit wide ALU is used

in practically all operations of the instruction set. It car-

ries out arithmetic operations, logic operations, rotation,

increment, decrement, branch decisions, etc. The inter-

nal data path is simplified by moving data through the

Accumulator and the ALU. Certain internal registers are

implemented in the Data Memory and can be directly or

indirectly addressed. The simple addressing methods of

these registers along with additional architectural fea-

tures ensure that a minimum of external components is

required to provide a functional I/O control system with

maximum reliability and flexibility.

Clocking and Pipelining

The main system clock, derived from a Crystal/Resona-

tor is subdivided into four internally generated

non-overlapping clocks, T1~T4. The Program Counter

is incremented at the beginning of the T1 clock during

which time a new instruction is fetched. The remaining

T2~T4 clocks carry out the decoding and execution

functions. In this way, one T1~T4 clock cycle forms one

instruction cycle. Although the fetching and execution of

instructions takes place in consecutive instruction cy-

cles, the pipelining structure of the microcontroller en-

sures that instructions are effectively executed in one

instruction cycle. The exception to this are instructions

where the contents of the Program Counter are

changed, such as subroutine calls or jumps, in which

case the instruction will take one more instruction cycle

to execute.

For instructions involving branches, such as jump or call

instructions, two machine cycles are required to com-

plete instruction execution. An extra cycle is required as

the program takes one cycle to first obtain the actual

jump or call address and then another cycle to actually

execute the branch. The requirement for this extra cycle

should be taken into account by programmers in timing

sensitive applications.

Program Counter

During program execution, the Program Counter is used

to keep track of the address of the next instruction to be

executed. It is automatically incremented by one each

time an instruction is executed except for instructions,

such as �JMP� or �CALL�, that demand a jump to a

non-consecutive Program Memory address. Note that

the Program Counter width varies with the Program

Memory capacity depending upon which device is se-

lected.

�
 � � � � (� � � - � > � ! ?

; @
 � � �
 � (� � � - � > � ! � � ? �
 � � � � (� � � - � > � ! : � ?

; @
 � � �
 � (� � � - � > � ! ? �
 � � � � (� � � - � > � ! : 5 ?

; @
 � � �
 � (� � � - � > � ! : � ?

� ! � ! : � � ! : 5

� � � � � � � �
 � � ! �
 � .
>) � � �
 	 � ! �
 � . ?

� � � �
 � ! �
 � . � � �

� �
 � � � 	 � !
 � � �
 �

� � � �
 � ! �
 � . � � 5

� � � �
 � ! �
 � . � � 4

� � � �
 � ! �
 � . � � 1

� � +
 � � � � � �

System Clocking and Pipelining

�
 � � � � (� � � - � � ; @
 � � �
 � (� � � - � �

�
 � � � � (� � � - � 5

� � � � � � � � +
 � � �

�

5

4

1

3

� ; $ � A B

� % � � C D � 5 E F

! � $ $ � ; $ � A

! � $ � D � 5 E F

B

B

9 � �

; @
 � � �
 � (� � � - � 5

�
 � � � � (� � � - � 4

�
 � � � � (� � � - � � ; @
 � � �
 � (� � � - � �

�
 � � � � (� � � - � 2

Instruction Fetching

HT82A836R

Rev. 1.10 7 August 5, 2011

However, it must be noted that only the lower 8 bits,

known as the Program Counter Low Register, are di-

rectly addressable by user.

When executing instructions requiring jumps to

non-consecutive addresses such as a jump instruction,

a subroutine call, interrupt or reset, etc., the

microcontroller manages program control by loading the

required address into the Program Counter. For condi-

tional skip instructions, once the condition has been

met, the next instruction, which has already been

fetched during the present instruction execution, is dis-

carded and a dummy cycle takes its place while the cor-

rect instruction is obtained.

The lower byte of the Program Counter, known as the

Program Counter Low register or PCL, is available for

program control and is a readable and writable register.

By transferring data directly into this register, a short

program jump can be executed directly, however, as

only this low byte is available for manipulation, the

jumps are limited to the present page of memory, that is

256 locations. When such program jumps are executed

it should also be noted that a dummy cycle will be in-

serted.

The lower byte of the Program Counter is fully accessi-

ble under program control. Manipulating the PCL might

cause program branching, so an extra cycle is needed

to pre-fetch. Further information on the PCL register can

be found in the Special Function Register section.

Stack

This is a special part of the memory which is used to

save the contents of the Program Counter only. The

stack has 16 levels and is neither part of the data nor

part of the program space, and can neither be read from

nor written to. The activated level is indexed by the

Stack Pointer, SP, which can also neither be read from

nor written to. At a subroutine call or interrupt acknowl-

edge signal, the contents of the Program Counter are

pushed onto the stack. At the end of a subroutine or an

interrupt routine, signaled by a return instruction, RET or

RETI, the Program Counter is restored to its previous

value from the stack. After a device reset, the Stack

Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place,

the interrupt request flag will be recorded but the ac-

knowledge signal will be inhibited. When the Stack

Pointer is decremented, by RET or RETI, the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

However, when the stack is full, a CALL subroutine in-

struction can still be executed which will result in a stack

overflow. Precautions should be taken to avoid such

cases, which might cause unpredictable program

branching.

Mode
Program Counter Bits

b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Interrupt 0 0 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter 0

Overflow
0 0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 1

Overflow
0 0 0 0 0 0 0 0 0 1 1 0 0

Play Interrupt 0 0 0 0 0 0 0 0 1 0 0 0 0

Multi Function Interrupt 0 0 0 0 0 0 0 0 1 0 1 0 0

Record Interrupt 0 0 0 0 0 0 0 0 1 1 0 0 0

Skip Program Counter + 2

Loading PCL PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #12 #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: PC12~PC8: Current Program Counter bits

@7~@0: PCL bits

#12~#0: Instruction code address bits

S12~S0: Stack register bits

HT82A836R

Rev. 1.10 8 August 5, 2011

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the

microcontroller that carries out arithmetic and logic op-

erations of the instruction set. Connected to the main

microcontroller data bus, the ALU receives related in-

struction codes and performs the required arithmetic or

logical operations after which the result will be placed in

the specified register. As these ALU calculation or oper-

ations may result in carry, borrow or other status

changes, the status register will be correspondingly up-

dated to reflect these changes. The ALU supports the

following functions:

� Arithmetic operations: ADD, ADDM, ADC, ADCM,

SUB, SUBM, SBC, SBCM, DAA

� Logic operations: AND, OR, XOR, ANDM, ORM,

XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,

RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ,

SIZA, SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user

code or program is stored. The device contains

One-Time Programmable, OTP, memory where users

can program their application code into the device. By

using the appropriate programming tools, OTP devices

offer users the flexibility to freely develop their applica-

tions, which may be useful during debug or for products

requiring frequent upgrades or program changes. OTP

devices are also applicable for use in applications that

require low or medium volume production runs.

Organisation

The Program Memory has a capacity of 8K by 16 bits.

The Program Memory is addressed by the Program

Counter and also contains data, table information and

interrupt entries. Table data, which can be setup in any

location within the Program Memory, is addressed by

separate table pointer registers.

Special Vectors

Within the Program Memory, certain locations are re-

served for special usage such as reset and interrupts.

� Location 000H

This vector is reserved for use by the device reset for

program initialisation. After a device reset is initiated, the

program will jump to this location and begin execution.

� Location 004H

This vector is used by the USB interrupt. If a USB in-

terrupt occurs, the program will jump to this location

and begin execution if the USB interrupt is enabled

and the stack is not full.

� Location 008H

This vector is used by the Timer/Event Counter 0. If a

counter overflow occurs, the program will jump to this

location and begin execution if the timer interrupt is

enabled and the stack is not full.

� Location 00CH

This vector is used by the Timer/Event counter 1. If a

counter overflow occurs, the program will jump to this

location and begin execution if the timer interrupt is

enabled and the stack is not full.

� Location 010H

This vector is used by the play interrupt service pro-

gram. If play data occurs, the program will jump to this

location and begin execution if the play interrupt is en-

abled and the stack is not full.

� Location 014H

This vector is used by the Multi-function interrupt. If an

interrupt results from a serial interface interrupt, an

end of 12-bit A/D conversion cycle or an external inter-

rupt, the program will jump to this location and begin

execution if the relevant interrupt is enabled and the

stack is not full.

� Location 018H

This area is used by the Record interrupt. If record

data occurs, the program will jump to this location and

begin execution if the timer interrupt is enabled and

the stack is not full.

� �
 � � � 	 � !
 � � �
 �

) � � � . � $
 "
 � � �

) � � � . � $
 "
 � � 5

) � � � . � $
 "
 � � 4

) � � � . � $
 "
 � � � �

� �
 � � � 	

 	
 � �

�
 + �
 0 �) � � � .

) � � � .
�
 � � �
 �

/
 � �
 	 �
 0 �) � � � .

7 7 7 ! E

� �
 � � � 	

 	
 � �

7 7 � ' E

7 7 � / E

� � � � E

7 7 5 7 E

� � � � � � �

7 7 � 7 E

7 7 � 1 E

7 7 7 7 E

7 7 7 1 E

7 7 7 ' E

*) / � (� �
 � � � + � �) � � �
 � � � �

� � 	
 � � ; "
 � � � !
 � � �
 � � 7 � (� �
 � � � + � �) � � �
 � � � �
 �

� � 	
 � � ; "
 � � � !
 � � �
 � � � � (� �
 � � � + � �) � � �
 � � � �
 �

$

 . � � + � � � � �
 � > 5 3 � � ,
 � � � ?

&
 �
 � � � (� �
 � � � + � �) � � �
 � � � �
 �

 " � �
 � (� � � � � � � G � � �
 � � � �
 � � � 	

� � � � � (� �
 � � � + � �) � � �
 � � � �
 �

� � � � � 0 � � � � �
 � � � � (� �
 � � � + � �) � � �
 � � � �

Program Memory Structure

HT82A836R

Rev. 1.10 9 August 5, 2011

Look-up Table

Any location within the Program Memory can be defined

as a look-up table where programmers can store fixed

data. To use the look-up table, the table pointers must

first be setup which point to the data in the Program

Memory which is to be read. In this device there are two

table pointers, the low byte pointer, TBLP and the high

byte pointer, TBHP. However, the high byte pointer,

TBHP, can only be used if it is enabled using configura-

tion options. Using both table pointers enables any area

in the Program Memory to be addressed while if only the

low byte pointer, TBLP, is used then only the present

page or last page can be addressed.

If the configuration options do not enable the high byte

pointer, then after setting up the low table pointer, TBLP,

the table data can be retrieved from the current Program

Memory page or last Program Memory page using the

�TABRDC[m]� or �TABRDL [m]� instructions, respec-

tively. When these instructions are executed, the lower

order table byte from the Program Memory will be trans-

ferred to the user defined Data Memory register [m] as

specified in the instruction. The higher order table data

byte from the Program Memory will be transferred to the

TBLH special register.

The following diagram illustrates the addressing/data

flow of the look-up table using the single table address

pointer TBLP:

If the configuration options enable the high table pointer,

TBHP, then this register together with the low table

pointer, TBLP, can be used together as a pair to point to

any located in the Program Memory. After setting up

both the low and high byte table pointers, the table data

can then be retrieved from any area of Program Memory

using the �TABRDC [m]� instruction or from the last

page of the Program Memory using the �TABRDL [m]�

instruction. When either of these instructions are exe-

cuted, the lower order table byte from the Program

Memory will be transferred to the user defined Data

Memory register [m] as specified in the instruction. The

higher order table data byte from the Program Memory

will be transferred to the TBLH special register.

The following diagram illustrates the addressing/data

flow of the look-up table using the dual table address

pointers TBLP and TBHP:

Table Program Example

The following example shows how the table pointer and

table data is defined and retrieved from the micro con-

troller using the single table data pointer, TBLP. This ex-

ample uses raw table data located in the last page which

is stored there using the ORG statement. The value at

this ORG statement is �1F00H� which refers to the start

address of the last page within the 8K Program Memory

of device. The table pointer is setup here to have an ini-

tial value of �06H�. This will ensure that the first data

read from the data table will be at the Program Memory

address �1F06H� or 6locations after the start of the last

page. Note that the value for the table pointer is refer-

enced to the first address of the present page if the

�TABRDC [m]� instruction is being used. The high byte

of the table data which in this case is equal to zero will

be transferred to the TBLH register automatically when

the �TABRDL [m]� instruction is executed.

Because the TBLH register is a read-only register and

cannot be restored, care should be taken to ensure its

protection if both the main routine and Interrupt Service

Routine use the table read instructions. If using the table

read instructions, the Interrupt Service Routines may

change the value of TBLH and subsequently cause er-

rors if used again by the main routine. As a rule it is rec-

ommended that simultaneous use of the table read

instructions should be avoided. However, in situations

where simultaneous use cannot be avoided, the inter-

rupts should be disabled prior to the execution of any

main routine table-read instructions. Note that all table

related instructions require two instruction cycles to

complete their operation.

� �
 � � � 	 �

 	
 � �

� � �
 � � � 	 � !
 � � �
 �
� � � � � � � E � � � � / � �

� / $ �

� / $ E) +
 � � 0 �
 � � � � � D 	 F

� � � �
 � !
 � �
 � � � � E � � � � / � �
 � � � �
 � !
 � �
 � � � � $
 , � / � �

Single Address Pointer Look-up Table

� �
 � � � 	 �

 	
 � �

� / $ �

� / $ E) +
 � � 0 �
 � � � � � D 	 F

� E � � � � � � �
 �
 0 � � � � �
 � �
 � �
 � � �

� / E �

E � � � � � � �
 �
 0 � � � � �
 � �
 � �
 � � �

Dual Address Pointer Look-up Table

HT82A836R

Rev. 1.10 10 August 5, 2011

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialise table pointer - note that this address
; is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl
; data at prog. memory address �1F06H� transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2
; data at prog.memory address �1F05H� transferred to
; tempreg2 and TBLH
; in this example the data �1AH� is transferred to
; tempreg1 and data �0FH� to register tempreg2
; the value �00H� will be transferred to the high byte
; register TBLH

:
:

org 1F00h ; sets initial address of last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM in-

ternal memory and is the location where temporary in-

formation is stored. Divided into two sections, the first of

these is an area of RAM where special function registers

are located. These registers have fixed locations and

are necessary for correct operation of the device. Many

of these registers can be read from and written to di-

rectly under program control, however, some remain

protected from user manipulation. The second area of

Data Memory is reserved for general purpose use. All

locations within this area are read and write accessible

under program control.

Organisation

The RAM Data Memory is subdivided into two banks,

known as Bank 0 and Bank 1, all of which are imple-

mented in 8-bit wide RAM. The Bank 0 Data Memory is

subdivided into two sections, the Special Purpose Data

Memory and the General Purpose Data Memory. The

start address of the Bank 0 Data Memory is the address

00H and the last Data Memory address is FFH. The

Bank 1 Data Memory consists only of General Purpose

Data Memory. The start address of the Bank 1 Data

Memory is the address 40H and the last Data Memory

address is FFH. Selection of which Bank is to be used is

implemented using the Bank Pointer.

Instruction
Table Location Bits

b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: PC12~PC8: Current Program Counter bits

TBHP register bit4~bit0 when TBHP option is enabled

@7~@0: Table Pointer TBLP bits

HT82A836R

Rev. 1.10 11 August 5, 2011

General Purpose Data Memory

All microcontroller programs require an area of

read/write memory where temporary data can be stored

and retrieved for use later. It is this area of RAM memory

that is known as General Purpose Data Memory. This

area of Data Memory is fully accessible by the user pro-

gram for both read and write operations. By using the

�SET [m].i� and �CLR [m].i� instructions individual bits

can be set or reset under program control giving the

user a large range of flexibility for bit manipulation in the

Data Memory. As the General Purpose Data Memory

exists in two banks, Bank 0 and Bank1, it is necessary to

first ensure that the Bank Pointer is properly set to the

correct value before accessing the General Purpose

Data Memory. When the Bank Pointer is set to the value

00H, data from Bank 0 will be accessed and when set to

the value 01H data from Bank 1 will be accessed. Note

that Bank 1 must be accessed indirectly using the Mem-

ory Pointer MP1 and the Indirect Addressing Register

IAR1.

Special Purpose Data Memory

This area of Data Memory, is located in Bank 0, where

registers, necessary for the correct operation of the

microcontroller, are stored. Most of the registers can be

read from and written to but some are protected and are

read only, the details of which are located under the rele-

vant Special Function Register section. Note that for lo-

cations that are unused, any read instruction to these

addresses will return the value �00H�.

� 7 E

� � E

/ � � . � �

/ � � . � 7

1 7 E

Data Memory Structure

Note: Most of the RAM Data Memory bits can be di-

rectly manipulated using the �SET [m].i� and

�CLR [m].i� instructions with the exception of a

few dedicated bits. The RAM Data Memory can

also be accessed through the Memory Pointer

registers MP0 and MP1.

7 7 E

7 � E

7 5 E

7 4 E

7 1 E

7 3 E

7 � E

7 2 E

7 ' E

7 6 E

7 � E

7 / E

7 ! E

7 E

7 ; E

7 � E

� 7 E

� � E

� 5 E

� 4 E

� 1 E

� 3 E

� � E

� 2 E

� ' E

� 6 E

� � E

� / E

� ! E

� E

� ; E

� � E

5 7 E

5 � E

5 5 E

5 4 E

5 1 E

5 3 E

5 � E

5 2 E

5 ' E

5 6 E

5 � E

5 / E

5 ! E

5 E

5 ; E

5 � E

4 7 E

4 � E

4 5 E

4 4 E

4 1 E

4 3 E

4 � E

4 2 E

4 ' E

4 6 E

4 � E

4 / E

4 ! E

4 E

4 ; E

4 � E

1 7 E

1 � E

1 5 E

1 4 E

1 1 E

1 3 E

1 � E

1 2 E

1 ' E

1 6 E

1 � E

1 / E H 3 � E

B � * � � �
 � C � �
 � � � � � � I 7 7 I

/ � � . � 7 �) +
 � � � � � &
 � � � �
 �

(� & 7

� 7

(� & �

� �

/ �

� ! !

� ! $

� / $ �

� / $ E

� �)

) � � � *)

(9 � ! 7

� # & 7 E

� # & 7 $

� # & 7 !

� # & � E

� # & � $

� # & � !

� �

� � !

� /

� / !

� !

� ! !

�

� !

� ;

� ; !

� �

� � !

(9 � ! �

� / E �

*) !

*) &

* ! !

� � &

) � � $ $

) (;)

() !

) ; � (�

� (� � 7

� (� � �

� (� � 5

� (� � 4

� (� � 1

 � ! 8 $ (# (� 8 $

 � ! 8 $ (# (� 8 E

 � ! 8 � &

� � � 8 ! � & $

� � !

� �

� � ; & 8 # � ;

� ; 8 ! � & $

) / ! &

) / &

& ; ! � & 8 (9 8 $

& ; ! � & 8 (9 8 E

� $ � A 8 � � � $ 8 $

� $ � A 8 � � � $ 8 E

� $ � A 8 � � � & 8 $

� $ � A 8 � � � & 8 E

& ; ! � & 8 � � � 8 $

& ; ! � & 8 � � � 8 E

� & $

� & E

� ! &

� !) &

� � 8 � � = ; 8 ! � & $

� � # !

� � # 7

� � # �

� (� !

*) / 8) � � � ;

*) % !

Special Purpose Data Memory Structure

HT82A836R

Rev. 1.10 12 August 5, 2011

Special Function Registers

To ensure successful operation of the microcontroller,

certain internal registers are implemented in the Data

Memory area. These registers ensure correct operation

of internal functions such as timers, interrupts, USB

port, etc., as well as external functions such as I/O data

control. The location of these registers within the Data

Memory begins at the address �00H�. Any unused Data

Memory locations between these special function regis-

ters and the point where the General Purpose Memory

begins is reserved and attempting to read data from

these locations will return a value of �00H�.

Indirect Addressing Register � IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, al-

though having their locations in normal RAM register

space, do not actually physically exist as normal regis-

ters. The method of indirect addressing for RAM data

manipulation uses these Indirect Addressing Registers

and Memory Pointers, in contrast to direct memory ad-

dressing, where the actual memory address is speci-

fied. Actions on the IAR0 and IAR1 registers will result in

no actual read or write operation to these registers but

rather to the memory location specified by their corre-

sponding Memory Pointer, MP0 or MP1. Acting as a

pair, IAR0 and MP0 can together only access data from

Bank 0, while the IAR1 and MP1 register pair can ac-

cess data from both Bank 0 and Bank 1. As the Indirect

Addressing Registers are not physically implemented,

reading the Indirect Addressing Registers indirectly will

return a result of �00H� and writing to the registers indi-

rectly will result in no operation.

Memory Pointer � MP0, MP1

For all devices, two Memory Pointers, known as MP0

and MP1 are provided. These Memory Pointers are

physically implemented in the Data Memory and can be

manipulated in the same way as normal registers pro-

viding a convenient way with which to address and track

data. When any operation to the relevant Indirect Ad-

dressing Registers is carried out, the actual address that

the microcontroller is directed to, is the address speci-

fied by the related Memory Pointer. MP0, together with

Indirect Addressing Register, IAR0, are used to access

data from Bank 0 only, while MP1 and IAR1 are used to

access data from both Bank 0 and Bank 1.

The following example shows how to clear a section of

four RAM locations already defined as locations adres1

to adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 �code�
org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp0,a ; setup memory pointer with first RAM address

loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to specific Data Memory ad-

dresses.

HT82A836R

Rev. 1.10 13 August 5, 2011

Bank Pointer � BP

The Data Memory is divided into two Banks, known as

Bank 0 and Bank 1. Selecting the required Data Memory

area is achieved using the Bank Pointer. If data in Bank

0 is to be accessed, then the BP register must be loaded

with the value �00�, while if data in Bank 1 is to be ac-

cessed, then the BP register must be loaded with the

value �01�.

Using Memory Pointer MP0 and Indirect Addressing

Register IAR0 will always access data from Bank 0, irre-

spective of the value of the Bank Pointer.

