() IDT

 21(+1) Channel

 21(+1) Channel High-Density E1

 Line Interface Unit

 Line Interface Unit
 IDT82P2521

Version 1
December 7, 2005

DISCLAIMER
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

(IDT

Table of Contents

TABLE OF CONTENTS 3
LIST OF TABLES 7
LIST OF FIGURES 8
FEATURES 10
APPLICATIONS 11
DESCRIPTION 11
BLOCK DIAGRAM 12
1 PIN ASSIGNMENT 13
2 PIN DESCRIPTION 18
3 FUNCTIONAL DESCRIPTION 29
3.1 RECEIVE PATH 29
3.1.1 Rx Termination 29
3.1.1.1 Receive Differential Mode 29
3.1.1.2 Receive Single Ended Mode 31
3.1.2 Equalizer 32
3.1.2.1 Line Monitor 32
3.1.2.2 Receive Sensitivity 32
3.1.3 Slicer 33
3.1.4 Rx Clock \& Data Recovery 33
3.1.5 Decoder 33
3.1.6 Receive System Interface 33
3.1.7 Receiver Power Down 34
3.2 TRANSMIT PATH 34
3.2.1 Transmit System Interface 34
3.2.2 Tx Clock Recovery 35
3.2.3 Encoder 35
3.2.4 Waveform Shaper 35
3.2.4.1 Preset Waveform Template 35
3.2.4.2 User-Programmable Arbitrary Waveform 36
3.2.5 Line Driver 38
3.2.5.1 Transmit Over Current Protection 38
3.2.6 Tx Termination 38
3.2.6.1 Transmit Differential Mode 38
3.2.6.2 Transmit Single Ended Mode 39
3.2.7 Transmitter Power Down 40
3.2.8 Output High-Z on TTIP and TRING 40
3.3 JITTER ATTENUATOR (RJA \& TJA) 41
3.4 DIAGNOSTIC FACILITIES 42
3.4.1 Bipolar Violation (BPV) / Code Violation (CV) Detection and BPV Insertion 42
3.4.1.1 Bipolar Violation (BPV) / Code Violation (CV) Detection 42
3.4.1.2 Bipolar Violation (BPV) Insertion 42
3.4.2 Excessive Zeroes (EXZ) Detection 42
3.4.3 Loss of Signal (LOS) Detection 43
3.4.3.1 Line LOS (LLOS) 43
3.4.3.2 System LOS (SLOS) 44
3.4.3.3 Transmit LOS (TLOS) 45
3.4.4 Alarm Indication Signal (AIS) Detection and Generation 46
3.4.4.1 Alarm Indication Signal (AIS) Detection 46
3.4.4.2 (Alarm Indication Signal) AIS Generation 46
3.4.5 PRBS, QRSS, ARB and IB Pattern Generation and Detection 47
3.4.5.1 Pattern Generation 47
3.4.5.2 Pattern Detection 48
3.4.6 Error Counter 49
3.4.6.1 Automatic Error Counter Updating 49
3.4.6.2 Manual Error Counter Updating 50
3.4.7 Receive /Transmit Multiplex Function (RMF / TMF) Indication 51
3.4.7.1 RMFn Indication 51
3.4.7.2 TMFn Indication 52
3.4.8 Loopback 53
3.4.8.1 Analog Loopback 53
3.4.8.2 Remote Loopback 54
3.4.8.3 Digital Loopback 55
3.4.8.4 Dual Loopback 56
3.4.9 Channel 0 Monitoring 58
3.4.9.1 G.772 Monitoring 58
3.4.9.2 Jitter Measurement (JM) 59
3.5 CLOCK INPUTS AND OUTPUTS 60
3.5.1 Free Running Clock Outputs on CLKE1 60
3.5.2 Clock Outputs on REFA/REFB 61
3.5.2.1 REFA/REFB in Clock Recovery Mode 61
3.5.2.2 Frequency Synthesizer for REFA Clock Output 61
3.5.2.3 Free Run Mode for REFA Clock Output 61
3.5.2.4 REFA/REFB Driven by External CLKA/CLKB Input 61
3.5.2.5 REFA and REFB in Loss of Signal (LOS) or Loss of Clock Condition 61
3.5.3 MCLK, Master Clock Input 65
3.5.4 XCLK, Internal Reference Clock Input 65
