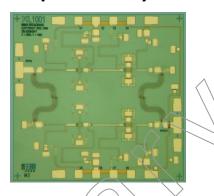
MIMIX BROADBAND_{IM}

January 2010 - Rev 10-Jan-10

XLI00I-BD


Features

- X Balanced Design
- ★ Excellent Input/Output Match
- ★ Self-biased Architecture
- ★ 14.0 dB Small Signal Gain
- × 2.5 dB Noise Figure
- ★ 100% On-Wafer RF, DC and Noise Figure Testing
- ★ 100% Visual Inspection to MIL-STD-883 Method 2010

General Description

Mimix Broadband's two stage balanced 17.0-35.0 GHz GaAs MMIC low noise amplifier has a small signal gain of 14.0 dB with a noise figure of 2.5 dB across the band. This MMIC uses Mimix Broadband's GaAs PHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The chip has surface passivation to protect and provide a rugged part with backside via holes and gold metallization to allow either a conductive epoxy or eutectic solder die attach process. This device is well suited for Millimeter-wave Point-to-Point Radio, LMDS, SATCOM and VSAT applications.

Chip Device Layout

Absolute Maximum Ratings

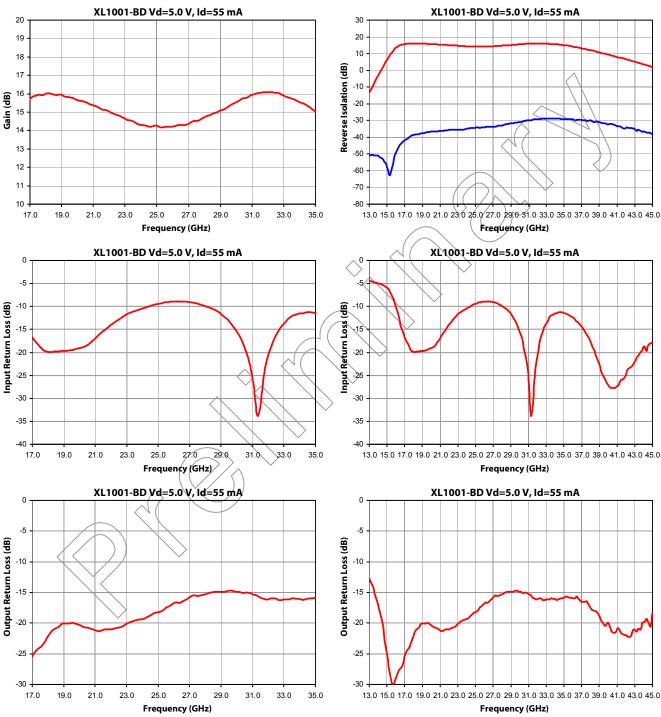
Supply Voltage (Vd)	+6.0 VDC
Supply Current (Id)	85 mA
Input Power (Pin)	+15.0 dBm
Storage Temperature (Tstg)	-65 to +165 °C
Operating Temperature (Ta)	-55 to +85 ℃
Channel Temperature (Tch) ¹	+175 °C

(1) Channel temperature affects a device's MTBF. It is recommended to keep channel temperature as low as possible for maximum life.

Electrical Characteristics (Ambient Temperature T = 25 °C)

Parameter	Units	Min.	Тур.	Max.
Frequency Range (f)	GHz	17.0	-	35.0
Input Return Loss (S11) ³	dB	8.0	10.0	-
Output Return Loss (S22) ³	dB	15.0	18.0	-
Small Signal Gain (S21) ³	dB	12.0	14.0	-
Gain Flatness (ΔS21)	dB	-	+/-1.5	-
Reverse Isolation (S12) ³	dB	25.0	30.0	-
Noise Figure (NF) @ 21.0-35.0 GHz ³	dB	-	2.5	3.5
Output Power for 1 dB Compression (P1dB)	dBm	-	+4.0 ²	-
Output Third Order Intercept Point (OIP3)	dBm	-	+16.0 ²	-
Drain Bias Voltage (V5)	VDC	-	+5.0	+5.5
Supply Current (Id)	mA	-	55	65