The Data Memory is initialised to Bank 0 after a reset,

except for the WDT time-out reset in the Power Down

Mode, in which case, the Data Memory bank remains

unaffected. Directly addressing the Data Memory will al-

ways result in Bank 0 being accessed irrespective of the

value of the Bank Pointer.

Accumulator � ACC

The Accumulator is central to the operation of any

microcontroller and is closely related with operations

carried out by the ALU. The Accumulator is the place

where all intermediate results from the ALU are stored.

Without the Accumulator it would be necessary to write

the result of each calculation or logical operation such

as addition, subtraction, shift, etc., to the Data Memory

resulting in higher programming and timing overheads.

Data transfer operations usually involve the temporary

storage function of the Accumulator; for example, when

transferring data between one user defined register and

another, it is necessary to do this by passing the data

through the Accumulator as no direct transfer between

two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low

byte of the Program Counter is made accessible to pro-

grammers by locating it within the Special Purpose area

of the Data Memory. By manipulating this register, direct

jumps to other program locations are easily imple-

mented. Loading a value directly into this PCL register

will cause a jump to the specified Program Memory lo-

cation, however, as the register is only 8-bit wide, only

jumps within the current Program Memory page are per-

mitted. When such operations are used, note that a

dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBLH, TBHP

These three special function registers are used to con-

trol operation of the look-up table, which is stored in the

Program Memory. TBLP is the table low byte pointer and

indicates the lowest 8-bit address location where the ta-

ble data is located. TBHP is the table high byte pointer

and indicates the highest bit address location where the

table data is located. The TBHP high byte table pointer

can only be used if its configuration option is selected.

The table pointers must be setup before any table read

commands are executed. Their value can be changed,

for example using the �INC� or �DEC� instructions, al-

lowing for easy table data pointing and reading. If the

TBHP configuration is enabled, then the TBLP and

TBHP register pair can be used together with the

�TABRDC� instruction to point directly to any location in

the program memory. TBLH is the location where the

higher order byte of the table data is stored after a table

read data instruction has been executed. The lower or-

der table data byte is transferred to a user defined loca-

tion.

Watchdog Timer Register � WDTS

The Watchdog feature of the microcontroller provides

an automatic reset function giving the microcontroller a

means of protection against spurious jumps to incorrect

Program Memory addresses. To implement this, a timer

is provided within the microcontroller which will issue a

reset command when its value overflows. To provide

variable Watchdog Timer reset times, the Watchdog

Timer clock source can be divided by various division ra-

tios, the value of which is set using the WDTS register.

By writing directly to this register, the appropriate divi-

sion ratio for the Watchdog Timer clock source can be

setup. Note that only the lower 3 bits are used to set divi-

sion ratios between 1 and 128.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag

(C), auxiliary carry flag (AC), overflow flag (OV), power

down flag (PDF), and watchdog time-out flag (TO).

These arithmetic/logical operation and system manage-

ment flags are used to record the status and operation of

the microcontroller.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

� � � � � � � � � � � �

� 2 � 7

/ � 7

/ � 7 � � � � � � � � #
 	
 � �
� � � 7 � � � � � � / � � . � 7
� � � � � � � � � � / � � . � �

9
 � � � �
 � C � 	 � � � � �
 � �
 �
 � � �
 � I 7 I

Bank Pointer

HT82A836R

Rev. 1.10 14 August 5, 2011

tions related to the status register may give different re-

sults due to the different instruction operations. The TO

flag can be affected only by a system power-up, a WDT

time-out or by executing the �CLR WDT� or �HALT� in-

struction. The PDF flag is affected only by executing the

�HALT� or �CLR WDT� instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

� C is set if an operation results in a carry during an ad-

dition operation or if a borrow does not take place dur-

ing a subtraction operation; otherwise C is cleared. C

is also affected by a rotate through carry instruction.

� AC is set if an operation results in a carry out of the

low nibbles in addition, or no borrow from the high nib-

ble into the low nibble in subtraction; otherwise AC is

cleared.

� Z is set if the result of an arithmetic or logical operation

is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the high-

est-order bit but not a carry out of the highest-order bit,

or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing the

�CLR WDT� instruction. PDF is set by executing the

�HALT� instruction.

� TO is cleared by a system power-up or executing the

�CLR WDT� or �HALT� instruction. TO is set by a

WDT time-out.

In addition, on entering an interrupt sequence or execut-

ing a subroutine call, the status register will not be

pushed onto the stack automatically. If the contents of

the status registers are important and if the subroutine

can corrupt the status register, precautions must be

taken to correctly save it.

Interrupt Control Registers � INTC0, INTC1, MFI1C

These three 8-bit registers, known as the INTC0, INTC1

and MFI1C control the operation of the interrupts. By

setting various bits within this register using standard bit

manipulation instructions, the enable/disable function of

the all interrupts can be independently controlled. A

master interrupt bit within this register, the EMI bit, acts

like a global enable/disable and is used to set all of the

interrupt enable bits on or off. This bit is cleared when an

interrupt routine is entered to disable further interrupt

and is set by executing the �RETI� instruction. Note in

situations where other interrupts may require servicing

within present interrupt service routines, the EMI bit can

be manually set by the program after the present inter-

rupt service routine has been entered.

Timer/Event Counter Registers � TMRL/TMRH,

TMRC

The device contains two 16-bit Timer/Event Counters.

Each Timer/Event Counter has an associated register

pair, known as TMR0L/TMR0H and TMR1L/TMR1H

which are the locations where the timer�s 16-bit value is

located. Each timer also has an associated control reg-

ister, known as TMR0C and TMR1C which contains the

setup information for the associated timer.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O

registers and their associated control registers play a

prominent role. All I/O ports have a designated register

correspondingly labeled as PA, PB, PC, PD, PE and PF.

These labeled I/O registers are mapped to specific ad-

dresses within the Data Memory as shown in the Data

Memory table, which are used to transfer the appropri-

ate output or input data on that port. With each I/O port

there is an associated control register labeled PAC,

PBC, PCC, PDC, PEC and PFC, also mapped to spe-

cific addresses with the Data Memory. The control regis-

ter specifies which pins of that port are set as inputs and

which are set as outputs. To setup a pin as an input, the

corresponding bit of the control register must be set

high, for an output it must be set low. During program ini-

tialization, it is important to first setup the control regis-

ters to specify which pins are outputs and which are

inputs before reading data from or writing data to the I/O

ports. One flexible feature of these registers is the ability

to directly program single bits using the �SET [m].i� and

�CLR [m].i� instructions. The ability to change I/O pins

from output to input and vice versa by manipulating spe-

cific bits of the I/O control registers during normal pro-

gram operation is a useful feature of these devices.

� � � � � % < � ! ! � � � � � � � 	 � � � � � � �

� � � � � � � � � ! � � � � � " # � � � � � � � � � $ � � �
! � � � � � 0 � � �
� � @ � � � � � � � � � � � � � 0 � � �
<
 �
 � 0 � � �
� "
 � 0 �
 , � 0 � � �

� % � � � � � & � � � � � � � � � � � $ � � �
�
 ,
 � � �
 , � � 0 � � �
� � � � � �
 � � � � 	
 �
 � � � 0 � � �
9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

� 2 � 7

Status Register

HT82A836R

Rev. 1.10 15 August 5, 2011

Port A Wake-up Control Register �

PA_WAKE_CTRL

This register is used to select the edge type that triggers

the wake-up function on the Port A pins. If the configura-

tion options select some or all of the Port A pins to have

a wake-up function then this register can be used to se-

lect either whether the active edge is a negative or posi-

tive transition. Only Port A is allowed this selection.

Pulse Width Modulator Registers � PWM0, PWM1,

PWMC

The device 2 integrated Pulse Width Modulators. Each

one has its own independent register, known as PWM0

and PWM1. The 8-bit contents of each of these registers

define the duty cycle value for the modulation cycle of

the corresponding pulse width modulator. The PWMC is

the control register for the PWM functions and controls

the mode selection and on/off function.

A/D Converter Registers � ADRL, ADRH, ADCR,

ACSR

The device contains a single 6-channel 12-bit A/D con-

verter. The correct operation of the A/D requires the use

of two data registers, a control register and a clock

source register. There are two data registers, a high

byte data register known as ADRH, and a low byte data

register known as ADRL. These are the register loca-

tions where the digital value is placed after the comple-

tion of an analog to digital conversion cycle. The

channel selection and configuration of the A/D converter

is setup via the control register ADCR while the A/D

clock frequency is defined by the clock source register,

ACSR.

USB Registers

The device contains an internal USB port which is con-

trolled via several registers. These are used to setup the

USB operation, the external pins, error handling etc. As

this register list is too numerous to list here details can

be found in the relevant USB description.

PFD Registers � PFDC, PFDD

The device contains a fully integrated Programmable

Frequency Driver otherwise known as the PFD. Two

registers control the overall operation of the PFD to de-

termine the output frequency and the function en-

able/disable.

Other Registers

The device contains several other special function reg-

isters for control of various internal functions. As their

functional description is too detailed to be described

here their details will be provided in the relevant func-

tional description section.

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on

their I/O ports. With the input or output designation of ev-

ery pin fully under user program control, pull-high op-

tions for all ports and wake-up options on certain pins,

the user is provided with an I/O structure to meet the

needs of a wide range of application possibilities.

The microcontroller provides a maximum of 44

bidirectional input/output lines labeled with port names

PA, PB, PC, PD, PE and PF. These I/O ports are

mapped to the Data Memory with addresses as shown

in the Special Purpose Data Memory table. Seven of

these I/O lines can be used for input and output opera-

tions and one line as an input only. For input operation,

these ports are non-latching, which means the inputs

must be ready at the T2 rising edge of instruction �MOV

A,[m]�, where m denotes the port address. For output

operation, all the data is latched and remains un-

changed until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for

their switch inputs usually requiring the use of an exter-

nal resistor. To eliminate the need for these external re-

sistors, all I/O pins, when configured as an input have

the capability of being connected to an internal pull-high

resistor. These pull-high resistors are selectable via

configuration options and are implemented using a

weak PMOS transistor.

Port A Wake-up

If the HALT instruction is executed, the device will enter

the Power Down Mode, where the system clock will stop

resulting in power being conserved, a feature that is im-

portant for battery and other low-power applications.

Various methods exist to wake-up the microcontroller,

one of which is a logical transition on one of the Port

A~Port F pins from high to low. After a HALT instruction

forces the microcontroller into entering the Power Down

Mode, the device will remain idle or in a low-power state

until the logic condition of the selected wake-up pin on

Port A~Port F changes from high to low. This function is

especially suitable for applications that can be woken up

via external switches. Note that each pin on Port A~Port

F can be selected individually using configuration op-

tions to have this wake-up feature. Additionally Port A

pins have an additional selection allowing their wake-up

function to be either negative or positive edge triggered.

This option is provided using the PA_WAKE_CTRL reg-

ister. Only Port A pins have this feature, the wake-up

pins on the other ports are only negative edge triggered.

HT82A836R

Rev. 1.10 16 August 5, 2011

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC,

PCC, PDC, PEC and PFC, to control the input/output

configuration. With this control register, each CMOS

output or input with or without pull-high resistor struc-

tures can be reconfigured dynamically under software

control. Each of the I/O ports is directly mapped to a bit

in its associated port control register.

For the I/O pin to function as an input, the corresponding

bit of the control register must be written as a �1�. This

will then allow the logic state of the input pin to be di-

rectly read by instructions. When the corresponding bit

of the control register is written as a �0�, the I/O pin will

be setup as a CMOS output. If the pin is currently setup

as an output, instructions can still be used to read the

output register. However, it should be noted that the pro-

gram will in fact only read the status of the output data

latch and not the actual logic status of the output pin.

Pin-shared Functions

The flexibility of the microcontroller range is greatly en-

hanced by the use of pins that have more than one func-

tion. Limited numbers of pins can force serious design

constraints on designers but by supplying pins with

multi-functions, many of these difficulties can be over-

come. For some pins, the chosen function of the

multi-function I/O pins is set by configuration options

while for others the function is set by application pro-

gram control.

� Serial Interface

The serial interface pins SDO, SDI, SCS and SCK are

pin-shared with the I/O pins PC4, PC5, PC6 and PC7.

For applications not requiring serial interface, the

pin-shared pins can be used as a normal I/O pin.

� External Interrupt

The external interrupt pin INT is pin-shared with the

I/O pin PE7. For applications not requiring an external

interrupt input, the pin-shared external interrupt pin

can be used as a normal I/O pin, however to do this,

the external interrupt enable bits in the MFI1C register

must be disabled.

� External Timer/Event Counter Input

The external timer pins TMR0/TMR1 are pin-shared

with the I/O pins PC1/PC2. If these shared pins are to

be used as a Timer/Event Counter inputs, then the

Timer/Event Counter must be configured to be in the

Event Counter or Pulse Width Measurement Mode.

This is achieved by setting the appropriate bits in the

relevant timer/Event Counter Control Register. The

pin must also be setup as an input by setting the ap-

propriate bit in the Port Control Register Pull-high re-

sistor options can also be selected via the appropriate

port pull-high configuration option. If the shared pin is

to be used as a normal I/O pin, then the external timer

input function must be disabled, by ensuring that the

corresponding Timer/Event Counter is configured to

be in the Off Mode or Timer Mode.

� PFD Output

The device contains a PFD function whose single out-

put is pin-shared with PC0. The output function of this

pin is chosen via software. Note that the correspond-

ing bit of the port control register, PCC.0, must setup

the pin as an output to enable the PFD output. If the

PCC port control register has setup the pin as an in-

put, then the pin will function as a normal logic input

with the usual pull-high option, even if the PFD config-

uration option has been selected.

� SPI Interface

The device contains an internal SPI interface whose

pins are shared with I/O pins PC4~PC7. The SPI In-

terface control register, SBCR, is used to determine if

these pins are to be used as normal I/O pins or as SPI

Interface pins.

I/O Pin Structures

The following diagrams illustrate the I/O pin internal

structures. As the exact logical construction of the I/O

pin may differ from these drawings, they are supplied as

a guide only to assist with the functional understanding

of the I/O pins.

� � � � � � � ' � � � � (#

� 2 � 7

� � - 7

� � - 7 � , � .
 � � + �
 � �

� � - � � , � .
 � � + �
 � �

� � - 5 � , � .
 � � + �
 � �

� � - 4 � , � .
 � � + �
 � �

� � - 1 � , � .
 � � + �
 � �

� � - 3 � , � .
 � � + �
 � �
 �
� � - � � , � .
 � � + �
 � �

� � - 2 � , � .
 � � + �
 � �

� � - �� � - 5� � - 4� � - 1� � - 3� � - �� � - 2

� � - @
�
7

� � � � "
 �
 � �

�
 , � �
 � � � � �
� � � � � �
 � �
 ,

Port A Wake-up

HT82A836R

Rev. 1.10 17 August 5, 2011

Programming Considerations

Within the user program, one of the first things to con-

sider is port initialisation. After a reset, all of the data and

port control register will be set high. This means that all

I/O pins will default to an input state, the level of which

depends on the other connected circuitry and whether

pull-high options have been selected. If the PAC, PBC,

PCC, PDC, PEC and PFC port control registers, are

then programmed to setup some pins as outputs, these

output pins will have an initial high output value unless

the associated PA, PB, PC, PD, PE and PF port data

registers are first programmed. Selecting which pins are

inputs and which are outputs can be achieved byte-wide

by loading the correct value into the port control register

or by programming individual bits in the port control reg-

ister using the �SET [m].i� and �CLR [m].i� instructions.

Note that when using these bit control instructions, a

read-modify-write operation takes place. The

microcontroller must first read in the data on the entire

port, modify it to the required new bit values and then re-

write this data back to the output ports.

Timer/Event Counters

The provision of timers form an important part of any

microcontroller giving the designer a means of carrying

out time related functions. The device contains two in-

ternal 16-bit count-up timers each of which has three op-

erating modes. The timer can be configured to operate

as a general timer, external event counter or as a pulse

width measurement device.

There are three registers related to each of the

Timer/Event Counters, these are a pair or timer regis-

ters and a control register. The register pairs TMR0L/

TMR0H and TMR1L/TMR1H contain the 16-bit timing

value. Writing to these register pairs places an initial

starting value in the Timer/Event Counter preload regis-

ters while reading them retrieves the contents of the

Timer/Event Counter. The TMR0C and TMR1C regis-

ters are the Timer/Event Counter control registers,

which define the timer options, and determines how the

timers are to be used. The timer clock source can be

configured to come from the internal system clock

source or from an external clock on shared pin

PC1/TMR0 and PC2/TMR1.

� � �

� � � � � � �
� 	 � � � 	 �
�
 � � 	 �
�

 � � � � �
�
 � � � � �

�
 �
�
 � � � � �
�
 � � � � �
�
 � � �
 �
�
 � � �
 �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
�
�

 � ! " # $ % & ' " � (�) ' " �

� * & + (� & ' & (� * # " , ' * %

� -

 �

�

� -

 �
�

 � ' % � . (" '
� $. . / 0 " # 1
�) ' " �

� & ' & ($,

2 % " ' * (
 � ' % � . (� * # " , ' * %

 1 ") (� * , * '

� * & + (
 � ' % � . (� * # " , ' * %

2 % " ' * (� & ' & (� * # " , ' * %

� & ' & (" '

� 3 , ' * 4 (2 & 5 * / $) (6 � � (� . 3 7

-

-

	 � (! � % (�
 �
� � � � (! � % (�

� � �
 (! � % (�
 �

�
 �
� � � (! � % (�
 �
� � � (! � % (�
 �
�
 � (! � % (�
 �
�
 � (! � % (�
 �

Input/Output Ports

�
 � � � � � � �
 � � � � � �

2 % " ' * (' � (� � % ' � * & + (! % � 4 (� � % '

� 3 , ' * 4 (
 . � 8 5

� � % ' (� & ' &

Read/Write Timing

HT82A836R

Rev. 1.10 18 August 5, 2011

� # & 7

� 7 ;

� � 	
 � � ; "
 � � � !
 � � �
 �

 �
 � !
 � � �
 �

� � � / � �
� �
 �
 � � � &
 � � � �
 �

 � � � � / � �

&
 �
 � �

� "
 � 0 �
 ,
�
 � (� �
 � � � + �

$
 , � / � �

/ � 0 0
 �

� 7 # � � 7 # 7

� 7 � 9

E � � � � / � �
 $
 , � / � �

� � � / � � � � � 	
 � � ; "
 � � � !
 � � �
 �

0) A) � 1

Timer/Event Counter 0 Structure

� # & �

� � ;

� � 	
 � � ; "
 � � � !
 � � �
 �

 �
 � !
 � � �
 �

� � � / � �
� �
 �
 � � � &
 � � � �
 �

 � � � � / � �

&
 �
 � �

� "
 � 0 �
 ,
�
 � (� �
 � � � + �

$
 , � / � �

/ � 0 0
 �

� � # � � � # 7

� � � 9

E � � � � / � �
 $
 , � / � �

� � � / � � � � � 	
 � � ; "
 � � � !
 � � �
 �

0) A) � 1

Timer/Event Counter 1 Structure

Configuring the Timer/Event Counter Input Clock

Source

The Timer/Event Counter�s clock can originate from var-

ious sources. The system clock source is used when the

Timer/Event Counter is in the timer mode or in the pulse

width measurement mode. An external clock source is

used when the Timer/Event Counter is in the event

counting mode, the clock source being provided on the

external timer pin, TMR0 or TMR1. Depending upon the

condition of the T0E or T1E bit, each high to low, or low

to high transition on the external timer pin will increment

the counter by one.

Timer Registers � TMR0H/TMR0L, TMR1L/TMR1H

The timer register are special function registers located

in the Special Purpose Data Memory and is the place

where the actual timer values are stored. These regis-

ters exist in pairs and are known as TMR0L/TMR0H and

TMR1L/TMR1H. The value in these timer registers in-

creases by one each time an internal clock pulse is re-

ceived or an external transition occurs on the external

timer pin. The timer will count from the initial value

loaded by the preload register to the full count of FFFFH

at which point the timer overflows and an internal inter-

rupt signal is generated. The timer value will then be re-

HT82A836R

Rev. 1.10 19 August 5, 2011

set with the initial preload register value and continue

counting. To achieve a maximum full range count of

FFFFH the preload register must first be cleared to all

zeros. It should be noted that after power-on, the

preload register will be in an unknown condition. Note

that if the Timer/Event Counter is switched off and data

is written to its preload register, this data will be immedi-

ately written into the actual timer register. However, if

the Timer/Event Counter is enabled and counting, any

new data written into the preload data register during

this period will remain in the preload register and will

only be written into the timer register the next time an

overflow occurs.

Note that writing data to the lower byte 8-bit registers,

TMR0L/TMR1L, will only put the written data into an in-

ternal lower-order byte 8-bit buffer, while writing to the

high byte 8-bit registers, TMR0H/TMR1H will transfer

the specified data and the contents of the lower-order

byte buffer into both the TMR0/1H and TMR0/1L regis-

ters. The Timer/Event Counter preload register is modi-

fied by writing to the TMR0/1H registers. Reading the

TMR0H/TMR1H registers will latch the contents of both

the TMR0H/TMR1H and the TMR0L/TMR1L counters to

the destination and the lower-order byte buffer. How-

ever reading the TMR0L/TMR1L will only read the con-

tents of the low byte buffer.

Timer Control Register � TMR0C, TMR1C

The flexible features of the Holtek microcontroller

Timer/Event Counters enable them to operate in three

different modes, the options of which are determined by

the contents of their control register, which has the

name TMR0C and TMR1C. It is the Timer Control Reg-

ister together with their corresponding timer register pair

that control the full operation of the Timer/Event Coun-

ter. Before the Timer/Event Counter can be used, it is

essential that the Timer Control Register pair is fully pro-

grammed with the right data to ensure its correct opera-

tion, a process that is normally carried out during

program initialisation. To choose which of the three

modes the Timer/Event Counter is to operate in, either

in the timer mode, the event counting mode or the pulse

width measurement mode, bits 7 and 6 of the Timer

Control Register, which are known as the bit pair

TM1/TM0, must be set to the required logic levels. The

Timer/Event Counter on/off bit, which is bit 4 of the

Timer Control Register and known as TON, provides the

basic on/off control of the Timer/Event Counter. Setting

the bit high allows the Timer/Event Counter to run, clear-

ing the bit stops it running. If the Timer/Event Counter is

in the event count or pulse width measurement mode,

the active transition edge level type is selected by the

logic level of bit 3 of the Timer control Register which is

known as TE.