3.6 INTERRUPT SUMMARY 66
4 MISCELLANEOUS 68
4.1 RESET 68
4.1.1 Power-On Reset 69
4.1.2 Hardware Reset 69
4.1.3 Global Software Reset 69
4.1.4 Per-Channel Software Reset 69
4.2 MICROPROCESSOR INTERFACE 69
4.3 POWER UP 70
4.4 HITLESS PROTECTION SWITCHING (HPS) SUMMARY 70
5 PROGRAMMING INFORMATION 73
5.1 REGISTER MAP 73
5.1.1 Global Register 73
5.1.2 Per-Channel Register 74
5.2 REGISTER DESCRIPTION 77
5.2.1 Global Register 77
5.2.2 Per-Channel Register 85
6 JTAG 117
6.1 JTAG INSTRUCTION REGISTER (IR) 117
6.2 JTAG DATA REGISTER 117
6.2.1 Device Identification Register (IDR) 117
6.2.2 Bypass Register (BYP) 117
6.2.3 Boundary Scan Register (BSR) 117
6.3 TEST ACCESS PORT (TAP) CONTROLLER 117
7 THERMAL MANAGEMENT 119
7.1 JUNCTION TEMPERATURE 119
7.2 EXAMPLE OF JUNCTION TEMPERATURE CALCULATION 119
7.3 HEATSINK EVALUATION 119
8 PHYSICAL AND ELECTRICAL SPECIFICATIONS 120
8.1 ABSOLUTE MAXIMUM RATINGS 120
8.2 RECOMMENDED OPERATING CONDITIONS 121
8.3 DEVICE POWER CONSUMPTION AND DISSIPATION (TYPICAL) 1 122
8.4 DEVICE POWER CONSUMPTION AND DISSIPATION (MAXIMUM) 1 123
8.5 D.C. CHARACTERISTICS 124
8.6 E1 RECEIVER ELECTRICAL CHARACTERISTICS 125
8.7 E1 TRANSMITTER ELECTRICAL CHARACTERISTICS 126
8.8 TRANSMITTER AND RECEIVER TIMING CHARACTERISTICS 127
8.9 CLKE1 TIMING CHARACTERISTICS 129
8.10 JITTER ATTENUATION CHARACTERISTICS 129
8.11 MICROPROCESSOR INTERFACE TIMING 132
8.11.1 Serial Microprocessor Interface 132
8.11.2 Parallel Motorola Non-Multiplexed Microprocessor Interface 134
8.11.2.1 Read Cycle Specification 134
8.11.2.2 Write Cycle Specification 135
8.11.3 Parallel Intel Non-Multiplexed Microprocessor Interface 136
8.11.3.1 Read Cycle Specification 136
8.11.3.2 Write Cycle Specification 137
8.11.4 Parallel Motorola Multiplexed Microprocessor Interface 138
8.11.4.1 Read Cycle Specification 138
8.11.4.2 Write Cycle Specification 139
8.11.5 Parallel Intel Multiplexed Microprocessor Interface 140
8.11.5.1 Read Cycle Specification 140
8.11.5.2 Write Cycle Specification 141
8.12 JTAG TIMING CHARACTERISTICS 142
GLOSSARY 143
INDEX 145
ORDERING INFORMATION 147
Table-1 Impedance Matching Value in Receive Differential Mode 30
Table-2 Multiplex Pin Used in Receive System Interface 33
Table-3 Multiplex Pin Used in Transmit System Interface 35
Table-4 PULS[3:0] Setting 36
Table-5 Transmit Waveform Value for E1 75 ohm 37
Table-6 Transmit Waveform Value for E1 120 ohm 37
Table-7 Impedance Matching Value in Transmit Differential Mode 38
Table-8 EXZ Definition 42
Table-9 LLOS Criteria 43
Table-10 SLOS Criteria 44
Table-11 TLOS Detection Between Two Channels 45
Table-12 AIS Criteria 46
Table-13 RMFn Indication 51
Table-14 TMFn Indication 52
Table-15 Clock Output on CLKE1 60
Table-16 Interrupt Summary 66
Table-17 After Reset Effect Summary 68
Table-18 Microprocessor Interface 69