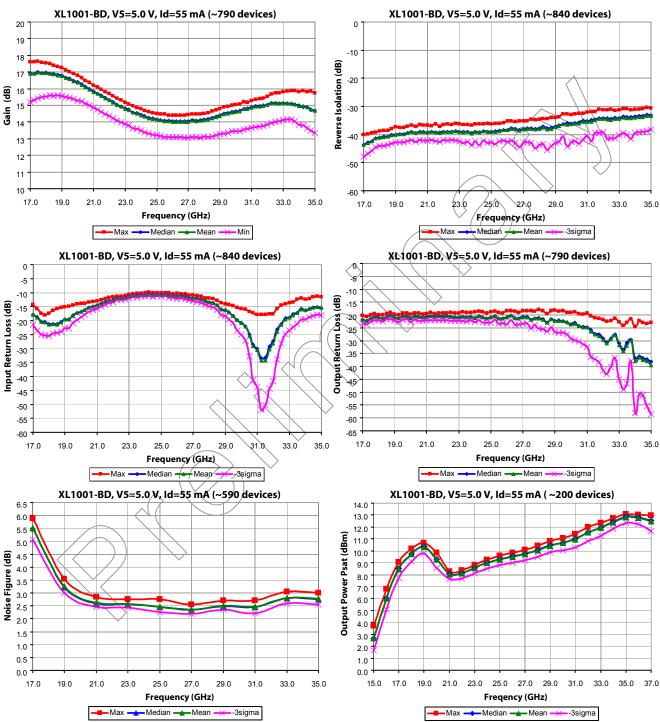
⁽²⁾ See plots for additional information.


⁽³⁾ Unless otherwise indicated min/max over 17.0-35.0 GHz and biased at Vd=5V, Id=55mA.

Mimix Broadband...

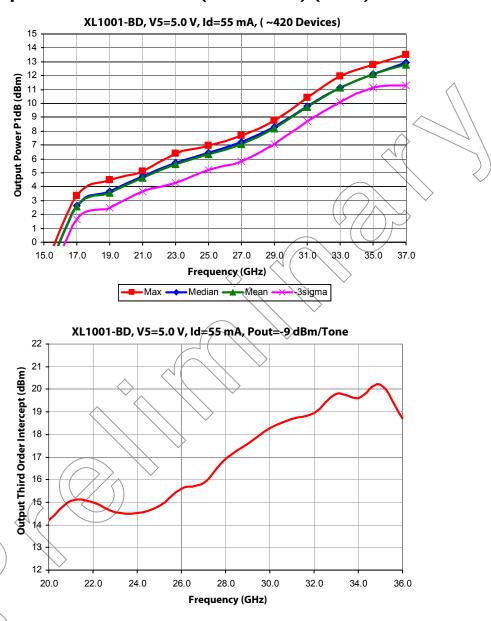
January 2010 - Rev 10-Jan-10

Low Noise Amplifier Measurements (On-Wafer¹)


Note [1] Measurements – On-Wafer data has been taken using bias conditions as shown. Measurements are referenced 150 um in from RF In/Out pad edge. For optimum performance Mimix T-pad transition is recommended. For additional information see the Mimix "T-Pad Transition" application note.

January 2010 - Rev 10-Jan-10

Low Noise Amplifier Measurements (On-Wafer¹) (cont.)


Note [1] Measurements – On-Wafer data has been taken using bias conditions as shown. Measurements are referenced 150 um in from RF In/Out pad edge. For optimum performance Mimix T-pad transition is recommended. For additional information see the Mimix "T-Pad Transition" application note.

January 2010 - Rev 10-Jan-10

XLI00I-BD

Low Noise Amplifier Measurements (On-Wafer¹) (cont.)