� & 	
) ! � & 	 *) � 	 � � � � � � �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

� 2

; "
 � � � !
 � � �
 � � � � � � "
 � ; � �
 �)
 �
 � �
� B � �
 � � � �
 � � 0 � � � � � � �
 � �

7 B � �
 � � � �
 � � � � � � � � �
 � �
 �

� ;� � 9� # 7� # �

� 7

� � 	
 � � ; "
 � � � !
 � � �
 � � !
 � � � � � � � ; � � � �

� B �
 � � � �

7 B � � � � � � �

� +
 � � � � � � � #
 �
 �)
 �
 � �

� # �
7
7
�
�

� # 7
7
�
7
�

�
 � 	
 �
 � � " � � � � � �

 "
 � � � �
 � � �
 � � 	
 �
 �
� � 	
 � � 	
 �

+ � � �
 � , � � � � � 	
 � � � �
 	
 � � � 	
 �

� � � �
 � � � � � � � #
 � � � �
 	
 � � � � � � � "
 � ; � �
 �)
 �
 � �
� B � � � � � � � �
 � � � � � � �
 � � � � � � � � �
 � �
 C � � �
 + �
 � � 0 � � � � � � �
 � �

7 B � � � � � � � �
 � � � � � � �
 � � 0 � � � � � � �
 � �
 C � � �
 + �
 � � � � � � � � �
 � �
 �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

Timer/Event Counter 0/1 Control Register

HT82A836R

Rev. 1.10 20 August 5, 2011

Configuring the Timer Mode

In this mode, the timer can be utilised to measure fixed

time intervals, providing an internal interrupt signal each

time the counter overflows. To operate in this mode, bits

TM1 and TM0 of the TMRC register must be set to 1 and

0 respectively. In this mode, the internal clock is used as

the timer clock. The input clock frequency to the timer is

fSYS/4. The timer-on bit, TON, must be set high to enable

the timer to run. Each time an internal clock high to low

transition occurs, the timer increments by one. When

the timer is full and overflows, the timer will be reset to

the value already loaded into the preload register and

continue counting. If the timer interrupt is enabled, an in-

terrupt signal will also be generated. The interrupt can

be disabled by ensuring that the Timer/Event Counter

Interrupt Enable bit in the Interrupt Control Register,

INTC0, is reset to zero.

Configuring the Event Counter Mode

In this mode, a number of externally changing logic

events, occurring on the external timer pin, can be re-

corded by the Timer/Event Counter. To operate in this

mode, the Operating Mode Select bit pair in the Timer

Control Register must be set to the correct value. In this

mode the external timer pin is used as the Timer/Event

Counter clock source. After the other bits in the Timer

Control Register have been setup, the enable bit, which

is bit 4 of the Timer Control Register, can be set high to

enable the Timer/Event Counter to run. If the Active

Edge Select bit, which is bit 3 of the Timer Control Reg-

ister, is low, the Timer/Event Counter will increment

each time the external timer pin receives a low to high

transition. If the Active Edge Select bit is high, the coun-

ter will increment each time the external timer pin re-

ceives a high to low transition. When it is full and

overflows, an interrupt signal is generated and the

Timer/Event Counter will reload the value already

loaded into the preload register and continue counting.

The interrupt can be disabled by ensuring that the

Timer/Event Counter Interrupt Enable bit in the Interrupt

Control Register, INTC0, is reset to zero.

As the external timer pin is shared with an I/O pin, to en-

sure that the pin is configured to operate as an event

counter input pin, two things have to happen. The first is

to ensure that the Operating Mode Select bits in the

Timer Control Register place the Timer/Event Counter in

the Event Counting Mode, the second is to ensure that

the port control register configures the pin as an input. It

should be noted that in the event counting mode, even if

the microcontroller is in the Power Down Mode, the

Timer/Event Counter will continue to record externally

changing logic events on the timer input pin. As a result

when the timer overflows it will generate a timer interrupt

and corresponding wake-up source.

Configuring the Pulse Width Measurement Mode

In this mode, the Timer/Event Counter can be utilised to

measure the width of external pulses applied to the ex-

ternal timer pin. To operate in this mode, the Operating

Mode Select bit pair in the Timer Control Register must

be set to the correct value. In this mode the internal

clock, fSYS/4, is used as the Timer/Event Counter clock.

After the other bits in the Timer Control Register have

been setup, the enable bit, which is bit 4 of the Timer

Control Register, can be set high to enable the

Timer/Event Counter, however it will not actually start

counting until an active edge is received on the external

timer pin.

If the Active Edge Select bit, which is bit 3 of the Timer

Control Register, is low, once a high to low transition has

been received on the external timer pin, the Timer/Event

Counter will start counting until the external timer pin re-

turns to its original high level. At this point the enable bit

will be automatically reset to zero and the Timer/Event

Counter will stop counting. If the Active Edge Select bit

is high, the Timer/Event Counter will begin counting

once a low to high transition has been received on the

external timer pin and stop counting when the external

timer pin returns to its original low level. As before, the

enable bit will be automatically reset to zero and the

Timer/Event Counter will stop counting. It is important to

note that in the Pulse Width Measurement Mode, the

(� � �
 	
 � �
� � 	
 � � !
 � � �
 � �
 �

� �
 � � � �
 � � � � � + � �

� � 	
 � � : � � � � 	
 � � : � 5 � � 	
 � � : � 9 � � 	
 � � : � 9 � : � �

Timer Mode Timing Chart

� � 	
 � : 5

; @ �
 � � � � � � � 	
 �
� � � � (� + � �

� ; L �

(� � �
 	
 � �
� � 	
 � � !
 � � �
 � � � 	
 � : 4� � 	
 � : �

Event Counter Mode Timing Chart

HT82A836R

Rev. 1.10 21 August 5, 2011

enable bit is automatically reset to zero when the exter-

nal control signal on the external timer pin returns to its

original level, whereas in the other two modes the en-

able bit can only be reset to zero under program control.

The residual value in the Timer/Event Counter, which

can now be read by the program, therefore represents

the length of the pulse received on the external timer

pin. As the enable bit has now been reset, any further

transitions on the external timer pin will be ignored. Not

until the enable bit is again set high by the program can

the timer begin further pulse width measurements. In

this way, single shot pulse measurements can be easily

made.

It should be noted that in this mode the Timer/Event

Counter is controlled by logical transitions on the exter-

nal timer pin and not by the logic level. When the

Timer/Event Counter is full and overflows, an interrupt

signal is generated and the Timer/Event Counter will re-

load the value already loaded into the preload register

and continue counting. The interrupt can be disabled by

ensuring that the Timer/Event Counter Interrupt Enable

bit in the Interrupt Control Register, INTC0, is reset to

zero.

As the external timer pin is shared with an I/O pin, to en-

sure that the pin is configured to operate as a pulse

width measurement pin, two things have to happen. The

first is to ensure that the Operating Mode Select bits in

the Timer Control Register place the Timer/Event Coun-

ter in the Pulse Width Measurement Mode, the second

is to ensure that the port control register configures the

pin as an input.

I/O Interfacing

The Timer/Event Counter, when configured to run in the

event counter or pulse width measurement mode, re-

quires the use of an external pin for correct operation.

As the external timer pin is pin-shared with an I/O pin, it

must be configured correctly to ensure it is setup for use

as a Timer/Event Counter input and not as a normal I/O

pin. This is implemented by ensuring that the mode se-

lect bits in the Timer/Event Counter control register, se-

lect ei ther the event counter or pulse width

measurement mode. Additionally the Port Control Reg-

ister bit for this pin must be set high to ensure that the

pin is setup as an input. Any pull-high configuration for

this pins will remain valid even if the pin is used as a

Timer/Event Counter input.

Programming Considerations

When configured to run in the timer mode, the fSYS/4 is

used as the timer clock source and is therefore synchro-

nised with the overall operation of the microcontroller. In

this mode, when the appropriate timer register is full, the

microcontroller will generate an internal interrupt signal

directing the program flow to the respective internal in-

terrupt vector. For the pulse width measurement mode,

the fSYS/4 clock is also used as the timer clock source

but the timer will only run when the correct logic condi-

tion appears on the external timer input pin. As this is an

external event and not synchronized with the internal

timer clock, the microcontroller will only see this external

event when the next timer clock pulse arrives. As a re-

sult there may be small differences in measured values

requiring programmers to take this into account during

programming. The same applies if the timer is config-

ured to be in the event counting mode which again is an

external event and not synchronised with the fSYS/4

clock.

When the Timer/Event Counter is read or if data is writ-

ten to the preload registers, the clock is inhibited to

avoid errors, however as this may result in a counting er-

ror, this should be taken into account by the program-

mer. Care must be taken to ensure that the timers are

properly initialised before using them for the first time.

The associated timer enable bits in the interrupt control

register must be properly set otherwise the internal in-

terrupt associated with the timer will remain inactive.

The edge select, timer mode and clock source control

bits in timer control register must also be correctly set to

ensure the timer is properly configured for the required

application. It is also important to ensure that an initial

value is first loaded into the timer register before the

timer is switched on; this is because after power-on the

initial value of the timer register is unknown. After the

timer has been initialised the timer can be turned on and

off by controlling the enable bit in the timer control regis-

ter. Note that setting the timer enable bit high to turn the

timer on, should only be executed after the timer mode

: � : 5 : 4 : 1� � 	
 �

; @ �
 � � � � � � � 	
 �
� � � � (� + � �

� � 9 � > , � � � � � ; L 7 ?

� � 	
 � � ! �
 � .

(� � �
 	
 � �
� � 	
 � � !
 � � �
 �

� � 	
 � � ! �
 � . � � � � � � 	 + �
 � � � � �
 "
 � � � 0 � � � � � � �
 � �
 �
 0 � � � -

Pulse Width Measure Mode Timing Chart

HT82A836R

Rev. 1.10 22 August 5, 2011

bits have been properly setup. Setting the timer enable

bit high together with a mode bit modification, may lead

to improper timer operation if executed as a single timer

control register byte write instruction. When the

Timer/Event counter overflows, its corresponding inter-

rupt request flag in the interrupt control register will be

set. If the timer interrupt is enabled this will in turn gener-

ate an interrupt signal. However irrespective of whether

the timer interrupt is enabled or not, a Timer/Event

counter overflow will also generate a wake-up signal if

the device is in a Power-down condition. This situation

may occur if the Timer/Event Counter is in the Event

Counting Mode and if the external signal continues to

change state. In such a case, the Timer/Event Counter

will continue to count these external events and if an

overflow occurs the device will be woken up from its

Power-down condition. To prevent such a wake-up from

occurring, the timer interrupt request flag should first be

set high before issuing the HALT instruction to enter the

Power Down Mode.

Timer Program Example

This program example shows how the Timer/Event

Counter registers are setup, along with how the inter-

rupts are enabled and managed. Note how the

Timer/Event Counter is turned on, by setting bit 4 of the

Timer Control Register. The Timer/Event Counter can

be turned off in a similar way by clearing the same bit.

This example program sets the Timer/Event Counter to

be in the timer mode, which uses the internal system

clock as the clock source.

org 04h ; usb interrupt vector
jmp usbint
reti
org 08h ; Timer/Event Counter 0 interrupt vector
jmp tmr0int ; jump here when Timer 0 overflows
:
org 20h ; main program
;internal Timer/Event Counter interrupt routine
tmr0int:
:
; Timer/Event Counter 0 main program placed here
:
reti
:
:
begin:
;setup Timer 0 registers

mov a,09bh ; setup preload value � timer0 counts from this value to FFFFH
mov tmr0l,a;
mov a,00h
mov tmr0h,a;
mov a,080h ; setup Timer 0 control register
mov tmr0c,a ; timer mode
; setup interrupt register
mov a,005h ; enable master interrupt and timer interrupt
mov intc0,a

set tmr0c.4 ; start Timer 0 � note mode bits must be previously setup

HT82A836R

Rev. 1.10 23 August 5, 2011

Programmable Frequency Divider � PFD

The Programmable Frequency Divider function, PFD,

allows the generation of a user defined frequency. The

clock source for the PFD is the system clock divided by

4, which after being divided by 16 is then passed

through a programmable prescaler and the PFDD regis-

ter allows a range of user defined frequencies to be gen-

erated.

Overall operation of the PFD is controlled using two reg-

isters, the PFDC register and the PFDD register. As the

PFD output pin is pin-shared with I/O pin PC0, the

PFD_IO bit in the PFDC register is used to select

whether the pin is to be used an a normal I/O function or

to be used as a PFD output. The PFDEN bit is used to

control the overall on/off function of the PFD, while bits

PRES0 and PRES1 are used to select the frequency di-

vision ratio of the prescaler. The PFDD register provided

further division of the clock source, however this register

can only be written to when the PFD function is enabled.

If the PFD function is disabled, then all write operations

to the PFDD register will be inhibited. When the PFD is

disabled note that the PFDD register will be automati-

cally cleared. The PFDD contents, the PFD must be en-

abled. When the generator is disabled, the PFDD is

cleared by hardware.

0) A) � 1
1 �) � � �
 � � �
 � � � �
 �

> � � � � ?

� �
� �
 � �
 � � �

� �
 � � � �
 �

� & ;) � C � � & ;) 7

� �
 � � � �
 �
� � � + � �

� �

� �
� � � + � �

� � ; 9

PFD Block Diagram

� � +) � 	 � � � � � � �

� 7

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

�
 ,
 � � � 	 + � � 0 �
 � � � � + � � � �
 � � �

� B � # *) ! (8 (9 � �
 � � �

7 B � *) / � � � � �
 � � � � � � �
 � � �

� ! 7 � � � � + � � � 0 � � � � �
 � � �
 � � �
 �
� B � � � �
 � � + � �
7 B � � ! 7 � (� � � + � �

� 2

) ; $ �� � 8 (�� � ; 9� & ;) 7� & ;) �

� � �
 � � � �
 � �
 � � �
 �
� B �
 � � � �

7 B � � � � � � �

� �
 � � � �
 � � �
 � � �
 �

� & ;) �
7
7
�
�

� & ;) 7
7
�
7
�

 � " � � �
 � � & � � �

� � �

� � 5

� � 1

� � ' �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

PFDC Register

The generated frequency of the PFD function is given by the following formula:

Power Amplifier

The SELW bit in the PFDC register is used to control the power amplifier input source. The software should set SELW =

�1� when the power amplifier signal come from MUSIC_IN, otherwise the speaker output USB Audio data.

� � �
 � � + � � � 0 �
 � �
 � � � � L �
� �
 � � � �
 � � � � � + � �

5 @ > 9 : � ?
C � , �
 �
 � 9 L � � �
 � " � � �
 �
 0 � � �
 � � � � � � � �

� � � � � � � � �
� � � + � �

#
*
J

) ; $ � L 7

) ; $ � L � �
 ,
 � � � 	 +
$ � * �

& � * �

*) (! 8 (9

HT82A836R

Rev. 1.10 24 August 5, 2011

Interrupts

Interrupts are an important part of any microcontroller

system. When a USB Interrupt, play/record data valid in-

terrupt, a Timer/Event Counter overflow, reception of

SPI data, A/D Interrupt or External Interrupt is occurs,

their corresponding interrupt will enforce a temporary

suspension of the main program allowing the

microcontroller to direct attention to their respective

needs. The device provides a USB interrupt, two inter-

nal timer/event counter interrupts, a play/record data

valid interrupt and a Multi function interrupt. This latter

Multi-function Interrupt represents the Serial Interface

Interrupt, A/D Interrupt or the External Interrupt.

Interrupt Registers

Overall interrupt control, which means interrupt enabling

and request flag setting, is controlled by three interrupt

control registers INTC0, INTC1 and MFI1C which are lo-

cated in the Data Memory. By controlling the appropriate

enable bits in this register each individual interrupt can

be enabled or disabled. Also when an interrupt occurs,

the corresponding request flag will be set by the

microcontroller. The global enable flag if cleared to zero

will disable all interrupts.

Interrupt Operation

A USB interrupt, a Play or Record data valid interrupt, a

Timer/Event Counter overflow, an SPI interrupt, an A/D

conversion complete interrupt or an active edge on the

external interrupt pin will all generate an interrupt re-

quest by setting their corresponding request flag, if their

appropriate interrupt enable bit is set. When this hap-

pens, the Program Counter, which stores the address of

the next instruction to be executed, will be transferred

onto the stack. The Program Counter will then be loaded

with a new address which will be the value of the corre-

sponding interrupt vector. The microcontroller will then

fetch its next instruction from this interrupt vector. The

instruction at this vector will usually be a JMP statement

which will jump to another section of program which is

known as the interrupt service routine. Here is located

the code to control the appropriate interrupt. The inter-

rupt service routine must be terminated with a RETI

statement, which retrieves the original Program Counter

address from the stack and allows the microcontroller to

continue with normal execution at the point where the in-

terrupt occurred. The various interrupt enable bits, to-

gether with their associated request flags, are shown in

the following diagram with their order of priority. Once

an interrupt subroutine is serviced, all the other inter-

rupts will be blocked, as the EMI bit will be cleared auto-

matically. This will prevent any further interrupt nesting

from occurring. However, if other interrupt requests oc-

cur during this interval, although the interrupt will not be

immediately serviced, the request flag will still be re-

corded. If an interrupt requires immediate servicing

while the program is already in another interrupt service

routine, the EMI bit should be set after entering the rou-

tine, to allow interrupt nesting. If the stack is full, the in-

terrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is

decremented. If immediate service is desired, the stack

must be prevented from becoming full.

Interrupt Priority

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In case of simultaneous requests, the

following table shows the priority that is applied. These

can be masked by resetting the EMI bit.

No. Interrupt Source Priority Vector

a USB Interrupt 1 04H

b Timer/Event Counter 0 overflow 2 08H

c Timer/Event Counter 1 overflow 3 0CH

d Play Interrupt 4 10H

e

Multi function 1 interrupt subrou-

tine:Serial Interface Interrupt,

A/D Interrupt, External Interrupt

5 14H

f Record Interrupt 6 18H

In cases where both USB and Play interrupts are en-

abled and where an USB and Play interrupt occurs si-

multaneously, the USB interrupt will always have priority

and will therefore be serviced first. Suitable masking of

the individual interrupts using the interrupt registers can

prevent simultaneous occurrences.

HT82A836R

Rev. 1.10 25 August 5, 2011

, - �) * � 	 � � � � � � �

� � � � � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

!
 � � �
 � � � �
 � # � � � � � 0 � � � � �
 � � � � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

&
 �
 � � � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

� � � � � � � �
 � � � + � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

� � � � � 0 � � � � �
 � � � � �
 � � � + � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

&
 �
 � � � � � �
 � � � + � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

� 2 � 7

; # � � (; � $ � A (� $ � A �& ; ! � # � � � � $ � A �

INTC1 Register

, - �)
 � 	 � � � � � � �

!
 � � �
 � � � � �
 � 	 � � �
 � � > � �
 � � � ? � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

!
 � � �
 � � � �
 � *) / � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

!
 � � �
 � � � � �
 � � � 	
 � � ; "
 � � � !
 � � �
 � � 7 � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

!
 � � �
 � � � � �
 � � � 	
 � � ; "
 � � � !
 � � �
 � � � � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

*) / � � � �
 � � � + � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

(� �
 � � � � � � � 	
 � � ; "
 � � � !
 � � �
 � � 7 � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

(� �
 � � � � � � � 	
 � � ; "
 � � � !
 � � �
 � � � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

� 2 � 7

; ; (; # (; (� ; � � (� � � � 7 � ; � 7 (

INTC0 Register

HT82A836R

Rev. 1.10 26 August 5, 2011

� � �
 	 � � � � � � � � � ! �
 � �
 � � � � � () & � �

 @ �
 + � � 0
 � �) (� C � � � � � � � � ; (�

� � � � � � � �)
 � �
 � � ! �
 � �
 � � � � �)
 0 � , � �

*) / � (� �
 � � � + �
&
 � �
 � � � � � � � � *) / �

� � 	
 � � ; "
 � � � !
 � � �
 � �
(� �
 � � � + � � &
 � �
 � � � � � � � � � 7 �

; * (

; � 7 (

; # (

� � �
 � � � �

(� �
 � � � + �
�
 � � � � �

E � � �

$
 ,

� � �
 	 � � � � � � � � � � � � � �
 � � � � � () &
! � � � �
 � ; � � � �
 � � # � � � � � � �

; � � (

� � � � � (� �
 � � � + �
&
 � �
 � � � � � � � � � $ � A �

; � $ � A (

� � � � � � � � � � �
 � � (� �
 � � � + �
&
 � �
 � � � � � � � � # � � �

; # � � (

&
 �
 � � � (� �
 � � � + �
&
 � �
 � � � � � � � � & ; ! �

& ; ! (

� � 	
 � � ; "
 � � � !
 � � �
 � �
(� �
 � � � + � � &
 � �
 � � � � � � � � � � �

)
 � � � � � (� �
 � 0 � �
 � (� �
 � � � + �
&
 � �
 � � � � � � � �) (�

;) ((

� � � !
 � "
 � �
 � � (� �
 � � � + �
&
 � �
 � � � � � � � � � �

; � (

; @ �
 � � � � � (� �
 � � � + �
&
 � �
 � � � � � � � � ; (�

; ; (

Interrupt Structure

USB Interrupt

The USB interrupt will be triggered by any of the follow-

ing USB events resulting in the related interrupt request

flag, USBF; bit 4 of INTC0, being set:

� A PC access of the corresponding USB FIFO

� A USB suspend signal from the PC

� A USB resume signal from the PC

� A USB Reset signal

When the interrupt is enabled, the stack is not full and

the interrupt is active, a subroutine call to location 04H

will occur. The interrupt request flag, USBF, and EMI bits

will be cleared to disable other interrupts. When the PC

Host accesses the HT82A836R FIFO, the correspond-

ing USR request bit is set, and a USB interrupt is trig-

gered. In this way the user can determine which FIFO

has been accessed. When the interrupt has been ser-

viced, the corresponding bit will be automatically

cleared. When the HT82A836R receives a USB Sus-

pend signal from the host PC, the suspend line, bit0 of

the USC register, in the HT82A836R is set and a USB

interrupt is also triggered. Also when the device re-

ceives a Resume signal from the host PC, the resume

line, bit3 of the USC register, is set and a USB interrupt

generated.

Timer/Event Counter Interrupt

For a Timer/Event Counter interrupt to occur, the global

interrupt enable bit, EMI, and the corresponding timer

interrupt enable bit, ET0I or ET1I, must first be set. An

actual Timer/Event Counter interrupt will take place

when the Timer/Event Counter request flag, T0F or T1F,

is set, a situation that will occur when the relevant

Timer/Event Counter overflows. When the interrupt is

enabled, the stack is not full and a Timer/Event Counter

0 overflow occurs, a subroutine call to the timer 0 inter-

rupt vector at location 08H, will take place. If a

Timer/Event Counter 1 overflow occurs, a subroutine

call to the timer 1 interrupt vector at location 0CH will

take place. When the interrupt is serviced, the timer in-

terrupt request flag, T0F or T1F, will be automatically re-

set and the EMI bit will be automatically cleared to

disable other interrupts.

Play Interrupt

For a Play Interrupt to occur, the global interrupt enable

bit, , and the corresponding Play Interrupt bit, EPLAI,

must first be set. An actual Play Interrupt will take place

when the Play Interrupt request flag, PLAYF, is set, a sit-

uation that will occur at a regular play frequency of 8kHz

if the PLAY_MODE bit in the MODE_CTRL register is

HT82A836R

Rev. 1.10 27 August 5, 2011

set high. If this bit is not high, then the play interrupt fre-

quency will be 48kHz. When the interrupt is enabled, the

stack is not full and a Play Interrupt occurs, a subroutine

call to the Play Interrupt vector at location 10H, will take

place. When the interrupt is serviced, the Play Interrupt

request flag, PLAYF, will be automatically reset and the

EMI bit will be automatically cleared to disable other in-

terrupts.

Multi Function Interrupt

An additional interrupt known as the Multi-function inter-

rupt is provided. Unlike the other interrupts, this interrupt

has no independent source, but rather is formed from

three other existing interrupt sources, namely the Serial

Interface interrupt, the A/D Converter interrupt and the

External interrupt. The Multi-function interrupt is en-

abled by setting the EMF1I bit, which is bit 1 of the

INTC1 register. An actual Multi-function interrupt will be

initialised when the Multi-function interrupt request flag

MFF1 is set, this is bit 5 of the INTC1 register. When the

master interrupt global bit is set, the stack is not full and

the corresponding EMF1I interrupt enable bit is set, a

Multi-Function internal interrupt will be generated when

either a Serial Interface Interrupt, an A/D Converter In-

terrupt or an External Interrupt occurs. This will create a

subroutine call to its corresponding vector location

014H. When a Multi-function internal interrupt occurs,

the Multi-Function request flag MFF1 will be reset and

the EMI bit will be cleared to disable other interrupts.

However, it must be noted that the request flags from the

original source of the Multi-function interrupt, namely

the Serial Interface Interrupt, the A/D Converter or the

External Interrupt will not be automatically reset and

must be manually reset by the user.

External Interrupt

The device contains an external interrupt function con-

trolled by the external pin INT. For an external interrupt

to occur, the pin must be setup as an interrupt input pin

by ensuring that the corresponding external interrupt

enable bit is first set. This is bit 2 in the MFI1C register

and known as EEI. An external interrupt is triggered by a

negative edge transition on the external interrupt pin

INT, after which the related interrupt request flag, EIF,

which is bit 6 in the MFI1C register, will be set. The inter-

rupt vector for the External Interrupt is the Multi-function

interrupt located at 014H. Therefore if the Multi-function

and External Interrupts are enabled, the stack is not full

and a negative logical transition occurs on pin INT, a

subroutine call to location 014H will take place. The

Multi-function Interrupt request flag MFF1 will be reset

automatically and the EMI bit will be cleared to disable

other interrupts. The External Interrupt flag will not be

reset automatically and needs to be reset manually by

the application program. The external interrupt pin INT

is pin-shared with I/O pin PE7 and can only be config-

ured as external interrupt pins if the interrupt is enabled

and if the pin is programmed as an input pins.

A/D Converter Interrupt

The device contains an internal A/D converter with its

own interrupt function. For an A/D Interrupt to occur, the

corresponding A/D Interrupt enable bit must be first set.

This is bit 1 in the MFI1C register and known as EADI.

An A/D Interrupt is generated when the A/D conversion

process is complete, after which the related interrupt re-

quest flag, ADF, which is bit 5 in the MFI1C register, will

be set. The interrupt vector for the A/D Interrupt is the

Multi-function interrupt located at 014H. Therefore if the

Multi-function and A/D Interrupt are enabled, the stack is

& � , *) � 	 � � � � � � �

!
 � � �
 � �)
 � � � � � � � �
 � 0 � �
 � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �
 �

!
 � � �
 � � � �
 � � � � !
 � "
 � �
 � � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �
 �

!
 � � �
 � � � �
 �
 @ �
 � � � � � � � �
 � � � + �
� B �
 � � � �

7 B � � � � � � �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

)
 � � � � � � � �
 � 0 � �
 � � � �
 � � � + � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "
 �

� � � �
 � "
 � �
 � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "
 �

; @ �
 � � � � � � � �
 � � � + � � �
 � �
 � � � 0 � � �
� B � � � � � "

7 B � � � � � � � "

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

� 2 � 7

; � (;) ((; ; (; (� � �) (�

MFI1C Register

HT82A836R

Rev. 1.10 28 August 5, 2011

not full and the A/D conversion completes, a subroutine

call to location 014H will take place. The Multi-function

Interrupt request flag MFF1 will be reset automatically

and the EMI bit will be cleared to disable other inter-

rupts. The A/D Interrupt flag will not be reset automati-

cally and needs to be reset manually by the application

program.

Serial Interface Interrupt

The device contains an internal Serial Interface with its

own interrupt function. For a Serial Interface Interrupt to

occur, the corresponding Serial Interface Interrupt en-

able bit must be first set. This is bit 0 in the MFI1C regis-

ter and known as ESII. A Serial Interface Interrupt is

generated when a data reception or transmission is

complete, after which the related interrupt request flag,

SIF, which is bit 4 in the MFI1C register, will be set. The

interrupt vector for the Serial Interface Interrupt is the

Multi-function Interrupt, located at 014H. Therefore if the

Multi-function and Serial Interface Interrupt are enabled,

the stack is not full and a serial interface data reception

or transmission is complete, a subroutine call to location

014H will take place. The Multi-function Interrupt re-

quest flag MFF1 will be reset automatically and the EMI

bit will be cleared to disable other interrupts. The Serial

Interface Interrupt flag will not be reset automatically

and needs to be reset manually by the application pro-

gram.

Record Interrupt

For a Record Interrupt to occur, the global interrupt en-

able bit, EMI, and the corresponding Record Interrupt

bit, RECI, must first be set. An actual Record Interrupt

will take place when the Record Interrupt request flag,

RECF, is set, a situation that will occur when the record

data is valid. When the interrupt is enabled, the stack is

not full and a Record Interrupt occurs, a subroutine call

to the Record Interrupt vector at location 18H, will take

place. When the interrupt is serviced, the Record Inter-

rupt request flag, RECF, will be automatically reset and

the EMI bit will be automatically cleared to disable other

interrupts. If the A/D Converter is powered down

(AD_ENB =1), PLL clock disabled (PLLEN=1) or USB

clock disabled (USBCKEN=0), the record interrupt also

be disabled.

Programming Considerations

By disabling the interrupt enable bits, a requested inter-

rupt can be prevented from being serviced, however,

once an interrupt request flag is set, it will remain in this

condition in the interrupt control register until the corre-

sponding interrupt is serviced or until the request flag is

cleared by a software instruction.

It is recommended that programs do not use the �CALL

subroutine� instruction within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or

need to be serviced immediately in some applications. If

only one stack is left and the interrupt is not well con-

trolled, the original control sequence will be damaged

once a �CALL subroutine� is executed in the interrupt

subroutine.

All of these interrupts have the capability of waking up

the processor when in the Power Down Mode. Only the

Program Counter is pushed onto the stack. If the con-

tents of the accumulator or status register are altered by

the interrupt service program, which may corrupt the de-

sired control sequence, then the contents should be

saved in advance.

Reset and Initialisation

A reset function is a fundamental part of any

microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside

parameters. The most important reset condition is after

power is first applied to the microcontroller. In this case,

internal circuitry will ensure that the microcontroller, af-

ter a short delay, will be in a well defined state and ready

to execute the first program instruction. After this

power-on reset, certain important internal registers will

be set to defined states before the program com-

mences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to

begin program execution from the lowest Program

Memory address.

In addition to the power-on reset, situations may arise

where it is necessary to forcefully apply a reset condition

when the microcontroller is running. One example of this

is where after power has been applied and the

microcontroller is already running, the RESET line is

forcefully pulled low. In such a case, known as a normal

operation reset, some of the microcontroller registers

remain unchanged allowing the microcontroller to pro-

ceed with normal operation after the reset line is allowed

to return high. Another type of reset is when the Watch-

dog Timer overflows and resets the microcontroller. All

types of reset operations result in different register con-

ditions being setup.

Another reset exists in the form of a Low Voltage Reset,

LVR, where a full reset, similar to the RESET reset is im-

plemented in situations where the power supply voltage

falls below a certain threshold.

Reset Functions

There are five ways in which a microcontroller reset can

occur, through events occurring both internally and ex-

ternally:

� Power-on Reset

The most fundamental and unavoidable reset is the

one that occurs after power is first applied to the

microcontroller. As well as ensuring that the Program

Memory begins execution from the first memory ad-

HT82A836R

Rev. 1.10 29 August 5, 2011

dress, a power-on reset also ensures that certain

other registers are preset to known conditions. All the

I/O port and port control registers will power up in a

high condition ensuring that all pins will be first set to

inputs.

Although the microcontroller has an internal RC reset

function, if the VDD power supply rise time is not fast

enough or does not stabilise quickly at power-on, the

internal reset function may be incapable of providing

proper reset operation. For this reason it is recom-

mended that an external RC network is connected to

the RESET pin, whose additional time delay will en-

sure that the RESET pin remains low for an extended

period to allow the power supply to stabilise. During

this t ime delay, normal operat ion of the

microcontroller will be inhibited. After the RESET line

reaches a certain voltage value, the reset delay time

tRSTD is invoked to provide an extra delay time after

which the microcontroller will begin normal operation.

The abbreviation SST in the figures stands for System

Start-up Timer.

For most applications a resistor connected between

VDD and the RESET pin and a capacitor connected

between VSS and the RESET pin will provide a suit-

able external reset circuit. Any wiring connected to the

RESET pin should be kept as short as possible to min-

imize any stray noise interference.

For applications that operate within an environment

where more noise is present the Enhanced Reset Cir-

cuit shown is recommended.

� RES Pin Reset

This type of reset occurs when the microcontroller is

already running and the RESET pin is forcefully pulled

low by external hardware such as an external switch.

In this case as in the case of other reset, the Program

Counter will reset to zero and program execution initi-

ated from this point.

� Low Voltage Reset � LVR

The microcontroller contains a low voltage reset cir-

cuit in order to monitor the supply voltage of the de-

vice, which is selected via a configuration option. If the

supply voltage of the device drops to within a range of

0.9V~VLVR such as might occur when changing the

battery, the LVR will automatically reset the device in-

ternally. The LVR includes the following specifica-

tions: For a valid LVR signal, a low voltage, i.e., a

voltage in the range between 0.9V~VLVR must exist for

greater than the value tLVR specified in the A.C. char-

acteristics. If the low voltage state does not exceed

1ms, the LVR will ignore it and will not perform a reset

function.

� Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal opera-

tion is the same as a hardware RES pin reset except

that the Watchdog time-out flag TO will be set to �1�.

� Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is

a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Pro-

gram Counter and the Stack Pointer will be cleared to

�0� and the TO flag will be set to �1�. Refer to the A.C.

Characteristics for tSST details.

& ;) ; �

7 - � � �

� 7 7 . �

%

%))

7 - 7 � � �

� 7 . �

Enhanced Reset Circuit

& ;) ; �

%

%))

7 - � � �

� 7 7 . �

Basic Reset Circuit

& ;)

%

)) � � � � 	
 �
 � �

(� �
 � � � � � &
 �
 �

7 - 6 � %

� &) �

Power-On Reset Timing Chart

$ % &

)) � � � � 	
 �
 � �

(� �
 � � � � � &
 �
 �

� &) �

Low Voltage Reset Timing Chart

� � � � � 	
 �
 � �

)) � � � � 	
 �
 � �

(� �
 � � � � � &
 �
 �

� &) �

WDT Time-out Reset during Normal Operation

Timing Chart

� � � � � 	
 �
 � �

)) � � � � 	
 �
 � �

�)) �

WDT Time-out Reset during Power Down

Timing Chart

& ;)

)) � � � � 	
 �
 � �

(� �
 � � � � � &
 �
 �

7 - 6 � %

7 - 1 � %

� &) �

RES Reset Timing Chart

HT82A836R

Rev. 1.10 30 August 5, 2011

Reset Initial Conditions

The different types of reset described affect the reset

flags in different ways. These flags, known as PDF and

TO are located in the status register and are controlled

by various microcontroller operations, such as the

Power Down function or Watchdog Timer. The reset

flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

Note: �u� stands for unchanged

The following table indicates the way in which the vari-

ous components of the microcontroller are affected after

a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT
Clear after reset, WDT begins

counting

Timer/Event Counter Timer Counter will be turned off

Input/Output Ports I/O ports will be setup as inputs

Stack Pointer
Stack Pointer will point to the

top of the stack

The different kinds of resets all affect the internal regis-

ters of the microcontroller in different ways. To ensure

reliable continuation of normal program execution after

a reset occurs, it is important to know what condition the

microcontroller is in after a particular reset occurs. The

following table describes how each type of reset affects

each of the microcontroller internal registers. Note that

where more than one package type exists the table will

reflect the situation for the larger package type.

The states of the registers are summarized in the table.

Register
Reset

(Power-on)

WDT

Time-out

(Normal

Operation)

RES Reset

(Normal

Operation)

RES Reset

(HALT)

WDT

Time-Out

(HALT)*

USB Reset

(Normal)

USB Reset

(HALT)

MP0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

MP1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

Program

Counter
000H 000H 000H 000H 000H 000H 000H

TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLH -xxx xxxx -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu

WDTS 0000 0111 0000 0111 0000 0111 0000 0111 uuuu uuuu 0000 0111 0000 0111

STATUS --00 xxxx --1u uuuu --uu uuuu --01 uuuu --11 uuuu --uu uuuu --01 uuuu

INTC0 -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu -000 0000 -000 0000

TMR0H xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0L xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0C 00-0 1000 00-0 1000 00-0 1000 00-0 1000 uu-u uuuu 00-0 1000 00-0 1000

TMR1H xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR1L xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u--- 00-0 1--- 00-0 1---

PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

HT82A836R

Rev. 1.10 31 August 5, 2011

Register
Reset

(Power-on)

WDT

Time-out

(Normal

Operation)

RES Reset

(Normal

Operation)

RES Reset

(HALT)

WDT

Time-Out

(HALT)*

USB Reset

(Normal)

USB Reset

(HALT)

PB 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PBC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PCC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PD 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PDC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PE 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PEC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu 1111 1111 1111 1111

PF ---- 1111 ---- 1111 ---- 1111 ---- 1111 ---- uuuu ---- 1111 ---- 1111

PFC ---- 1111 ---- 1111 ---- 1111 ---- 1111 ---- uuuu ---- 1111 ---- 1111

INTC1 -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu -000 0000 -000 0000

TBHP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

USC 1000 0000 uuxx uuuu 10xx 0000 10xx 0000 10xx uuuu 1000 0u00 1000 0u00

USR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 00uu 0000 00uu 0000

UCC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0u00 u000 0u00 u000

AWR 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

STALL 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

SIES 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0u00 u000 0u00 u000

MISC 0000 0000 uuuu uuuu 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

SETIO xxxx x010 xxxx x010 xxxx x010 xxxx x010 xxxx x010 xxxx x010 xxxx x010

FIFO0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

FIFO1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

FIFO2 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

FIFO3 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

FIFO4 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu 0000 0000 0000 0000

DAC_LIMIT_L 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

DAC_LIMIT_H 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

DAC_WR 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

PGA_CTRL 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00uu uuuu 00uu uuuu

PFDC 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0uuu 0000 0uuu 0000

PFDD 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0uuu 0000 0uuu 0000

OPER_MODE 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

MODE_CTRL 0000 0000 0000 0000 0000 0000 0000 0000 0000 0uuu 0000 0uuu 0000 0uuu

SBCR 0110 0000 0110 0000 0110 0000 0110 0000 uuuu uuuu uuuu uuuu uuuu uuuu

SBDR uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

RECORD_IN_L 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

RECORD_IN_H 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

PLAY_DATAL_L 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

HT82A836R

Rev. 1.10 32 August 5, 2011

Register
Reset

(Power-on)

WDT

Time-out

(Normal

Operation)

RES Reset

(Normal

Operation)

RES Reset

(HALT)

WDT

Time-Out

(HALT)*

USB Reset

(Normal)

USB Reset

(HALT)

PLAY_DATAL_H 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

PLAY_DATAR_L 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

PLAY_DATAR_H 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

RECORD_DATA_L 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

RECORD_DATA_H 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

ADRL xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu

ADRH xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu

ADCR 0100 0000 0100 0000 0100 0000 0100 0000 uuuu uuuu uuuu uuuu uuuu uuuu

ACSR 1--- --00 1--- --00 1--- --00 1--- --00 u--- --uu u--- --uu u--- --uu

PA_WAKE_CTRL 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

PWMC 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

PWM0 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu

PWM1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu

MFI1C 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

USB_STATE 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu

USVC 0000 0000 0000 0000 0000 0000 0000 0000 uuuu uuuu 0000 0000 0000 0000

�*� stands for warm reset

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

Oscillator

The device use crystal oscillator as the system clock

source. Two types of crystal system clock frequencies

can be selected while various clock source options for

the Watchdog Timer are provided for maximum flexibil-

ity.

System Crystal/Ceramic Oscillator

For the 12MHz crystal oscillator configurations, the sim-

ple connection of a crystal across OSC1 and OSC2 will

create the necessary phase shift and feedback for oscil-

lation. For the 6MHz crystal oscillator configuration the

addition of two small value capacitors are required. The

SYSCLK bit in the UCC register determines the system

frequency selection.

Crystal C1, C2

6MHz Crystal 22pF

12MHz Crystal NC

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running

on-chip RC oscillator with a typical period of 65 us at 5V

requiring no external components. When the device en-

ters the Power Down Mode, the system clock will stop

running but the WDT oscillator continues to free-run and

to keep the watchdog active. However, to preserve

power in certain applications the WDT oscillator can be

disabled via a configuration option.

�) ! �

�) ! (

! 5

! �

Crystal/Ceramic Oscillator

HT82A836R

Rev. 1.10 33 August 5, 2011

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter

a Power Down Mode, also known as the HALT Mode or

Sleep Mode. When the device enters this mode, the nor-

mal operating current, will be reduced to an extremely

low standby current level. This occurs because when

the device enters the Power Down Mode, the system

oscillator is stopped which reduces the power consump-

tion to extremely low levels, however, as the device

maintains its present internal condition, it can be woken

up at a later stage and continue running, without requir-

ing a full reset. This feature is extremely important in ap-

plication areas where the MCU must have its power

supply constantly maintained to keep the device in a

known condition but where the power supply capacity is

limited such as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power

Down Mode and that is to execute the �HALT� instruc-

tion in the application program. When this instruction is

executed, the following will occur:

� The system oscillator will stop running and the appli-

cation program will stop at the �HALT� instruction.

� The Data Memory contents and registers will maintain

their present condition.

� The WDT will be cleared and resume counting if the

WDT clock source is selected to come from the WDT

oscillator. The WDT will stop if its clock source origi-

nates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will

be set and the Watchdog time-out flag, TO, will be

cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode

is to keep the current consumption of the MCU to as low

a value as possible, perhaps only in the order of several

micro-amps, there are other considerations which must

also be taken into account by the circuit designer if the

power consumption is to be minimized. Special atten-

tion must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either

a fixed high or low level as any floating input pins could

create internal oscillations and result in increased cur-

rent consumption. This also applies to devices which

have different package types, as there may be

undonbed pins, which must either be setup as outputs

or if setup as inputs must have pull-high resistors

connected. Care must also be taken with the loads,

which are connected to I/O pins, which are setup as out-

puts. These should be placed in a condition in which

minimum current is drawn or connected only to external

circuits that do not draw current, such as other CMOS

inputs. Also note that additional standby current will also

be required if the configuration options have enabled the

Watchdog Timer internal oscillator.

Wake-up

After the system enters the Power Down Mode, it can be

woken up from one of various sources listed as follows:

� An external reset

� An external falling or rising edge on Port A

� An external falling edge on Port B~Port F

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the de-

vice will experience a full system reset, however, if the

device is woken up by a WDT overflow, a Watchdog

Timer reset will be initiated. Although both of these

wake-up methods will initiate a reset operation, the ac-

tual source of the wake-up can be determined by exam-

ining the TO and PDF flags. The PDF flag is cleared by a

system power-up or executing the clear Watchdog

Timer instructions and is set when executing the �HALT�

instruction. The TO flag is set if a WDT time-out occurs,

and causes a wake-up that only resets the Program

Counter and Stack Pointer, the other flags remain in

their original status.

Each pin on Port A can be setup via an individual config-

uration option to permit a negative (or positive) transition

on the pin to wake-up the system. When a Port A pin

wake-up occurs, the program will resume execution at

the instruction following the �HALT� instruction.