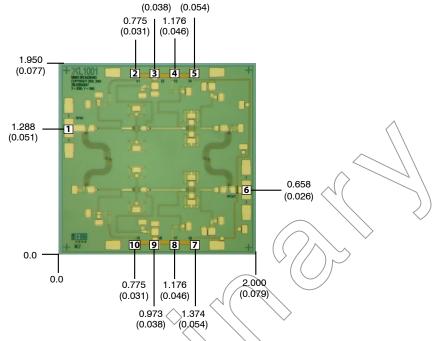
Note [1] Measurements – On-Wafer data has been taken using bias conditions as shown. Measurements are referenced 150 um in from RF In/Out pad edge. For optimum performance Mimix T-pad transition is recommended. For additional information see the Mimix "T-Pad Transition" application note.

Mimix Broadband...

January 2010 - Rev 10-Jan-10

XLI00I-BD

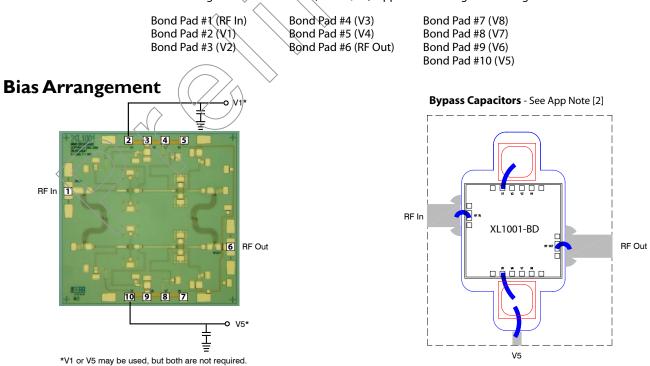
S-Parameters (On-Wafer¹)


Typcial S-Parameter Data for XL1001-BD Vd=5.0 V, Id=55 mA

Frequency	S11	S11	S21	S21	S12	S12	S22	S22
(GHz)	(Mag)	(Ang)	(Mag)	(Ang)	(Mag)	(Ang)	(Mag)	(Ang)
12.0	0.618	-151.82	0.049	-124.68	0.0028	-177.49	0.320	93.71
13.0	0.594	-168.81	0.237	-139.70	0.0029	158.52	0.225	72.37
14.0	0.567	174.64	0.679	-162.76	0.0028	134.38	0.143	56.19
15.0	0.491	146.60	2.263	151.38	0.0010	74.02	0.050	55,69
16.0	0.319	120.25	4.662	95.53	0.0034	-102.61	0.035	11/5.61
17.0	0.156	119.94	6.056	36.25	0.0079	-156.23	0.049	143.48
18.0	0.101	149.48	6.321	-19.26	0.0117	160.34	≥0.079	152.99
19.0	0.104	166.06	6.271	-54.54	0.0133	132.87	0.100	144.00
20.0	0.112	-177.97	6.054	-92.42	0.0146	105.91	0.096	135.60
21.0	0.140	-167.26	5.880	-119.31	0.0153	84.95	0.088	137.37
22.0	0.203	-169.81	5.618	-149.25	0.0167	62.43	0.089	141.86
23.0	0.257	-178.50	5.398	-171.12	0.0168	45.16	0.098	145.75
24.0	0.305	166.59	5.189	163.88	0.0179	27.27	0.109	147.61
25.0	0.336	153.58	5.159	145.61	0.0193	9.18	0.122	151.85
26.0	0.356	138.87	5.138 /	<u></u>	0.0196	-8.62	0.142	147.67
27.0	0.350	119.18	5.220 (106.01	× 0.0207	-26.27	0.162	139.25
28.0	0.324	102.90 <	5.412	88.13	0.0224	-40.06	0.170	134.98
29.0	0.259	80.56	5.689	64.90	0.0258	-63.18	0.180	128.09
30.0	0.175	60.98	5.955	45.69	0.0281	-79.48	0.180	120.13
31.0	0.043	49.78	6.279	19.67	0.0321	-103.34	0.170	110.85
32.0	0.090	171.33	6.373	-2.69	0.0342	-123.33	0.156	108.90
33.0	0.213	/144.88	6.214	-30.79	0.0368	-147.60	0.155	109.38
34.0	0.265	121.09	5.994	-52.66	0.0354	-168.88	0.158	108.14
35.0	0.267	95.48	5.600	-80.53	0.0353	171.36	0.163	103.54
36.0	0.240	76.74	5.138	-102.38	0.0347	151.31	0.160	96.09
37.0	0.195	61.22	4.613	-123.48	0.0327	136.03	0.152	91.15
38.0	0.128	\ 47.41	3.971	-148.41	0.0315	115.42	0.132	84.05
39.0	0.076	43.98	3.475	-167.34	0.0288	98.08	0.119	79.20
40.0	0.043	75.81	2.907	170.24	0.0239	81.80	0.101	85.91
41.0	0.042	104.20	2.526	152.78	0.0214	67.05	0.087	86.76
42.0	0.061	132.74	2.090	131.76	0.0199	51.37	0.080	99.64
43.0	0.079	139.03	1.770	116.21	0.0180	37.13	0.089	107.17
44.0	0.116	138.77	1.460	96.80	0.0146	16.97	0.101	107.42
45.0	0.127	135.49	1.220	80.50	0.0119	-0.53	0.121	119.29