Each pin on can be setup via an individual configuration

option to permit a negative transition on the pin to

wake-up the system. Port A has an addition function,

controlled via the PA_WAKE_CTRL register in the Data

Memory, allowing either a negative or positive edge to

initiate a Wake-up function. Any external pin wake-up

will cause the system to resume execution at the in-

struction following the �HALT� instruction.

If the system is woken up by an interrupt, then two possi-

ble situations may occur. The first is where the related

interrupt is disabled or the interrupt is enabled but the

stack is full, in which case the program will resume exe-

cution at the instruction following the �HALT� instruction.

In this situation, the interrupt which woke-up the device

will not be immediately serviced, but will rather be ser-

viced later when the related interrupt is finally enabled or

when a stack level becomes free. The other situation is

where the related interrupt is enabled and the stack is

not full, in which case the regular interrupt response

takes place. If an interrupt request flag is set to �1� be-

fore entering the Power Down Mode, the wake-up func-

tion of the related interrupt will be disabled.

HT82A836R

Rev. 1.10 34 August 5, 2011

No matter what the source of the wake-up event is, once

a wake-up situation occurs, a time period equal to 1024

system clock periods will be required before normal sys-

tem operation resumes. However, if the wake-up has

originated due to an interrupt, the actual interrupt sub-

routine execution will be delayed by an additional one or

more cycles. If the wake-up results in the execution of

the next instruction following the �HALT� instruction, this

will be executed immediately after the 1024 system

clock period delay has ended.

Watchdog Timer

The Watchdog Timer is provided to prevent program

malfunctions or sequences from jumping to unknown lo-

cations, due to certain uncontrollable external events

such as electrical noise. It operates by providing a de-

vice reset when the WDT counter overflows. The WDT

clock is supplied by two sources selected by configura-

tion option: its own self contained dedicated internal

WDT oscillator or fSYS/4. Note that if the WDT configura-

tion option has been disabled, then any instruction relat-

ing to its operation will result in no operation.

The internal WDT oscillator has an approximate period

of 65�s at a supply voltage of 5V. If selected, it is first di-

vided by 256 via an 8-stage counter. Note that this pe-

riod can vary with VDD, temperature and process

variations. For longer WDT time-out periods the WDT

prescaler can be utilized. By writing the required value

to bits 0, 1 and 2 of the WDTS register, known as WS0,

WS1 and WS2, longer time-out periods can be

achieved. With WS0, WS1 and WS2 all equal to 1, the

division ratio is 1:128 which gives a maximum time-out

period.

A configuration option can select the instruction clock,

which is the system clock divided by 4, as the WDT clock

source instead of the internal WDT oscillator. If the in-

struction clock is used as the clock source, it must be

noted that when the system enters the Power Down

Mode, as the system clock is stopped, then the WDT

clock source will also be stopped. Therefore the WDT

will lose its protecting purposes. In such cases the sys-

tem cannot be restarted by the WDT and can only be re-

started using external signals. For systems that operate

in noisy environments, using the internal WDT oscillator

is therefore the recommended choice.

Under normal program operation, a WDT time-out will

initialise a device reset and set the status bit TO. How-

ever, if the system is in the Power Down Mode, when a

WDT time-out occurs, only the Program Counter and

Stack Pointer will be reset. Three methods can be

adopted to clear the contents of the WDT and the WDT

prescaler. The first is an external hardware reset, which

means a low level on the RESET pin, the second is us-

ing the watchdog software instructions and the third is

via a �HALT� instruction.

There are two methods of using software instructions to

clear the Watchdog Timer, one of which must be chosen

by configuration option. The first option is to use the sin-

gle �CLR WDT� instruction while the second is to use

the two commands �CLR WDT1� and �CLR WDT2�. For

the first option, a simple execution of �CLR WDT� will

clear the WDT while for the second option, both �CLR

WDT1� and �CLR WDT2� must both be executed to

successfully clear the WDT. Note that for this second

option, if �CLR WDT1� is used to clear the WDT, succes-

sive executions of this instruction will have no effect,

only the execution of a �CLR WDT2� instruction will

clear the WDT. Similarly, after the �CLR WDT2� instruc-

tion has been executed, only a successive �CLR WDT1�

instruction can clear the Watchdog Timer.

�) 5 ' + � � � 	 � � � � � � �

� 2 � 7

� � � + �
 � � � �
 � � � � �
 � �
 �
 � �

�) 5
7
7
7
7
�
�
�
�

�) �
7
7
�
�
7
7
�
�

�) 7
7
�
7
�
7
�
7
�

� � � & � �

� � � � � � � B �
� � � � � � � B 5
� � � � � � � B 1
� � � � � � � B '
� � � � � � � B � �
� � � � � � � B 4 5
� � � � � � � B � 1
� � � � � � � B � 5 '

9
 � � � �
 �

�) � �) 7� 7� �� 5� 4

�
 � � � 	
 �
 � �
 � � � � � � � � � �

� 4
7
� � �
 � �

� 5
�

� +
 � � � �
 � � 	
 �

; � �
 � � � ! � , � � �
 � 	
 �

9
 � 	 � � �
 +
 � � � �
 �

� �
7

� 7
�

Watchdog Timer Register

HT82A836R

Rev. 1.10 35 August 5, 2011

� � � ! �
 � . �)
 � � �

!
 � 0 � � � � � � �
 �

� + � �
 �

! �
 � � � � � � � � +

!
 � 0 � � � � � � �
 � � � + � �
 �

! $ & � � � � � � � � �

! $ & � � � 5 � � � � �

! $ & �
' � � � � � !
 � � �
 �

> � 5 3 � ?� � � � � � � � � � �
 �

0) A) � 1

� �
 � � 5 � (� � � � � � � �
 � �

� � � ! �
 � . �)
 � � �

! $ & �

2 � � � � � � �
 � � � �
 �

' � �
 � � � # * J �) 7 H �) 5

� � � � � 	
 �
 � �

Watchdog Timer

USB Function

The device includes a USB 1.1 interface which can be

used for data application data transfer. Five endpoints

are included in the USB function of this device.

USB Interface

The Interface in the HT82A836R device has 5 End-

points, known as EP0~EP4. Endpoint 0, EP0, is used for

Control transfer. Endpoints EP1 and EP4 are for Inter-

rupt transfer, while EP2 supports the Isochronous out

transfer. EP3 supports Isochronous in transfer. A set of

registers stored in the Data Memory is used for overall

control of the USB function. These control registers in-

clude, USC, USR, UCC, AWR, STALL, SIES and MISC.

There are also five FIFO registers with the names

FIFO0~FIFO4. The size of each FIFO is as follows:,

FIFO0-8 bytes, FIFO1-8 bytes, FIFO2-384 bytes,

FIFO3-32 bytes and FIFO4-64 bytes, giving a total of

496 bytes. The URD bit, which is bit7 of the USC register

is the USB reset signal control function definition bit.

USB Interface Registers

The USB setup, data management and endpoint control

in the device is controlled via a series of registers in the

Data Memory.

USC Register

The USC register is the register for the overall control of

the USB function. The initial status of this register is

80H.

Further explanation of each of the bits is given below:

� SUSP

The SUSP bit is the USB Suspend Indicator bit. When

this read-only bit is set to �1� by the SIE, it indicates

that the USB bus has entered the suspend mode. The

USB interrupt is also triggered when this bit changes

from low to high.

� RMWK

The RMWK read/write bit is the USB remote wake-up

command. It is set by the MCU to allow the USB host

to leave the suspend mode after an external wake-up.

� URST

The URST read/write bit is the USB reset indication

bit. This bit is set and cleared by the USB SIE and indi-

cates a USB reset event on the USB bus. When this

bit is set to �1�, this indicates that a USB reset has oc-

curred and that a USB interrupt will be generated.

� RESUME

The RESUME read only bit is used to indicate that the

USB has left the Suspend Mode. When the USB has

left the Suspend Mode, this read-only bit is set to �1�

by the SIE. When the RESUME bit is set by SIE, an in-

terrupt will be generated to wake-up the MCU. In order

to detect the suspend state, the MCU should set the

USBCKEN bit and clear SUSP2 in the UCC register,

to enable the SIE detect function. The RESUME bit

will be cleared when SUSP goes to �0�. When the

MCU is detecting the SUSP, the condition of the RE-

SUME bit, which will wake-up the MCU, should be

noted and taken into consideration.

� V33C

The V33C read/write bit is the control bit for the inter-

nally generated 3.3V supply for the USB interface.

� PLLEN

The PLLEN read/write bit is the control bit for the inter-

nal Phase Locked Loop function.

� CRCFG

The CRCFG read/write bit is the CRC error condition

failure flag. The CRCFG bit will be set by the hardware

however the CRCFG bit needs to be cleared using

firmware.

� URD

The URD read/write bit is the USB reset signal control

function definition bit.

HT82A836R

Rev. 1.10 36 August 5, 2011

USR Register

The USR register is the USB endpoint interrupt status

register and is used to indicate which endpoint is ac-

cessed and to select the USB bus. The endpoint request

flags, EP0F, EP1F, EP2F, EP3F and EP4F are used to

indicate which endpoints are accessed. If an endpoint is

accessed, the related endpoint request flag will be set to

�1� and the USB interrupt will be generated if the USB

interrupt is enabled and the stack is not full. When the

active endpoint request flag is serviced, the endpoint re-

quest flag has to be cleared to �0� by software.

Further explanation of each of the bits is given below:

� ESP0F~ESP4F

The ESP0F~ESP4F read/write bits are set by the SIE

an indicate whether the associated endpoint has been

accessed and a USB interrupt generated. After the in-

terrupt has been serviced the bits should be cleared

by the application program.

UCC Register

The UCC register is the system clock control register

and is used to select the clock that is used in the MCU.

This register consists of a USB clock control bit,

USBCKEN, a second suspend mode control bit,

SUSP2, and a system clock selection bit, SYSCLK. The

register also controls the endpoint selection, which is

determined by bits EPS0, EPS1 and EPS2.

Further explanation of each of the bits is given below:

� EPS0~EPS2

These three read/write bits are for the endpoint FIFO

selection. It should be noted that Isochronous end-

points 2 and 3 are implemented in hardware, therefore

FIFO2 and FIFO3 cannot be read from or written to

using firmware.

� USBCKEN

The USBCKEN read/write bit enables the USB clock.

� SUSP2

The SUSP2 read/write bit is the second suspend bit

and is used to select a power reducing function when

the device is in the Suspend Mode. In the Normal

Mode this bit should be cleared to zero.

� FSYS16MHz

This read/write bit is used to determine if the system

clock is derived from an external oscillator or from the

internal PLL 16MHz clock.

� SYSCLK

The SYSCLK read/write bit is used to determine if the

system clock is either 6MHz or 12MHz.

AWR Register

The AWR register is used to store the current USB de-

vice address and also for control of the Remote

Wake-up function. The initial value of the AWR register

is �00H�. The address value extracted from the USB

command must not be loaded into this register until the

SETUP stage has finished.

� �) � 	 � � � � � � �

� 2 � 7

*) / �) � � +
 � � � (� � � � � � �
 � � > �
 � � �
 � � � ? �
� B �) � � +
 � � � 	
 �

7 B � 9
 � � � � � � � � +
 � � � 	
 �

*) / � &
 	
 �
 � � � .
 � � +
� B � $
 � "
 � � � � +
 � � � 	
 �

7 B � 9
 � � � � � �

*) / � &
 �
 � � (� � � � � � �
 � �
� B � *) / � �
 �
 � �
 � � � � �
 �
7 B � 9
 � �
 �
 �

*) / � &
 � � 	
 � (� � � � � � �
 � � > �
 � � �
 � � � ? �
� B � *) / � �
 0 � � � � � +
 � � � 	
 �

7 B � 9
 � � � � � �

% 4 4 � � � � � + � � � !
 � � �
 �
� B � % 4 4 � �
 � � + � � �
 �
7 B � % 4 4 � �
 � � + � � �
 0 0

� $ $ � ; � � � �

� B � � $ $ �
 0 0
7 B � � $ $ �
 �

! & ! � ; � �
 � � !
 � � � � �
 �
� B � ; � �
 �
7 B � 9
 � ; � �
 �

*) / � &
 �
 � � !
 � � �
 � �
 0 � � � � �
 �
� B � *) / � �
 �
 � � � � � � � � � , � � � � �
 �
 � � # ! *
7 B � *) / � �
 �
 � � � � � �
 � � �
 �
 � � # ! *

* & ! & ! � � % 4 4 ! & ;) * # ; * &) � & # � =) *) �� $ $; 9

USB Control Register � USC

HT82A836R

Rev. 1.10 37 August 5, 2011

� � 	 � 	 � � � � � � �

� 7

; � � +
 � � � � 7 � � � �
 � �

; � � +
 � � � � � � � � �
 � �

; � � +
 � � � � 5 � � � �
 � �

; � � +
 � � � � 4 � � � �
 � �

; � � +
 � � � � 1 � � � �
 � �
� B � � � �
 � �
7 B � 9
 � � � �
 � �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

; � 4 � ; � 5 � ; � � � ; � 7 �

� � � � ; � � +
 � � � �

� 2

; � 1 �

USB Endpoint Status Register � USR

�)) � 	 � � � � � � �

� 2 � 7

) A) ! $ = �) A) � � # E G) *) � 5 *) / ! = ; 9 ; �) 5 ; �) � ; �) 7

; �) �
7
7
�
�
7
7
�
�

; �) 5
7
7
7
7
�
�
�
�

; �) 7
7
�
7
�
7
�
7
�

� � �
 � � � ; � � +
 � � � � � (� � �)
 �
 � � �
 �

* � �
 0 � �
 � C � � � � �
 � � �
 � � �
 �

� � � � � � � � � � � � �)
 �
 � � �
 �
; � � +
 � � � � 7 � � (� � � � � !
 � � �
 �
; � � +
 � � � � � � � (� � � � � (� �
 � � � + �
; � � +
 � � � � 5 � � (� � � � � (�
 � � �
 �
 � � � � � �
; � � +
 � � � � 4 � � (� � � � � (�
 � � �
 �
 � � � (�
; � � +
 � � � � 1 � � (� � � � � (� �
 � � � + �

*) / � ! �
 � . � !
 � � �
 �
� B � ! �
 � . �
 � � � �
 �
7 B � ! �
 � . � � � � � � �
 �

&
 � � �
 � �
 ,
 � � � � �) � � +
 � �
� B � &
 � � �
 � +
 ,
 � � � � � �
 ,
 � � �
 , � � 	
 �

7 B � ! �
 � � � �
 � G
 �
 � � � � 9
 � 	 � � � 	
 �

) � � �
 	 � ! �
 � . �)
 � � �

� B � � � # E G � � $ $ � �
 � � �

7 B � �) ! � �
 � � �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

) � � �
 	 � ! �
 � . � � �
 � �
 � � �
� B � � # E G
7 B � � 5 # E G

System Clock Control Register � UCC

� ' 	 � 	 � � � � � � �

� 2 � 7

*) / � &
 	
 �
 � � � .
 � � + � ; � � � �
 � � � � � �

� B �
 � � � �

7 B � � � � � � �

*) / � �
 " � �
 � � � � �
 � �

� � � 3 � 1 � 4 � 5 � � � 7 � = ; 9

Device Address Register � AWR

HT82A836R

Rev. 1.10 38 August 5, 2011

STALL Register

The STALL register shows whether the corresponding

endpoint has operated correctly or not. As soon as the

endpoint has operated incorrectly, the related read/write

bit in the STALL has to be set to �1�. The STALL register

will be cleared by a USB reset signal and a setup token

event. The initial value of the STALL register is �00H�.

SIES Register

The SIES register is the setup register for the Serial In-

terface Engine.

Further explanation of each of the bits is given below:

� ASET

The read/write ASET bit is used to configure the SIE to

automatically change the device address to the value

presently stored in the AWR register. When this bit is

set to �1� by, the SIE will update the device address

with the value stored in the AWR register after the PC

host has successfully read the data from the device

with an IN operation. Otherwise, when this bit is

cleared to �0�, the SIE will update the device address

immediately after an address is written to the AWR

register. Therefore in order to work properly, the pro-

gram has to clear this bit after a next valid SETUP to-

ken is received.

� ERR

The read/write ERR bit is used to indicate that errors

have occurred when the FIFO is accessed. This bit is

set by SIE and should be cleared by the program. This

bit is used for all endpoints.

� OUT

The read/write OUT bit is used to indicate the recep-

tion of an OUT token, except for the OUT zero length

token. The device will clear this bit after the OUT data

has been read. Also, this bit will be cleared by the SIE

after the next valid SETUP token is received.

� IN

The read only IN bit is used to indicate that the current

USB receiving signal from PC host is an IN token.

� NAK

This read only bit is used to indicate that the SIE has

transmitted a NAK signal to the host in response to the

PC host IN or OUT token.

� � � � � � 	 � � � � � � �

� 2 � 7

; � � +
 � � � � 7 H 1 �) � � � � � (� � � � � �
 �
� B � ; � � +
 � � � � � � � � �
 �
7 B � 9
 � 	 � � �
 +
 � � � �
 �

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

) � $ 4) � $ 5) � $ �) � $ 7) � $ 2) � $ 1) � $ 3) � $ �

Endpoint Stall Register � STALL

� , . � � 	 � � � � � � �

� 7

 " � �
 � � � � �
 � � �)
 � �
� B � * + � � �
 � � � � �
 � � � 0 �
 	 � E
 � � � �
 � �
7 B � * + � � �
 � � � 0 �
 � � � � & � �
 � � � �
 � � , � � �

� (� � � � � �
 � � �
 � �
 �
� B � ; � �
 � � �
 � � � � �
 �
7 B � 9
 �
 � �
 �

� * � � �
 .
 � � �
 �
 � "
 �
� B � �
 .
 � � �
 �
 � "
 �
7 B � 9
 � �
 .
 � � �
 �
 � "
 �

(9 � �
 .
 � � � � � � � � �
 �
� B � *) / � �
 �
 � "
 � � � � � � � � � � � (� � �
 .
 �
7 B � 9
 � � (� � �
 .
 �

) (; � � � � � � 	 � � �
 � � 9 � = � �
 .
 � � � � � � � � �
 �
� B � 9 � = � �
 .
 � � � � � � � 	 � � �
 �
7 B � 9
 � 9 � = � �
 .
 � � � � � � � 	 � � �
 �

; � �
 � � � � � � � �
 � � � � �
� B � ; � �
 �
7 B � 9
 �
 � �
 �

�
 .
 � � + � � . � �
 � � � � � "
 � � � � � � � �
 �
� B � (� � � � � "

7 B � � � � � "

9 � = � �
 .
 � � � � �
 � � � + � � 	 � � .
� B � 9 � = � �
 .
 � � � � �
 � � � + � � 	 � � .
7 B � 9
 � � � �
 � � � + � � 	 � � .

! & ! � �) ; �; & &� * �(99 � =

� 2

; � �# 9 (

Serial Interface Setup Register � SIES

HT82A836R

Rev. 1.10 39 August 5, 2011

� CRCF

The CRCF read/write is an error condition failure flag

that includes CRC, PID and no integrate token error.

CRCF will be set by the hardware but needs to be

cleared by the firmware.

� EOT

The EOT read only read only flag is the Token Pack-

age active flag. Note that this flag is active low.

� NMI

The read/write NMI bit is the NAK token interrupt

mask flag. If this bit set, when the device sends a NAK

token to the host, the interrupt will be disabled. Other-

wise if this bit is cleared, when the device sends a

NAK token to the host, it will enter the interrupt sub-

routine.

MISC Register

The MISC register combines command and status to

control the desired endpoint FIFO action and to show

the status of the desired endpoint FIFO. The MISC reg-

ister will be cleared by a USB reset signal.

Further explanation of each of the bits is given below:

� REQUEST

The read/write REQUEST, if set high, can request the

FIFO after the corresponding status has been set.

When finished this bit must be set low.

� TX

The read/write TX bit represents the direction and

MCU access transition end. When set high, the MCU

desires to write data to the FIFO. After finishing, this

bit must be set low before terminating the request to

represent a transition end. For an MCU read opera-

tion, this bit must be set low and then high after finish-

ing.

� CLEAR

The read/write CLEAR bit MCU is used to request a

FIFO clear, even if the FIFO is not ready. After clearing

the FIFO, the USB interface will send a force_tx_err to

tell the Host that data under-run if the Host wants to

read data.

� ISO_IN_EN

The read/wri te ISO_IN_EN bit enables the

isochronous in pipe interrupt.

� ISO_OUT_EN

The read/write ISO_OUT_EN bit enables the

isochronous out pipe interrupt.

� SETCMD

The read/write SETCMD bit is used to show that the

data in the FIFO is a setup command. The bit will re-

main in the same state until the following data enters

the FIFO.

� READY

The read only READY bit is used to indicate that the

desired FIFO is ready.

� LEN0

The read only LEN0 bit is used to indicate that the host

has sent a 0-sized packet to the MCU. This bit must be

cleared by a read action to the corresponding FIFO.

& , �) � 	 � � � � � � �

� (� � � &
 � �
 � � �
� B � &
 � �
 � �
7 B � 9
 � �
 � �
 � �

# ! * � � � � � � 	 � � � �
 � �
 � �
� B � � � � � � 	 � � � �
 � �
 � �
7 B � � � � � � 	 � � �
 � �

! �
 � � � � (� � � �
 � �
 � �
� B � &
 � �
 � �
7 B � 9
 � �
 � �
 � �

(�
 � � �
 �
 � � � � � +
 � � � � � � �
 � � � + �
� B � ; � � � �

7 B � � � � � �

(�
 � � �
 �
 � � � � � +
 �
 � � � � � �
 � � � + �
� B � ; � � � �

7 B � � � � � �

� (� � � �
 � � + � �
 	 	 � � � � � � � � � � �
 �
� B �)
 � � + � �
 	 	 � � �
7 B � 9
 � � �
 � � + � �
 	 	 � � �

� (� � � �
 � � � � � � � � � � �
 �
� B � &
 � � �
7 B � 9
 � � �
 � � �

7 � � � G
 � + � � .
 � � � � � � � � �
 �
� B � 7 � + � � .
 �
7 B � 9
 � � 7 � + � � .
 �

� 2

() � 8 � * � 8 ; 9

� 7

& ; K * ;) �� J! $; � &() � 8 (9 8 ; 9) ; � ! # & ; � A$; 9 7

Miscellaneous Register � MISC

HT82A836R

Rev. 1.10 40 August 5, 2011

SETIO Register

The SETIO register is used to setup the endpoints to ei-

ther input or output pipe type. The DATA token toggle bit

is also contained within this register. Note that for USB

definition, when the host sends a �set Configuration�,

the Data pipe should send DATA0, about the Data tog-

gle, first. Therefore, when the device receives a �set

configuration� setup command, the user needs to toggle

this bit as the following data will send DATA0 first. It is

only required to set the data pipe as an input pile or out-

put pile. The purpose of this function is to avoid the host

sending an abnormal IN or OUT token and disabling the

endpoint. All bits are read/write.

SETIO (27H) register, USB Endpoint 1~Endpoint 4 set

IN/OUT pipe register.

USB_STATE Register

This register is used to indicate the error state due to

SE0 or SE1 noise as well as the USBD- and USBD+ in-

put signals. The SE0 and SE1 bits are set by the SIE

and cleared with the program.

Suspend Wake-Up Remote Wake-Up

The device includes a Suspend mode. If there is no sig-

nal on the USB bus for over 3ms, the device will enter a

suspend mode. When this happens, the SUSPEND bit,

which is bit 0 of the USC register, will be set to �1� and a

USB interrupt will be generated to indicate that the de-

vice should jump to the suspend state to meet the re-

quirements of the USB suspend current spec. In order to

meet the requirements of the suspend current, the pro-

gram should disable the USB clock by clearing the

USBCKEN bit, which is bit3 of the UCC register, to �0�.

The suspend current can be further decreased by set-

ting the SUSP2 bit, which is bit4 of the UCC register.

When the resume signal is sent out by the host, the

HT82A836R will be woken up the by the USB interrupt

and the RESUME bit, which is bit 3 of the USC register,

will be set. In order to make the device operate correctly,

the program must set the USBCKEN bit and clear the

SUSP2 bit. Since the Resume signal will be cleared be-

fore the Idle signal is sent out by the host and the SUS-

PEND bit, will change to �0�. Therefore when the MCU

is detecting the Suspend line, the condition of the Re-

sume line should be noted and taken into consideration.

� . � , " � 	 � � � � � � �

� 7

 � � � � �
 .
 � � �
 � � �

)
 � � ; � � +
 � � � � � � (� � � � � �
 0 � � � � � I � I
� B � (� + � �
7 B � � � � + � �

)
 � � ; � � +
 � � � � 5 � (� � � � � �
 0 � � � � � I � I
� B � (� + � �
7 B � � � � + � �

)
 � � ; � � +
 � � � � 4 � (� � � � � �
 0 � � � � � I � I
� B � (� + � �
7 B � � � � + � �

)
 � � ; � � +
 � � � � 1 � (� � � � � �
 0 � � � � � I � I
� B � (� + � �
7 B � � � � + � �

* � �
 0 � �
 �

� 2

) ; � (� 1) ; � (� 4) ; � (� 5) ; � (� � � � � � �

USB Endpoint Setup IN/OUT Pipe Register � SETIO

� � � � � � � � . � 	 � � � � � � �

� 7

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

) ; 7 � �
 � �
 � �
 �
 � � �
 �
� B � 9
 � �
 � �
 �
 � �
 � � � � � *) / � � � �
7 B � 9
 � �
 � �
 � � �
 �
 � �
 �

) ; � � �
 � �
 � �
 �
 � � �
 �
� B � 9
 � �
 � �
 �
 � �
 � � � � � *) / � � � �
7 B � 9
 � �
 � �
 � � �
 �
 � �
 �

*) / � � � � + � �

*) / : � � � + � � �

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

� 2

*) / � *) / 9) ; �) ; 7

USB State Register � USB-STATE

HT82A836R

Rev. 1.10 41 August 5, 2011

The following shows the related timing of this operation:

The device contains a remote wake-up function which

can wake-up the USB Host by sending a wake-up pulse

through the RMWK bit, which is bit 1 of the USC register.

Once the USB Host receives a wake-up signal from the

device, it will send a Resume signal to the device.

The following shows the related timing:

) *) � ; 9

*) / � &
 � � 	
 �) � � � � �

*) / 8 (9 �

) *) � ; 9

*) / � &
 � � 	
 �) � � � � �

*) / 8 (9 �

& # � =

# � � - 5 - 3 	 �

� � - � � � *) / � ! $ =

� � /) � 	 � � � � � � �

� 2 � 7

*) % ! �# * � ; *) % ! 3 *) % ! 1 *) % ! 4 *) % ! 5 *) % ! � *) % ! 7

%
 � � 	
 � !
 � � �
 � � / � � � � 7 H �

� �
 � !
 � � �
 �
� B � � � � � �
 �
7 B � ; � � � �
 �

USB Speaker Volume Control Register � USVC

Result (dB) USVC Result (dB) USVC Result (dB) USVC Result (dB) USVC

6 000_1100 �2 111_1100 �10 110_1100 �24 101_1100

5.5 000_1011 �2.5 111_1011 �10.5 110_1011 �25 101_1011

5 000_1010 �3 111_1010 �11 110_1010 �26 101_1010

4.5 000_1001 �3.5 111_1001 �11.5 110_1001 �27 101_1001

4 000_1000 �4 111_1000 �12 110_1000 �28 101_1000

3.5 000_0111 �4.5 111_0111 �13 110_0111 �29 101_0111

3 000_0110 �5 111_0110 �14 110_0110 �30 101_0110

2.5 000_0101 �5.5 111_0101 �15 110_0101 �31 101_0101

2 000_0100 �6 111_0100 �16 110_0100 �32 101_0100

1.5 000_0011 �6.5 111_0011 �17 110_0011 � �

1 000_0010 �7 111_0010 �18 110_0010 � �

0.5 000_0001 �7.5 111_0001 �19 110_0001 � �

0 000_0000 �8 111_0000 �20 110_0000 � �

�0.5 111_1111 �8.5 110_1111 �21 101_1111 � �

�1 111_1110 �9 110_1110 �22 101_1110 � �

�1.5 111_1101 �9.5 110_1101 �23 101_1101 � �

Speaker Volume Control Table

USB Speaker Volume Control

The speaker output volume as well as the speaker mute/un-mute function are controlled by the USB Speaker Volume

Control USVC register. The volume range can be set between a range of 6dB to �32dB by software. The relationship

between the USVC volume control bits and the amplification or attenuation values are shown in the Volume Control Ta-

ble. The mute control will be enabled when the MUTE bit is low and both the DAC and the power amplifier will be muted.

HT82A836R

Rev. 1.10 42 August 5, 2011

FIFO Registers

Registers R/W Power-on Function

FIFO0~

FIFO4
R/W xxH

EPi accessing register � EPSX bits in the UCC register. (i = 0~4). When an end-

point is disabled, the corresponding accessing register should be disabled.

FIFO0~FIFO4 (28H~2CH) USB Endpoint Accessing Registers Definitions

DAC Limit Registers

The DAC_Limit_L and DAC_Limit_H registers are used to define the 16-bit DAC output limits. The values in the

DAC_Limit_L and DAC_Limit_H registers are unsigned values. If the 16-bit data from the Host exceeds that of the

range defined by the two DAC_Limit_L and DAC_Limit_H registers then the output digital code to DAC will be clamped

within these register values.

DAC_Limit_L DAC output limit low byte

DAC_Limit_H DAC output limit high byte

Example to set the DAC output limit values:

;---
; Set DAC Limit Value=FF00H
;---
clr [02DH] ; Set DAC Limit low byte=00H
set [02EH] ; Set DAC Limit high byte=FFH
;---

In order to prevent a popping noise from the speaker output, the power amplifier should output a value of VDD/2, which

means a value of 8000H should be sent to the DAC during the initial power on state. Generating a pulse on the

DAC_WR_TRIG bit will write the values into the DAC. If the DAC_WR_TRIG, bit 3 of the DAC_WR register, is already

high then clearing the DAC_WR_TRIG bit, will write the values into the DAC_Limit_L and DAC_Limit_H registers for

the DAC.

Note: In the DAC write data mode (high nibble of WDTS register is 0101b), the DAC_Limit_L and DAC_Limit_H reg-

isters will be the 16-bit DAC input data register at the falling edge of DAC_WR_TRIG. Otherwise, these two

registers are used to define the 16-bit DAC output limit (repeated below).

+ �) 0 ' 	 � 	 � � � � � � �

� 7

&
 �
 � � � � � � �)
 � � �

� B � & ; ! � & 8 (9 8 E � � � � � & ; ! � & 8 (9 8 $
� � � � �
 � � � �
 � � � � � � � �
 � � �

7 B � � ! # � � � � �
 � "
 � �
 � � � � � � � �
 � � �
 � � � �
 0 � � � �

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

 � ! � � � � �
 � � � � � �
 �
7 � � � 7 B � $ � � � � � � ! � � � � �

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

� 2

 � ! 8 � & 8 � & (� & ; ! 8 # � ;

DAC Write and Record Source Register � DAC_WR

 � ! 8 � & 8 � & (�

� �
 �
 � �
 � , � � � � � � � � � � � ! � � � 	 � � � �
 � � � �
 � � " � � �
 -

HT82A836R

Rev. 1.10 43 August 5, 2011

REC_MODE=1:Writing to RECORD_IN_L register will only put the written data to an internal lower-order byte buffer

(8-bit) and writing RECORD_IN_H will transfer the RECORD_IN_L and RECORD_IN_H registers content to

isochronous in buffer. When record interrupt happened, firmware should write 16-bit 2�s complement value to RE-

CORD_IN_L and RECORD_IN_H (RECORD_U_EN=0) registers or write 8-bit � law value to RECORD_IN_H register

(RECORD_U_EN=1).

REC_MODE= �1� Record data comes from the RECORD_IN_H and RECORD_IN_L registers

REC_MODE= �0� Record data comes from the PCM ADC (Default =0)

The record write data format will be controlled by bit RECORD_U_EN of OPER_MODE register when REC_MODE=

�1�.

The record data write format as follow:

RECORD_IN_L RECORD_IN_H

RECORD_U_EN= 0 PCM (Low byte) PCM (High byte)

RECORD_U_EN= 1 N/A � Law

Example Program to Eliminate Pop Noise:

System_Initial:
;---
; Avoid Pop Noise
;---
mov a,WDTS
mov FIFO_TEMP,a ;Save WDTS value
mov a,00001111b
mov a,WDTS
mov a,01010000b
orm a,WDTS ;Enter DAC Write Data mode, high nibble of WDTS=0101b
clr [02DH] ;Set DAC data low byte=00H
mov a,80H
mov [02EH],a ;Set DAC data high byte=80H

;Write 8000H to DAC
set [02FH].3

clr [02FH].3

;---
mov a,FIFO_TEMP ;Restore WDTS value
mov WDTS,a ;Quit DAC Write Data mode
;---

HT82A836R

Rev. 1.10 44 August 5, 2011

Digital Programmable Gain Amplifier � PGA

The device includes a fully integrated Programmable

Gain Amplifier, otherwise known as the PGA. The PGA

is a digital amplifier used to amplify the 16-bit data that

comes from the PCM A/D Converter (REC_MODE

(2FH.0)=0) or from the RECORD_IN_H and RE-

CORD_IN_L (REC_MODE (2FH.0)=1).

The PGA function is controlled using the PGA_CTRL

register within which there is six bits to control the gain

value. This gain value ranges from 0dB up to a maxi-

mum of 19.5dB, in steps of 0.5dB, and is selected using

the PGA0~PGA5 bits.

� ! # � � � � !
 � "
 � �
 �

& ; ! � & 8 (9 8 $

& ; ! � & 8 (9 8 E

& ; ! 8 # �

� � �

� � � 3 H � � � 7

*) /

7

�

PGA Block Diagram

� 1 � 0) � 	 � � 	 � � � � � � �

� 2 � 7

� � � � �)
 �
 � � �
 � � !
 � � �
 �

� � � 4 � � � 5 � � � � � � � 7� � � 1

� � � 3 H � � � 7
7 � 7 � 7 � 7 � 7 � 7
7 � 7 � 7 � 7 � 7 � �

B
� � 7 � 7 � � � � � 7
� � 7 � 7 � � � � � �
� � 7 � � � 7 � 7 � 7

B
� � � � � � � � � � �

� � � � � � � � /
7
7 - 3
B

� 6 - 7
� 6 - 3
� 6 - 3
B

� 6 - 3

� ! # � � � � !
 � "
 � �
 � � &
 �
 � � !
 � � �
 �
� B � &
 �
 � � � ! # � � � � �
 � "
 � �
 �
7 B � 9
 � 	 � � �
 +
 � � � �
 �

� � �
 + �
 �
 � # � �
 � !
 � � �
 �
� B � 9
 � 	 � � �
 +
 � � � �
 �
7 B � # � � �
 + �
 �
 � 	 � �
 �

� � � 3# * � ; 8 # = / � ! 8 & ;) ; �

Programmable Gain Amplifier Control Register � PGA_CTRL

HT82A836R

Rev. 1.10 45 August 5, 2011

SPI Serial Interface

The device includes a single SPI Serial Interface. The

SPI interface is a full duplex serial data link, originally

designed by Motorola, which allows multiple devices

connected to the same SPI bus to communicate with

each other. The devices communicate using a mas-

ter/slave technique where only the single master device

can initiate a data transfer. A simple four line signal bus

is used for all communication.

SPI Interface Communication

Four lines are used for SPI communication known as

SDI - Serial Data Input, SDO - Serial Data Output, SCK

� Serial Clock and SCS � Slave Select. Note that the

condition of the Slave Select line is conditioned by the

CSEN bit in the SBCR control register. If the CSEN bit is

high then the SCS line is active while if the bit is low then

the SCS line will be in a floating condition. The following

timing diagram depicts the basic timing protocol of the

SPI bus.

SPI Registers

There are two registers associated with the SPI Inter-

face. These are the SBCR register which is the control

register and the SBDR which is the data register. The

SBCR register is used to setup the required setup pa-

rameters for the SPI bus and also used to store associ-

ated operating flags, while the SBDR register is used for

data storage.

After Power on, the contents of the SBDR register will be

in an unknown condition while the SBCR register will de-

fault to the condition below:

CKS M1 M0 SBEN MLS CSEN WCOL TRF

0 1 1 0 0 0 0 0

Note that data written to the SBDR register will only be

written to the TXRX buffer, whereas data read from the

SBDR register will actually be read from the register.

SPI Bus Enable/Disable

To enable the SPI bus then CSEN=1 and SBEN=1, the

SCK, SDI, SDO and SCS lines should all be zero, then

wait for data to be written to the SBDR (TXRX buffer)

register. For the Master Mode, after data has been writ-

ten to the SBDR (TXRX buffer) register then transmis-

sion or reception will start automatically. When all the

data has been transferred the TRF bit should be set. For

the Slave Mode, when clock pulses are received on

SCK, data in the TXRX buffer will be shifted out or data

on SDI will be shifted in.

To Disable the SPI bus SCK, SDI, SDO, SCS floating.

SPI Operation

All communication is carried out using the 4-line inter-

face for both Master or Slave Mode. The timing diagram

shows the basic operation of the bus.

 2 � 3 1 4 5 � 7

) / & � > &
 �
 � "
 � � � � � � &
 � � � �
 � ?

#
*
J

) � � / � 0 0
 �

#
*
J

$)

 � � � � / � �

#
*
J

� � �
 � �
 � �) � � "

) (

) �

(� �
 � � � � � / � � � � & � �
 � ! �
 � .

) ! =

! �
 � . � �
 � � � � � �

! 5! �! 7

) / ; 9

(� �
 � � � � � / � � � � � � � �

) / ; 9

� � � �
 �) / &

� ! � $ � � � � �

� & �
� � � C � � � � � �

) / ; 9

; 9

� 9

� � � �
 �) / &

� � � �
 �) / & � ; � � � �
 � � � � � �

) !); 9

� � �
 � �
 � �) � � "

!) ; 9
) / ; 9

� � � C � � � � � �

� � � C � � � � � �

SPI Block Diagram

HT82A836R

Rev. 1.10 46 August 5, 2011

� �) 	 � 	 � � � � � � �

� 2 � 7

! =) # � # 7) / ; 9 # $) !) ; 9 � ! � $ � & �

� � � � � 	 � � � � &
 �
 � "
 � � � � �
7 B � 9
 � � �
 	 + �
 �

� B � � � � � � 	 � � � �
 � � �
 �
 + � �
 � � �
 	 + �
 �

� � � �
 � !
 � � � � �
 � � / � �
7 B � !
 � � � � �
 � � 0 �

� B � !
 � � � � �
 � � �
 �
 � �
 �

)
 �
 � � �
 � �) � � � � � � ; � � � �
 � � � � � �
 � / � �
7 B �) !) � 0 �
 � � � � �
� B � ; � � � �

) / � $) / � � � � � � � / � �
7 B � $) / � � � � 0 � � 0 � � � �
� B � #) / � � � � 0 � � 0 � � � �

)
 � � � � � / � � � ; � � � �
 � � � � � �
 � / � �
7 B � � � � � �

� B � ; � � � �

� � � �
 +
 � �
 � � � � +
 � � !) ; 9 � � � �

� � �
 � �) � � "
 � / � � � � & � �
 � / � � �

� � �
 � C � � � � � � � � �
 B � 0) (�
� � �
 � C � � � � � � � � �
 B � 0) (� � 1
� � �
 � C � � � � � � � � �
 B � 0) (� � � �
) � � "
 � 	
 �

�
7
7
�
�

7
7
�
7
�

! �
 � . �)
 � � �
 �)
 �
 � � � / � �
7 B � 0) (� L 0) A) � 5
� B � 0) (� L 0) A)

SPI Interface Control Register

) ! =

) !)

) (

) � � � �

 2 � 7 � � � 3 � 5 1 � 4 4 � 1 5 � 3 � � � 7 � 2

 2 � 7 � � � 3 � 5 1 � 4 4 � 1 5 � 3 7 � 2

) / ; 9 L � !) ; 9 L � � � � � � � , � � �
 � � � � � � �
 �) / &

) / ; 9 L � � C � !) ; 9 L � 7 � � � � � , � � �
 � � � � � � �
 �) / & � > (0 � + � � �
 � � � � � � ?

) ! =

SPI Bus Timing

The SBEN bit determines if pins PC4~PC7 are used as

normal I/O pins or as SPI function pins. If this bit is high

then the pins will be SPI function pins and here pin SCS

will go low if CSEN=1. If the bit is low then the pins will

function as normal I/O pins. Note that when SBEN=1,

then any pull-high resistors connected to pins PC4~PC7

will be disconnected therefore the user hardware should

ensure that external pull-high resistors are added to the

SPI pins if necessary. If CSEN = 0 then the SCS pin will

be in a floating state.

The SPI clock polarity is controlled using the SIO_CPOL

bit in the MODE_CTRL register. If SIO_CPOL = 1, then

the rising edge will be selected. Otherwise if SIO_CPOL

= 0, the falling edge will be selected.

The CSEN bit in the SBCR register controls the overall

function of the SPI interface. Setting this bit high, will en-

able the SPI interface by allowing the SCS line to be ac-

tive, which can then be used to control the SPI interface.

If the CSEN bit is low, the SPI interface will be disabled

and the SCS line will be in a floating condition and can

therefore not be used for control of the SPI interface.

The SBEN bit in the SBCR register must also be high

which will change the pin function from a standard I/O to

an SPI function pin. If in the Master Mode the SCK line

will be either high or low depending upon the clock po-

larity configuration option. If in the Slave Mode the SCK

line will be in a floating condition. If SBEN is low then the

bus will be disabled.

HT82A836R

Rev. 1.10 47 August 5, 2011

In the Master Mode the Master will always generate the

clock signal. The clock and data transmission will be ini-

tiated after data has been written to the SBDR register.

In the Slave Mode, the clock signal will be received from

an external master device for both data transmission or

reception. The following sequences show the order to

be followed for data transfer in both Master and Slave

Mode:

� Master Mode:

Step 1. Select the clock source using the CKS bit in

the SBCR control register.

Step 2. Setup the M0 and M1 bits in the SBCR control

register to select the Master Mode and the

required Baud rate. Values of 00, 01 or 10 can

be selected.

Step 3. Setup the CSEN bit and setup the MLS bit to

choose if the data is MSB or LSB first,

this must be same as the Slave device.

Step 4. Setup the SBEN bit in the SBCR control

register to enable the SPI interface.

� Step 5. For write operations: write the data to the

SBDR register, which will actually place the

data into the TXRX buffer. Then use the

SCK and SCS lines to output the data.

After this goto to step 6.

For read operations: the data transferred in

on the SDI line will be stored in the TXRX

buffer until all the data has been received at

which point it will be latched into the SBDR

register.

Step 6. Check the WCOL bit, if set high then a

collision error has occurred so return to step5.

If equal to zero then go to the following step.

Step 7. Check the TRF bit or wait for an SBI serial bus

interrupt.

Step 8. Read data from the SBDR register.

Step 9. Clear TRF.

Step10. Goto step 5.

� Slave Mode:

Step 1. The CKS bit has a don�t care value in the

slave mode.

Step 2. Setup the M0 and M1 bits to 00 to select the

Slave Mode. The CKS bit is don�t care.

Step 3. Setup the CSEN bit and setup the MLS bit to

choose if the data is MSB or LSB first,

this must be same as the Master device.

Step 4. Setup the SBEN bit in the SBCR control

register to enable the SPI interface.

Step 5. For write operations: write data to the SBCR

register, which will actually place the data into

the TXRX register, then wait for the master

clock and SCS signal. After this goto step 6.

For read operations: the data transferred in

on the SDI line will be stored in the TXRX

buffer until all the data has been received

at which point it will be latched into the SBDR

register.

Step 6. Check the WCOL bit, if set high then a

collision error has occurred so return to step5.

If equal to zero then go to the following step.

Step 7. Check the TRF bit or wait for an SBI serial bus

interrupt.

Step 8. Read data from the SBDR register.