Note [1] **S-Parameters** – On-Wafer S-Parameters have been taken using bias conditions as shown. Measurements are referenced 150 um in from RF In/Out pad edge.

Mechanical Drawing

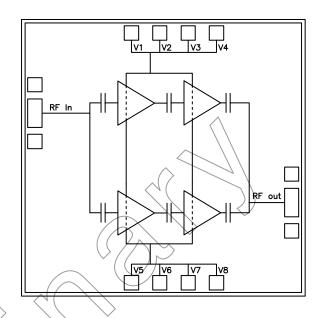

(Note: Engineering designator is 28LN2BA0047)

Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad.

Thickness: 0.115 +/- 0.010 (0.0045 +/- 0.0004), Backside is ground, Bond Pad/Backside Metallization: Gold All DC Bond Pads are 0.100 x 0.100 (0.004 x 0.004). All RF Bond Pads are 0.100 x 0.200 (0.004 x 0.008)

Bond pad centers are approximately 0.109 (0.004) from the edge of the chip.

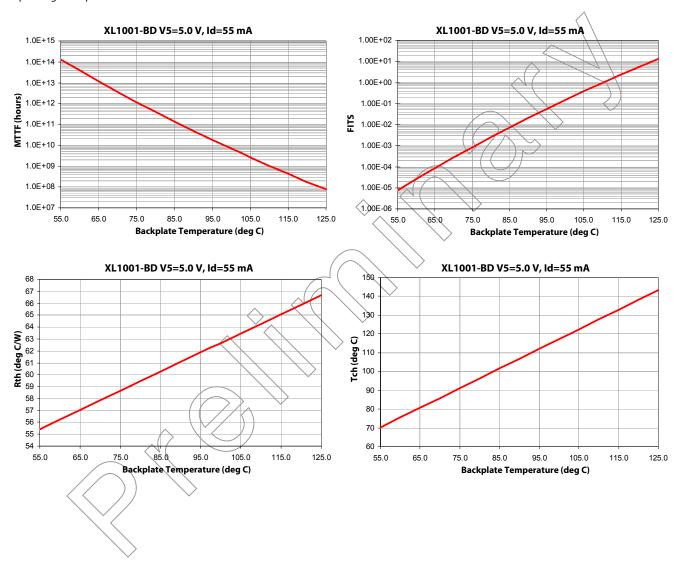
Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 2.416 mg.


Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 6 of 9

January 2010 - Rev 10-Jan-10 XL1001-BD

App Note [1] Biasing - As shown in the bonding diagram, this device operates using a self-biased architecture and only requires a single bias voltage. All DC pads (V1 through V8) are tied together on-chip. Even though V1 or V5 are shown as main connections, any of the eight DC pads may be used to bias the device. Bias is nominally V1 or V5=5V, Id=55mA.

App Note [2] Bias Arrangement - The DC pad at the top (V1) should be connected to one DC bypass capacitor (\sim 100-200 pf) and the DC pad at the bottom (V5) should be connected using another DC bypass capacitor (\sim 100-200 pf). Additional DC bypass capacitance (\sim 0.01 μ f) is also recommended. Capacitance should be as close to the device as possible.



January 2010 - Rev 10-Jan-10

XLI00I-BD

MTTF Graphs

These numbers were calculated based upon accelerated life test information received from the fabricating foundry and extensive thermal modeling/finite element analysis done at Mimix Broadband. The values shown here are only to be used as a guideline against the end application requirements and only represent reliability information under one bias condition. Ultimately bias conditions and resulting power dissipation along with the practical aspects, i.e. thermal material stack-up, attach method of device placement are the key parts in determining overall reliability for a specific application, see previous pages. If the data shown below does not meet your reliability requirements or if the bias conditions are not within your operating limits please contact technical sales for additional information.

MIMIX BROADBAND

January 2010 - Rev 10-Jan-10

XLI00I-BD

Handling and Assembly Information

CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- · Do not ingest.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President and General Counsel of Mimix Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. (2) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ESD - Gallium Arsenide (GaAs) devices are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic containers, which should be opened in cleanroom conditions at an appropriately grounded anti-static workstation. Devices need careful handling using correctly designed collets, vacuum pickups or with care, sharp tweezers.

Die Attachment - GaAs Products from Mimix Broadband are 0.100 mm (0.004") thick and have vias through to the backside to enable grounding to the circuit. Microstrip substrates should be brought as close to the die as possible. The mounting surface should be clean and flat. If using conductive epoxy, recommended epoxies are Tanaka T\$3332LD, Die Mat DM6030HK or DM6030HK-Pt cured in a nitrogen atmosphere per manufacturer's cure schedule. Apply epoxy sparingly to avoid getting any on to the top surface of the die. An epoxy fillet should be visible around the total die periphery. For additional information please see the Mimix "Epoxy Specifications for Bare Die" application note. If eutectic mounting is preferred, then a fluxless gold-tin (AuSn) preform, approximately 0.001² thick, placed between the die and the attachment surface should be used. A die bonder that utilizes a heated collet and provides scrubbing action to ensure total wetting to prevent void formation in a nitrogen atmosphere is recommended. The gold-tin eutectic (80% Au 20% Sn) has a melting point of approximately 280 °C (Note: Gold Germanium should be avoided). The work station temperature should be 310 °C +/- 10 °C. Exposure to these extreme temperatures should be kept to minimum. The collet should be heated, and the die pre-heated to avoid excessive thermal shock. Avoidance of air bridges and force impact are critical during placement.

Wire Bonding - Windows in the surface passivation above the bond pads are provided to allow wire bonding to the die's gold bond pads. The recommended wire bonding procedure uses 0.076 mm x 0.013 mm (0.003" x 0.0005") 99.99% pure gold ribbon with 0.5-2% elongation to minimize RF port bond inductance. Gold 0.025 mm (0.001") diameter wedge or ball bonds are acceptable for DC Bias connections. Aluminum wire should be avoided. Thermo-compression bonding is recommended though thermosonic bonding may be used providing the ultrasonic content of the bond is minimized. Bond force, time and ultrasonics are all critical parameters. Bonds should be made from the bond pads on the die to the package or substrate. All bonds should be as short as possible.

Ordering Information

Part Number for Ordering

Description

XL1001-BD-000V XL1001-BD-EV1 RoHS compliant die packed in vacuum release gel paks

XL1001 die evaluation module

Proper ESD procedures should be followed when handling this device.

Page 9 of 9