Step 9. Clear TRF

Step10. Goto step 5

SBEN= �1�
PC4~PC7 are SPI function pins

(pin SCS will go low if CSEN=1).

SBEN= �0�
PC4~PC7 are general purpose I/O Port

pins (Default)

Note: (1) If SBEN=�1�, the pull-high resistor of

PC4~PC7 will be disable. When this happens,

the user should add external pull-high resistors

to the SPI related pins if necessary (EX: pin

SCS).

(2) If CSEN=�0�, the SCS pin will enter a float-

ing state.

The SPI cock polarity controlled by SIO_CPOL bit of

MODE_CTRL register. If SIO_CPOL =�1�, rising edge

(CLK) will be selected. Otherwise SIO_CPOL=�0�, fall-

ing edge (CLK) will be selected.

Error Detection

The WCOL bit in the SBCR register is provided to indi-

cate errors during data transfer. The bit is set by the Se-

rial Interface but must be cleared by the application

program. This bit indicates a data collision has occurred

which happens if a write to the SBDR register takes

place during a data transfer operation and will prevent

the write operation from continuing. The bit will be set

high by the Serial Interface but has to be cleared by the

user application program. The overall function of the

WCOL bit can be disabled or enabled by a SIO_WCOL

bit of MODE_CTRL register.

Programming Considerations

When the device is placed into the Power Down Mode

note that data reception and transmission will continue.

The TRF bit is used to generate an interrupt when the

data has been transferred or received.

HT82A836R

Rev. 1.10 48 August 5, 2011

Mode Control Register

The MODE_CTRL register is used to control DAC and ADC operation mode and SPI function.

Note that the WCOL and CSEN bits are in the SBCR register.

SPI usage example:

SPI_Test:
clr UCC.@UCC_SYSCLK ;12MHz SYSCLK

set SIO_CSEN ;SPI Chip Select Function Enable
clr SIO_CPOL ;falling edge change data
;Master Mode, SCLK=fSIO
clr M1
clr M0
;--------------
clr CKS ;fSIO=fSYS/2
clr TRF ;clear TRF flag
clr TRF_INT ;clear Interrupt SPI flag
set MLS ;MSB shift first
set CSEN ;Chip Select Enable
set SBEN ;SPI Enable, SCS will go low

if POLLING_MODE
clr ESII ;SPI Interrupt Disable

;WRITE INTO �WRITE ENABLE� INSTRUCTION
MOV A,OP_WREN
MOV SBDR,A

$0:
snz TRF
jmp $0
clr TRF

else
set ESII ;SPI Interrupt Enable

;WRITE INTO �WRITE ENABLE� INSTRUCTION
MOV A,OP_WREN
MOV SBDR,A

$0:
snz TRF_INT ;set at SPI Interrupt
jmp $0
clr TRF_INT

endif

& " + . 0) � 	 � � 	 � � � � � � �

� 2 � 7

&
 �
 � � 8 � �
 �) (� 8 !) ; 9) (� 8 � ! � $) (� 8 ! � � $ � $ � A 8 # � ; � 8 ; 9 / � 8 & 8 ; 9 / � 8 $ 8 ; 9 /

 � ! � $
 0 � � ! � � � �
 � � !
 � � �
 �
� B � � � � � �

7 B � ; � � � �
 � � � �
 0 � � � �

 � ! � & � � � � � ! � � � �
 � � !
 � � �
 �
� B � � � � � �

7 B � ; � � � �
 � � � �
 0 � � � �

� � � !
 � "
 � �
 � � !
 � � �
 �
� B � �
 ,
 � � �
 , �
7 B � �
 ,
 � �
 � � � � �
 0 � � � �

 � ! � � � � � � #
 �
 � !
 � � �
 �
� B � ' . E G � � � � � � �
7 B � 1 ' . E G � � � � � � � � � � �
 0 � � � �

) � (� ! �
 � . � �
 � � � � � � � !
 � � �
 �
� B � & � � � � � �
 � �

7 B � � � � � � � � �
 � �
 � � � �
 0 � � � �

) � (� � ! � $ � / � � � !
 � � �
 �
� B � � ! � $ � � � � �
 � � � �
 �
7 B � � ! � $ � � � � � � � � � � �
 � � � � �
 0 � � � �

) � (� !) ; 9 � / � � � !
 � � �
 �
� B � !) ; 9 � � � � �
 � � � �
 �
7 B � !) ; 9 � � � � � � � � � � �
 � � � � �
 0 � � � �

&
 �
 � � � � �
 � �
 � � � � !
 � � �
 �
� B � � � . E G
5 B � ' . E G � � � �
 0 � � � �

Mode Control Register � MODE_CTRL

HT82A836R

Rev. 1.10 49 August 5, 2011

Operation Mode Control Register

The OPER_MODE register is used to control certain operational operational modes. The operation mode is used to

control the � law compander enable/disable for the speaker and microphone data.

" � . 	 0 & " + . � 	 � � � � � � �

� 2 � 7

& ; ! � & 8 * 8 ; 9

� � � � � � � $ � , � !
 	 + �
 � � �
 � � !
 � � �
 �
� B � !
 	 + �
 � � �
 � �
 � � � �
 �
7 B � !
 	 + �
 � � �
 � � � � � � � �
 � � � � �
 0 � � � �

&
 �
 � � � � � $ � , � ; @ + � � �
 � � !
 � � �
 �
� B � ; @ + � � �
 � �
 � � � �
 �
7 B � ; @ + � � �
 � � � � � � � �
 � � � � �
 0 � � � �

* � � " � � � � � �

� $ � A 8 * 8 ; 9

Operation Mode Control Register � OPER_MODE

Play/Record Data

The Play and Record data for the device is contained in 4 Play registers and 2 Record registers. The play/record inter-

rupt will be activated when play/record data in the PLAY_DATA or RECORD_DATA registers is valid. The

PLAY_DATA/RECORD_DATA registers will latch data until the next interrupt is generated. The DAC PLAY_DATA reg-

ister contains an unsigned value with a range of 0~FFFFH. The RECORD_DATA is stored in 2�s complement format

with a range of 8000H~7FFFH.

The update rate of the PCM ADC RECORD_DATA is 8kHz with the Record_Freq bit in the MODE_CTRL register is

equal to 0, or 16kHz if the bit is set to 1. The update rate for the PLAY_DATA is 48kHz, if the PLAY_MODE bit in the

MODE_CTRL register is equal to 0, or 8kHz if the bit is equal to 1. All of the PLAY and RECORD registers are read only.

Name b7 b6 b5 b4 b3 b2 b1 b0

PLAY_DATAL_L PL_D7 PL_D6 PL_D5 PL_D4 PL_D3 PL_D2 PL_D1 PL_D0

PLAY_DATAL_H PL_D15 PL_D14 PL_D13 PL_D12 PL_D11 PL_D10 PL_D9 PL_D8

PLAY_DATAR_L PR_D7 PR_D6 PR_D5 PR_D4 PR_D3 PR_D2 PR_D1 PR_D0

PLAY_DATAR_H PR_D15 PR_D14 PR_D13 PR_D12 PR_D11 PR_D10 PR_D9 PR_D8

RECORD_DATA_L R_D7 R_D6 R_D5 R_D4 R_D3 R_D2 R_D1 R_D0

RECORD_DATA_H R_D15 R_D14 R_D13 R_D12 R_D11 R_D10 R_D9 R_D8

The play data format is controlled by bit PLAY_U_EN in the OPER_MODE register.

PLAY_DATAL_L PLAY_DATAL_H PLAY_DATAR_L PLAY_DATAR_H

PLAY_U_EN=0
PCM (Left Channel

Low Byte)

PCM (Left Channel

High Byte)

PCM (Right Channel

Low Byte)

PCM (Right Channel

High Byte)

PLAY_U_EN=1 N/A � Law (Left Channel) N/A � Law (Right Channel)

The record data registers RECORD_DATA_L/RECORD_DATA_H will not be affected by bit RECORD_U_EN in the

OPER_MODE register. The record data registers RECORD_DATA_L/RECORD_DATA_H are in PCM format.

HT82A836R

Rev. 1.10 50 August 5, 2011

Pulse Width Modulator

The device contains a 2 channel Pulse Width Modulator

function, more commonly known as PWM. Useful for

such applications such as motor speed control, the

PWM function provides outputs with a fixed frequency

but with a duty cycle that can be varied by setting partic-

ular values into the corresponding PWM registers.

The device has two PWM outputs for which two 8-bit

PWM registers are provided and are known as PWM0

and PWM1. It is in these registers, that the 8-bit value,

which represents the overall duty cycle of one modula-

tion cycle of the output waveform, should be placed. To

increase the PWM modulation frequency, each modula-

tion cycle is modulated into two or four individual modu-

lation sub-sections, known as the 7+1 mode or 6+2

respectively. The mode selection is made using the

PWMC register. Note that it is only necessary to write

the required modulation value into the corresponding

PWM0 or PWM1 register, as the subdivision of the

waveform into its sub-modulation cycles is implemented

automatically within the microcontroller hardware. For

all devices, the PWM clock source is the system clock

fSYS.

This method of dividing the original modulation cycle

into a further 2 or 4 sub-cycles enables the generation of

higher PWM frequencies, which allow a wider range of

applications to be served. As long as the periods of the

generated PWM pulses are less than the time constants

of the load, the PWM output will be suitable for driving,

as such long time constant loads will average out the

pulses of the PWM output. The difference between what

is known as the PWM cycle frequency and the PWM

modulation frequency should be understood. As the

PWM clock is the system clock, fSYS, and as the PWM

value is 8-bits wide, the overall PWM cycle frequency is

fSYS/256. However when in the 7+1 mode of operation,

the PWM modulation frequency will be fSYS/128, while

the PWM modulation frequency for the 6+2 mode of op-

eration will be fSYS/64.

The overall PWM output enable/disable is controlled us-

ing the PWMC register which acts like an on/off switch

for each PWM output.

PWM

Modulation

PWM Cycle

Frequency

PWM Cycle

Duty

fSYS/64 for (6+2) bits mode

fSYS/128 for (7+1) bits mode
fSYS/256 [PWM]/256

6+2 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM

register, has 256 clock periods. However, in the 6+2

PWM mode, each PWM cycle is subdivided into four in-

dividual sub-cycles known as modulation cycle 0 ~ mod-

ulation cycle 3, denoted as i in the table. Each one of

these four sub-cycles contains 64 clock cycles. In this

mode, a modulation frequency increase of four is

achieved. The 8-bit PWM register value, which repre-

sents the overall duty cycle of the PWM waveform, is di-

vided into two groups. The first group which consists of

bit2~bit7 is denoted here as the DC value. The second

group which consists of bit0~bit1 is known as the AC

value. In the 6+2 PWM mode, the duty cycle value of

each of the four modulation sub-cycles is shown in the

following table.

Parameter AC (0~3)
DC

(Duty Cycle)

Modulation cycle i

(i=0~3)

i<AC
DC+1

64

i�AC
DC

64

6+2 Mode Modulation Cycle Values

The following diagram illustrates the waveforms associ-

ated with the 6+2 mode of PWM operation. It is impor-

tant to note how the single PWM cycle is subdivided into

4 individual modulation cycles, numbered from 0~3 and

how the AC value is related to the PWM value.

0) A) � 5

� � #

D � � # F � L � 7 7

D � � # F � L � 7 �

� � #

D � � # F � L � 7 5

� � #

D � � # F � L � 7 4

� � #

� � # � � � � �
 � B � 5 3 � � 0) A)

5 3 � � 1

5 � � � 1

5 � � � 1

5 � � � 1

5 3 � � 1 5 3 � � 1 5 3 � � 1

5 3 � � 1

5 3 � � 1

5 3 � � 1

5 3 � � 1

5 � � � 1

5 � � � 1

5 3 � � 1

5 3 � � 1

5 � � � 1 5 3 � � 1

5 � � � 1

5 � � � 1

5 � � � 1

� � # � 	
 � � � � � �
 � � +
 � �
 � � B � � 1 � 0) A)

(6+2) PWM Mode Output Waveform

HT82A836R

Rev. 1.10 51 August 5, 2011

7+1 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM

register, has 256 clock periods. However, in the 7+1

PWM mode, each PWM cycle is subdivided into two indi-

vidual sub-cycles known as modulation cycle 0 ~ modula-

tion cycle 1, denoted as i in the table. Each one of these

two sub-cycles contains 128 clock cycles. In this mode, a

modulation frequency increase of two is achieved. The

8-bit PWM register value, which represents the overall

duty cycle of the PWM waveform, is divided into two

groups. The first group which consists of bit1~bit7 is de-

noted here as the DC value. The second group which

consists of bit0 is known as the AC value. In the 7+1

PWM mode, the duty cycle value of each of the two mod-

ulation sub-cycles is shown in the following table.

Parameter AC (0~1)
DC

(Duty Cycle)

Modulation cycle i

(i=0~1)

i<AC
DC+1

128

i�AC
DC

128

7+1 Mode Modulation Cycle Values

The following diagram illustrates the waveforms associ-

ated with the 7+1 mode of PWM operation. It is impor-

tant to note how the single PWM cycle is subdivided into

2 individual modulation cycles, numbered from 0~1 and

how the AC value is related to the PWM value in the 7+1

PWM Mode.

� ' & � 	 � � � � � � � � � � � � 2 � 3 � 4 � & � 5 �

� 2 � 7

� ! � " � � �

 ! � " � � �

Pulse Width Modulation Registers for (6+2) PWM Mode

0) A) � 5

� � #

D � � # F � L � 7 7

D � � # F � L � 7 �

� � #

D � � # F � L � 7 5

� � #

D � � # F � L � 7 4

� � #

� � # � 	
 � � � � � �
 � � +
 � �
 � � B � � 5 ' � 0) A)

3 7 � � 5 '

3 � � � 5 '

3 � � � 5 '

3 5 � � 5 '

3 7 � � 5 '

3 7 � � 5 '

3 � � � 5 '

3 � � � 5 '

3 7 � � 5 '

3 � � � 5 '

3 � � � 5 '

3 5 � � 5 '

� � # � � � � �
 � B � 5 3 � � 0) A)

(7+1) PWM Mode Output Waveform

� ' & � 	 � � � � � � � � � � � � 2 6 3 * 4 � & � 5 �

� 2 � 7

� ! � " � � �

 ! � " � � �

Pulse Width Modulation Registers for (7+1) PWM Mode

HT82A836R

Rev. 1.10 52 August 5, 2011

PWM Output Control

Control of the two PWM outputs is achieved using the PWMC register. Bits within this register control the on/off function

of the individual PWM outputs as well as their chosen mode type. Note than when the PWM outputs are disabled they

will remain in a low state.

PWM Programming Example

The following sample program shows how the PWM outputs are setup and controlled. Before use the corresponding

PWM output configuration options must first be selected.

mov a,64h ; setup PWM0 value of 100 decimal which is 64H
mov PWM0,a
clr PWMC.PWM_MOD0 ; setup pin PWM0 to the 6+2 PWM Mode
set PWMC.PWM_EN0 ; enable PWM0 output
:
:
clr PWMC.PWM_EN0 ; disable PWM0 output

� ' &) � 	 � � � � � � �

� � # 7 � � � � + � � � ; � � � �

� B � � � # 7 �
 � � + � � �
 � � � �
 �
7 B � � � # 7 � � � � � � �
 �

� � # � � � � � + � � � ; � � � �

� B � � � # � �
 � � + � � �
 � � � �
 �
7 B � � � # � � � � � � � �
 �

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

� � # 7 � #
 �
 � !
 � � �
 �
� B � � � # 7 � � � � 2 : � � 	
 �

7 B � � � # 7 � � � � � : 5 � 	
 �

� � # � � #
 �
 � !
 � � �
 �
� B � � � # � � � � � 2 : � � 	
 �

7 B � � � # � � � � � � : 5 � 	
 �

* � �
 0 � �
 � C � �
 � � � � � � I 7 I

� 2 � 7

� � # 8 ; 9 7� � # 8 ; 9 �� � # 8 # � � � � # 8 # � 7

PWM Control Register � PWMC

HT82A836R

Rev. 1.10 53 August 5, 2011

Analog to Digital Converter

The need to interface to real world analog signals is a

common requirement for many electronic systems.

However, to properly process these signals by a

microcontroller, they must first be converted into digital

signals by A/D converters. By integrating the A/D con-

version electronic circuitry into the microcontroller, the

need for external components is reduced significantly

with the corresponding follow-on benefits of lower costs

and reduced component space requirements.

A/D Overview

The device contains a 6-channel analog to digital con-

verter which can directly interface to external analog sig-

nals, such as that from sensors or other control signals

and convert these signals directly into a 12-bit digital

value.

The following diagram shows the overall internal struc-

ture of the A/D converter, together with its associated

registers.

A/D Converter Data Registers � ADRL, ADRH

For the HT82A836R device, which has a 12-bit A/D con-

verter, two registers are required, a high byte register,

known as ADRH, and a low byte register, known as

ADRL, to store the 12-bit analog to digital conversion

value. After the conversion process takes place, these

registers can be directly read by the microcontroller to

obtain the digitised conversion value. Note that only the

high byte register ADRH utilises its full 8-bit contents.

The low byte register utilises only 4 bits of its 8-bit con-

tents as it contains only the lowest bit of the 12-bit con-

verted value.

In the following tables, D0~D11 are the A/D conversion

data result bits.

Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADRL D3 D2 D1 D0 � � � �

ADRH D11 D10 D9 D8 D7 D6 D5 D4

A/D Converter Data Register

A/D Converter Control Register � ADCR

To control the function and operation of the A/D con-

verter, a control register known as ADCR is provided.

This 8-bit register defines functions such as the selec-

tion of which analog channel is connected to the internal

A/D converter, power on/off the A/D converter, control

the start function and monitoring the A/D converter end

of conversion status.

One section of this register contains the bits

ACS2~ACS0 which define the channel number. As each

of the devices contains only one actual analog to digital

converter circuit, each of the individual 6 analog inputs

must be routed to the converter. It is the function of the

ACS2~ACS0 bits in the ADCR register to determine

which analog channel is actually connected to the inter-

nal A/D converter.

The ADCR control register also contains the

PCR2~PCR0 bits which determine power on/off the A/D

converter and. If the PCR2~PCR0 bits are all set to

zero, then the internal A/D converter circuitry will be

powered off to reduce the power consumption. Any

other non-zero combination on the PCR2~PCR0 bits

will power-on the the A/D converter will be power on

which will consume a certain amount of power.

� ! �)
 � � �

0) A) � 5

� 9 � !) & � &
 � � � �
 �

� !

� % 1

� 9 7
� 9 �
� 9 5
� 9 4
� 9 1
� 9 3

� � � �
 0
 �
 � �
 � "
 � � � �

� & $

� & E

� � � � � �
&
 � � � �
 � �

� ! & 7 H � ! & 5� !) 7 H � !) 5) � � & � ; � ! /
� ! &
&
 � � � �
 �

� � � �
 ,
 �
� � � � 0 0 � !
 � � �
 �

! � � � �
 � �)
 �
 � �
/ � � �

; � � �
 0
!
 � "
 � � �
 �
/ � � �

! �
 � . � � " � �
 � & � � �

� %)) 1

� �
 � � �

) � � � � � / � �

A/D Converter Structure

HT82A836R

Rev. 1.10 54 August 5, 2011

� +) 	 � 	 � � � � � � �

)
 �
 � � � � � � � � � � �
 �

� 2 � 7

) � � & � � ! & 5 � ! & � � ! & 7 � !) 5 � !) � � !) 7

� !) �
7
7
�
�
7
7

� !) 5
7
7
7
7
�
�

� � �
 � �

� !) 7
7
�
7
�
7
�

B � � 9 7 � > � � & ?
B � � 9 �
B � � 9 5
B � � 9 4
B � � 9 1
B � � 9 3
B � * � �
 0 � �
 � C � 	 � � � � �
 � � �
 � � �
 � �

� � � +
 ,
 � � � � � � 0 0 � !
 � � �
 �

� ! & 5
7

� ! & �
7

� ! & 7
7 B � � � � � �
 � "
 � �
 � � +
 ,
 �
 � � �
 , �

; � � �
 0 � � � � �
 � "
 � � �
 � � 0 � � �
� B � �
 � �
 � � �
 0 � � � � �
 � "
 � � �
 � � � � � � � �
 � "
 � � �
 � � , � � � � � � �
 � � � � � + �
 � �
 � �
7 B �
 � � �
 0 � � � � �
 � "
 � � �
 � � � � � � � �
 � "
 � � �
 � �
 � �
 �

) � � � � � � �
 � � � � �
 � "
 � � �
 �

7 � � � � � � � 7 � B �) � � � �

7 � � � � � B � &
 �
 � � � � � �
 � "
 � �
 � � � � � � �
 � � ; � ! / � �
 � I � I

; � ! /

� � �
 � � � " � � �
 � B � � � � �
 � "
 � �
 � � +
 ,
 �
 � �
 �

ADCR Register

�) � 	 � 	 � � � � � � �

)
 �
 � � � � � � �
 � "
 � �
 � � � �
 � . � �
 � � �

� 2 � 7

� ;) � � !) � � !) 7

� !) �
7
7
�
�

� !) 7
7
�
7
�

B � � � � �
 	 � � �
 � . � 5
B � � � � �
 	 � � �
 � . � '
B � � � � �
 	 � � �
 � . � 4 5
B � � � �
 0 � �
 �

9
 � � � 	 + �
 	
 � �
 � C � �
 � � � � � � I 7 I

�
 � � �
 � � � 	
 �
 � � �
 �
 � � �

A/D Converter Clock Source Register

The START bit in the ADCR register is used to start and

reset the A/D converter. When the microcontroller sets

this bit from low to high and then low again, an analog to

digital conversion cycle will be initiated. When the

START bit is brought from low to high but not low again,

the EOCB bit in the ADCR register will be set to a �1�

and the analog to digital converter will be reset. It is the

START bit that is used to control the overall on/off opera-

tion of the internal analog to digital converter.

The EOCB bit in the ADCR register is used to indicate

when the analog to digital conversion process is com-

plete. This bit will be automatically set to �0� by the

microcontroller after a conversion cycle has ended. In

addition, the corresponding A/D interrupt request flag

will be set in the interrupt control register, and if the inter-

rupts are enabled, an appropriate internal interrupt sig-

nal will be generated. This A/D internal interrupt signal

will direct the program flow to the associated A/D inter-

nal interrupt address for processing. If the A/D internal

interrupt is disabled, the microcontroller can be used to

poll the EOCB bit in the ADCR register to check whether

it has been cleared as an alternative method of detect-

ing the end of an A/D conversion cycle.

A/D Converter Clock Source Register � ACSR

The clock source for the A/D converter, which originates

from the system clock fSYS, is first divided by a division

ratio, the value of which is determined by the ADCS1

and ADCS0 bits in the ACSR register.

Although the A/D clock source is determined by the sys-

tem clock fSYS, and by bits ADCS1 and ADCS0, there

are some limitations on the maximum A/D clock source

speed that can be selected.

A/D Input Pins

All of the A/D analog input pins are independent analog

inputs and not shared with other I/O pins. Bits

PCR2~PCR0 in the ADCR register, not configuration

options, determine whether the A/D converter is pow-

ered on or powered down. The AVDD4 power supply pin

is used as the A/D converter reference voltage, and as

such analog inputs must not be allowed to exceed this

value. Appropriate measures should also be taken to

ensure that the AVDD4 pin remains as stable and noise

free as possible.

HT82A836R

Rev. 1.10 55 August 5, 2011

Initialising the A/D Converter

The internal A/D converter must be initialised in a spe-

cial way. Each time the A/D channel selection bits are

modified by the program, the A/D converter must be

re-initialised. If the A/D converter is not initialised after

the channel selection bits are changed, the EOCB flag

may have an undefined value, which may produce a

false end of conversion signal. To initialise the A/D con-

verter after the channel selection bits have changed,

then, within a time frame of one to ten instruction cycles,

the START bit in the ADCR register must first be set high

and then immediately cleared to zero. This will ensure

that the EOCB flag is correctly set to a high condition.

Summary of A/D Conversion Steps

The following summarises the individual steps that

should be executed in order to implement an A/D con-

version process.

� Step 1

Select the required A/D conversion clock by correctly

programming bits ADCS1 and ADCS0 in the ACSR

register.

� Step 2

Select which channel is to be connected to the internal

A/D converter by correctly programming the

ACS2~ACS0 bits which are also contained in the

ADCR register.

� Step 3

Select A/D converter power on or power down by pro-

gramming the PCR2~PCR0 bits in the ADCR register.

Note that this step can be combined with Step 2 into a

single ADCR register programming operation.

� Step 4

If the interrupts are to be used, the interrupt control

registers must be correctly configured to ensure the

A/D converter interrupt function is active. The master

interrupt control bit, EMI, in the INTC0 interrupt control

register must be set to �1�, the multi-function 1 inter-

rupt control bit, EMF1I, in the INTC1 register and the

A/D converter interrupt bit, EADI, in the MFI1C regis-

ter must also be set to �1�.

� Step 5

The analog to digital conversion process can now be

initialised by setting the START bit in the ADCR regis-

ter from �0� to �1� and then to �0� again. Note that this

bit should have been originally set to �0�.

� Step 6

To check when the analog to digital conversion pro-

cess is complete, the EOCB bit in the ADCR register

can be polled. The conversion process is complete

when this bit goes low. When this occurs the A/D data

registers ADRL and ADRH can be read to obtain the

conversion value. As an alternative method if the in-

terrupts are enabled and the stack is not full, the pro-

gram can wait for an A/D interrupt to occur.

Note: When checking for the end of the conversion

process, if the method of polling the EOCB bit in

the ADCR register is used, the interrupt enable

step above can be omitted.

The following timing diagram shows graphically the vari-

ous stages involved in an analog to digital conversion

process and its associated timing.

The setting up and operation of the A/D converter func-

tion is fully under the control of the application program

as there are no configuration options associated with

the A/D converter. After an A/D conversion process has

been initiated by the application program, the

microcontroller internal hardware will begin to carry out

the conversion, during which time the program can con-

tinue with other functions.

7 7 7 /

7 7 7 /

7 � � /

7 � 7 /

) � � & �

; � ! /

� ! & 5 H
� ! & 7

� !) 5 H
� !) 7

�
 ,
 � �
 �
&
 �
 �

; � � �
 0 � � �
�
 � "
 � � �
 �)
 �
 � � � � � � �
 � � � � � � �
 �

) � � � � �
 0 � � �
�
 � "
 � � �
 �

&
 �
 � � � �
�
 � "
 � �
 �

7 7 7 /

) � � � � �
 0 � � �
�
 � "
 � � �
 �

&
 �
 � � � �
�
 � "
 � �
 �

7 7 7 /

� � � �
 � "
 � �
 � � � � � +
 ,
 �
 � �
 0 0
�
 � �
 � � �
 � +
 ,
 � � �
 � � � 	 + � �
 �

� 7 7 /

7 7 � /

) � � � � �
 0 � � �
�
 � "
 � � �
 �

&
 �
 � � � �
�
 � "
 � �
 �

 � M � � � � �

; � � �
 0 � � �
�
 � "
 � � �
 �

; � � �
 0 � � �
�
 � "
 � � �
 �

) � � & � � � � � � �
 � � � � � � � , � � � � � �
 �
 � �
 � �
 � � � � � � � � � � �
 � � � � � �
 � � � 0 �
 � � � �
 � � ! & 7 H � ! & 5 � � � � � � � � � � �
 � � � � �

� � � � �
 � . � 	 � � � � �
 � 0) A) � 5 C � 0) A) � ' �
 � � 0) A) � 4 59
 �
 B �

� � � � � 	 + � � � � � � � 	
 � � � � � 	 + � � � � � � � 	
� � � � � 	 + � � � � � � � 	

� � 4 5 � � � � 4 5 � � � � 4 5 � �

� � !

� � � �
 � "
 � � �
 � � � � 	
 � � � �
 � "
 � � �
 � � � � 	
 � � � �
 � "
 � � �
 � � � � 	

� � ! � � !

A/D Conversion Timing

HT82A836R

Rev. 1.10 56 August 5, 2011

Programming Considerations

When programming, special attention must be given to

the A/D channel selection bits in the ADCR register. This

ability to reduce power by turning off the internal A/D

function by clearing the A/D channel selection bits may

be an important consideration in battery powered appli-

cations.

Another important programming consideration is that

when the A/D channel selection bits change value the

A/D converter must be re-initialised. This is achieved by

pulsing the START bit in the ADCR register immediately

after the channel selection bits have changed state.

The exception to this is where the channel selection bits

are all cleared, in which case the A/D converter is not re-

quired to be re-initialised.

A/D Programming Example

The following two programming examples illustrate how

to setup and implement an A/D conversion. In the first

example, the method of polling the EOCB bit in the

ADCR register is used to detect when the conversion

cycle is complete, whereas in the second example, the

A/D interrupt is used to determine when the conversion

is complete.

Example: using an EOCB polling method to detect the end of conversion for the HT82A836R.

clr EADI ; disable ADC interrupt
mov a,00000001 B
mov ACSR,a ; setup the ACSR register to select fSYS/8 as the A/D

; clock
mov a,00100000B ; setup the ADCR register to power up the A/D

; converter
mov ADCR,a ; and select AN0 to be connected to the A/D

; converter
: ; the following START signal (0-1-0) must be issued
: ; within 10 instruction cycles
:

Start_conversion:
clr START
Set START ; reset A/D
clr START ; start A/D

Polling_EOC:
sz EOCB ; poll the ADCR register EOCB bit to detect end

; of A/D conversion
jmp polling_EOC ; continue polling
mov a,ADRH ; read conversion result high byte value from the

; ADRH register
Adr_buffer_h,a ; save result to user defined memory
mov a,ADRL ; read conversion result low byte value from the

; ADRL register
mov adr_buffer_l,a ; save result to user defined memory

:
:

jmp start_conversion ; start next A/D conversion

HT82A836R

Rev. 1.10 57 August 5, 2011

Example: using an interrupt method to detect the end of conversion for the HT82A836R.

clr EADI ; disable ADC interrupt
mov a,00000001B
mov ACSR,a ; setup the ACSR register to select fSYS/8 as the A/D

; clock
mov a,00100000B ; setup the ADCR register to power up the A/D

; converter
mov ADCR,a ; and select AN0 to be connected to the A/D

; converter
: ; the following START signal (0-1-0) must be issued

: ; within 10 instruction cycles
:

Start_conversion:
clr ADF ; clear ADC interrupt request flag
set EMF1I ; Multi function 1 interrupt Enable
set EADI ; enable ADC interrupt
set EMI ; enable global interrupt
clr START
set START ; reset A/D
clr START ; start A/D

:
:
:

; ADC interrupt service routine
ADC_ISR:

clr ADF ; clear ADC interrupt request flag
mov acc_stack,a ; save ACC to user defined memory
mov a,STATUS
mov status_stack,a ; save STATUS to user defined memory

:
:

mov a,ADRH ; read conversion result high byte value from the
; ADRH register

mov adr_buffer_h,a ; save result to user defined register
mov a,ADRL ; read conversion result low byte value from the

; ADRL register
mov adr_buffer_l,a ; save result to user defined register

:
:

EXIT_INT_ISR:
mov a,status_stack
mov STATUS,a ; restore STATUS from user defined memory
mov a,acc_stack ; restore ACC from user defined memory
reti

HT82A836R

Rev. 1.10 58 August 5, 2011

A/D Transfer Function

As the HT82A836R device contains a 12-bit A/D converter, their full-scale converted digitised value is equal to FFFH.

Since the full-scale analog input value is equal to the voltage, this gives a single bit analog input value of VDD/4096. The

following graphs show the ideal transfer function between the analog input value and the digitised output value for the

A/D converters. Note that to reduce the quantisation error, a 0.5 LSB offset is added to the A/D Converter input. Except

for the digitised zero value, the subsequent digitised values will change at a point 0.5 LSB below where they would

change without the offset, and the last full scale digitised value will change at a point 1.5 LSB below the VDD level.

� � ; E

> � � � � � � � � � ?

� � � !
 � "
 � � �
 �
&
 � � � �

� � � E

� � E

7 4 E

7 5 E

7 � E

7 - 3 � $) /

7 � 5 4 1 7 6 4 1 7 6 1 1 7 6 3 1 7 6 �

� � � �
 � � (� + � � � %
 � � � �

� - 3 � $) /

%

1 7 6 �

Ideal A/D Transfer Function

HT82A836R

Rev. 1.10 59 August 5, 2011

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the OTP Program Memory de-

vice during the programming process. During the development process, these options are selected using the HT-IDE

software development tools. As these options are programmed into the device using the hardware programming tools,

once they are selected they cannot be changed later by the application software. All options must be defined for proper

system function, the details of which are shown in the table.

No. Options

I/O Options

1 PA0~PA7: pull-high enable or disable (bit option)

2 PB0~PB7: pull-high enable or disable (bit option)

3 PC0~PC7: pull-high enable or disable (nibble option)

4 PD0~PD7: pull-high enable or disable (bit option)

5 PE0~PE7: pull-high enable or disable (bit option)

6 PF0~PF3: pull-high enable or disable (bit option)

7 PA0~PA7: wake-up enable or disable (bit option)

8 PB0~PB7: wake-up enable or disable (bit option)

9 PC0~PC7: wake-up enable or disable (nibble option)

10 PD0~PD7: wake-up enable or disable (bit option)

11 PE0~PE7: wake-up enable or disable (bit option)

12 PF0~PF3: wake-up enable or disable (bit option)

13 PA0~PA7: CMOS or NMOS output type (bit option)

Watchdog Options

14 WDT: enable or disable

15 CLRWDT instructions: one or two instructions

16 WDT Clock Source: fSYS/4 or WDT oscillator

LVR Options

17 LVR function: enable or disable

TBHP Options

18 TBHP enable or disable

Application Circuits

HT82A836R

Rev. 1.10 60 August 5, 2011

� 5

� 7 � �7 - � � �/
 � � � �
 � � � �

� % 4%
$ 4

�

5

4

1

� � � �) " -

1 2 + �
/
 � �

1 2 + �

4 4 �

4 4 �

*) / 9
*) / �

� 7 � �

% 4 4 �
� - 3 . �

7 - � � �

%

%))

�

5
7 - � � �

%

*) / �

*) / :

%))

) � �

� � 2

� � �

) � 5) � 4) � 1

) 5 �) 5 5) 5 4) 5 1

) 4 �) 4 5) 4 4) 4 1

) 1 �) 1 5) 1 4) 1 1

) 3 �) 3 5) 3 4) 3 1

) � �) � 5) � 4) � 1

� � 3

� � 1

� ; 7

� ; �

� ; 5

� ; 4

� ; 1

� ; 3

*) (!
� 5 4

1 3 �

2 ' 6

N 7 O

* � � � 9 ! � 9 ! ; $

� = # * � ; 8) �) ; $

� � � � � � � � � 	

5
�

5
5

5
4

5
1

5
3

5
�

5
2

5
'

5
6

4
7

4
�

4
5

4
4

4
1

4
3

4
�

4
2

4
'

4
6

1
7

'
7

2
6

2
'

2
2

2
�

2
3

2
1

2
4

2
5

2
�

2
7

�
6

�
'

�
2

�
�

�
3

�
1

�
4

�
5

�
�

1 2
1 �
1 3
1 1
1 4
1 5
1 �

� 7

3 6
3 '
3 2

3 �
3 3

3 1
3 4
3 5

3 �
3 7

1 6
1 '

$ � * �
� %)) 5
� %)) �
/ (�)
*) (! 8 (9
� % �
� % 1
� 9 3
� 9 1
� 9 4
� 9 5
� 9 �
� 9 7
� %)) 1
� % 4
% � � &
 0
% � �
� (:
� (�
� �

�) ! �
�) ! (
� ; 7
� ; �
� ; 5
� ; 4
� ; 1
� ; 3
� ; �

� ; 2 � (9 �
 %)) 5

� 7
� �
� 5
� 4
� 1
� 3
� �
� 2

 % 5�
!
7
�/
<

�
!
�
��
#
&
7

�
!
5
��
#
&
�

�
!
4

�
!
1
�)

�

�
!
3
�)

(

�
!
�
�)
!
)

�
!
2
�)
!
=

%
)
)
4

�
/
7

�
/
�

�
/
5

�
/
4

�
/
1

�
/
3

�
/
�

�
/
2

�
�
#
7

�
�
#
�

�
%
)
)
4

&
;
)
;
�

%

�

*
)
/

9

*
)
/

�

%
4
4
�

%
)
)
�

�
�
4

�
�
5

�
�
�

�
�
7

�
�
2

�
�
�

�
�
3

�
�
1

�
�
4

�
�
5

�
�
�

�
�
7

�
%

5

&
�
*
�

$ � * �
� %)) 5
� %)) �
/ (�)
*) (! 8 (9
� % �
� % 1
� 9 3
� 9 1
� 9 4
� 9 5
� 9 �
� 9 7
� %)) 1
� % 4
% � � &
 0
% � �
� (:
� (�
� �

�
5
4
1

3
�
2
'

6
� 7
� �
� 5
� 4
� 1

� 3
� �
� 2
� '
� 6
5 7

&
;
)
;
�

%

�

*
)
/

9

*
)
/

�

%
4
4
�

%
)
)
�

�
�
4

�
�
5

�
�
�

�
�
7

�
�
2

�
�
�

�
�
3

�
�
1

�
�
4

�
�
5

�
�
�

�
�
7

�
%

5

&
�
*
�

�) ! �
�) ! (
� ; 7
� ; �
� ; 5
� ; 4
� ; 1
� ; 3
� ; �

� ; 2 � (9 �
 %)) 5

� 7
� �
� 5
� 4
� 1
� 3
� �
� 2

 % 5

�
!
7
�/
<

�
!
�
��
#
&
7

�
!
5
��
#
&
�

�
!
4

�
!
1
�)

�

�
!
3
�)

(

�
!
�
�)
!
)

�
!
2
�)
!
=

%
)
)
4

�
/
7

�
/
�

�
/
5

�
/
4

�
/
1

�
/
3

�
/
�

�
/
2

�
�
#
7

�
�
#
�

�
%
)
)
4

� 5 # E G

� 5

� 7 � �7 - � � �/
 � � � �
 � � � �

� % 5%

� 5

/
 � � � �
 � � � �

� %)) 5

$ 5

$ 3

� 5

� 7 � �7 - � � �/
 � � � �
 � � � �

� % �%
$ �

� 7 � �

� 7 7 � �

� 7 7 � �

$ � * �

& � * �

� %)) 5

�

5
4

�
�

�

P�
�
.
�)
�

�

Q 3

� � �
) � 4

) � = � %
 � � 	
 �
 �

� � 5
) � 1

) � = � %
 � � 	
 � (� �

� � 4
) � 3

) � = � # � �

� � 7

4 4 7 �

*) / � � � � � "

� $;

� 7 � �7 - � � �

� % � %

) � �
&
 �
 �

7 - � � �

& ;) ; �

� 7 7 . �

%

7 - � � �

� ! 7

1 2 �

� . �
� 9 �

/ � G G
 �

�

5

4# = �

� %)) 4

7 - � � �

� 7 . �

� 7 7 . �

� 7 7 + �

� 7 7 . �

� 7 7 + �

% � �

� %)) 4

�
7
�
�

7 - � � �

� 7 . �

4 - 4 . �

� . �

� % 4

� %)) 4

� 7 � �
:

� � �
 + �
 �

� 5

/
 � � � �
 � � � �

� %)) 4

� 5

� 7 � �7 - � � �/
 � � � �
 � � � �

� % 1%
$ 2

$ 1
� 5

/
 � � � �
 � � � �

� %)) 1

$ '

� �

HT82A836R

Rev. 1.10 61 August 5, 2011

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be �CLR PCL� or �MOV PCL, A�. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

HT82A836R

Rev. 1.10 62 August 5, 2011

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the �SET

[m].i� or �CLR [m].i� instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the �HALT� in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

HT82A836R

Rev. 1.10 63 August 5, 2011

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note
None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note
None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the �CLR WDT1� and �CLR WDT2� instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both �CLR WDT1� and

�CLR WDT2� instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC
 ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m]
 ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC
 ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC
 ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m]
 ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �AND� [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC
 ACC �AND� x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m]
 ACC �AND� [m]

Affected flag(s) Z

HT82A836R

Rev. 1.10 64 August 5, 2011

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack
 Program Counter + 1

Program Counter
 addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m]
 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i
 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO
 0

PDF
 0

Affected flag(s) TO, PDF

HT82A836R

Rev. 1.10 65 August 5, 2011

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m]
 [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC
 [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m]
 ACC + 00H or

[m]
 ACC + 06H or

[m]
 ACC + 60H or

[m]
 ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m]
 [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC
 [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO
 0

PDF
 1

Affected flag(s) TO, PDF

HT82A836R

Rev. 1.10 66 August 5, 2011

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m]
 [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC
 [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter
 addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC
 [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC
 x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m]
 ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC
 ACC �OR� [m]

Affected flag(s) Z

HT82A836R

Rev. 1.10 67 August 5, 2011

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �OR� x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m]
 ACC �OR� [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter
 Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter
 Stack

ACC
 x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending

when the RETI instruction is executed, the pending Interrupt routine will be processed be-

fore returning to the main program.

Operation Program Counter
 Stack

EMI
 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1)
 [m].i; (i = 0~6)

[m].0
 [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1)
 [m].i; (i = 0~6)

ACC.0
 [m].7

Affected flag(s) None

HT82A836R

Rev. 1.10 68 August 5, 2011

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1)
 [m].i; (i = 0~6)

[m].0
 C

C
 [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1)
 [m].i; (i = 0~6)

ACC.0
 C

C
 [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i
 [m].(i+1); (i = 0~6)

[m].7
 [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i
 [m].(i+1); (i = 0~6)

ACC.7
 [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i
 [m].(i+1); (i = 0~6)

[m].7
 C

C
 [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i
 [m].(i+1); (i = 0~6)

ACC.7
 C

C
 [m].0

Affected flag(s) C

HT82A836R

Rev. 1.10 69 August 5, 2011

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC
 ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m]
 ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m]
 [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC
 [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m]
 FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i
 1

Affected flag(s) None

HT82A836R

Rev. 1.10 70 August 5, 2011

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m]
 [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC
 [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC
 ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m]
 ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC
 ACC � x

Affected flag(s) OV, Z, AC, C

HT82A836R

Rev. 1.10 71 August 5, 2011

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0
 [m].7 ~ [m].4

ACC.7 ~ ACC.4
 [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC
 [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m]
 program code (low byte)

TBLH
 program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m]
 program code (low byte)

TBLH
 program code (high byte)

Affected flag(s) None

HT82A836R

Rev. 1.10 72 August 5, 2011

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC
 ACC �XOR� [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m]
 ACC �XOR� [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC
 ACC �XOR� x

Affected flag(s) Z

HT82A836R

Rev. 1.10 73 August 5, 2011

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regu-

lar intervals users are reminded to consult the Holtek website (http://www.holtek.com.tw/english/literature/package.pdf) for

the latest version of the package information.

80-pin LQFP (10mm�10mm) Outline Dimensions

Symbol
Dimensions in inch

Min. Nom. Max.

A 0.469 � 0.476

B 0.390 � 0.398

C 0.469 � 0.476

D 0.390 � 0.398

E � 0.016 �

F � 0.006 �

G 0.053 � 0.057

H � � 0.063

I � 0.004 �

J 0.018 � 0.030

K 0.004 � 0.008

� 0	 � 7	

Symbol
Dimensions in mm

Min. Nom. Max.

A 11.90 � 12.10

B 9.90 � 10.10

C 11.90 � 12.10

D 9.90 � 10.10

E � 0.40 �

F � 0.16 �

G 1.35 � 1.45

H � � 1.60

I � 0.10 �

J 0.45 � 0.75

K 0.10 � 0.20

� 0	 � 7	

HT82A836R

Rev. 1.10 74 August 5, 2011

� 7

� �

1 �

1 7

' 7

� 5 7

5 �

� /

!

;

�

�
E

(

Q

= �

HT82A836R

Rev. 1.10 75 August 5, 2011

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright � 2011 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