(IDT

List of Figures

Figure-1 Functional Block Diagram 12
Figure-2 640-Pin TEPBGA (Top View) - Outline 13
Figure-3 640-Pin TEPBGA (Top View) - Top Left 14
Figure-4 640-Pin TEPBGA (Top View) - Top Right 15
Figure-5 640-Pin TEPBGA (Top View) - Bottom Left 16
Figure-6 640-Pin TEPBGA (Top View) - Bottom Right 17
Figure-7 Switch between Impedance Matching Modes 29
Figure-8 Receive Differential Line Interface with Twisted Pair Cable (with transformer) 30
Figure-9 Receive Differential Line Interface with Coaxial Cable (with transformer) 30
Figure-10 Receive Differential Line Interface with Twisted Pair Cable (transformer-less, non standard compliant) 30
Figure-11 Receive Single Ended Line Interface with Coaxial Cable (with transformer) 31
Figure-12 Receive Single Ended Line Interface with Coaxial Cable (transformer-less, non standard compliant) 31
Figure-13 Receive Path Monitoring 32
Figure-14 Transmit Path Monitoring 32
Figure-15 E1 Waveform Template 35
Figure-16 E1 Waveform Template Measurement Circuit 35
Figure-17 Transmit Differential Line Interface with Twisted Pair Cable (with Transformer) 39
Figure-18 Transmit Differential Line Interface with Coaxial Cable (with transformer) 39
Figure-19 Transmit Differential Line Interface with Twisted Pair Cable (transformer-less, non standard compliant) 39
Figure-20 Transmit Single Ended Line Interface with Coaxial Cable (with transformer) 39
Figure-21 Jitter Attenuator 41
Figure-22 LLOS Indication on Pins 43
Figure-23 TLOS Detection Between Two Channels 45
Figure-24 Pattern Generation (1) 47
Figure-25 Pattern Generation (2) 47
Figure-26 PRBS / ARB Detection 48
Figure-27 IB Detection 49
Figure-28 Automatic Error Counter Updating 50
Figure-29 Manual Error Counter Updating 50
Figure-30 Priority Of Diagnostic Facilities During Analog Loopback 53
Figure-31 Priority Of Diagnostic Facilities During Manual Remote Loopback 54
Figure-32 Priority Of Diagnostic Facilities During Digital Loopback 55
Figure-33 Priority Of Diagnostic Facilities During Manual Remote Loopback + Manual Digital Loopback 57
Figure-34 Priority Of Diagnostic Facilities During Manual Remote Loopback + Automatic Digital Loopback 57
Figure-35 G. 772 Monitoring 58
Figure-36 Automatic JM Updating 59
Figure-37 Manual JM Updating 59
Figure-38 REFA Output Options in Normal Operation 62
Figure-39 REFB Output Options in Normal Operation 63
Figure-40 REFA Output in LLOS Condition (When RCLKn Is Selected) 63
Figure-41 REFA Output in No CLKA Condition (When CLKA Is Selected) 64
Figure-42 Interrupt Service Process 67
Figure-43 Reset 68
Figure-44 $1+1$ HPS Scheme, Differential Interface (Shared Common Transformer) 70
Figure-45 1:1 HPS Scheme, Differential Interface (Individual Transformer) 71
Figure-46 1+1 HPS Scheme, E1 75 ohm Single-Ended Interface (Shared Common Transformer) 72
Figure-47 JTAG Architecture 117
Figure-48 JTAG State Diagram 118
Figure-49 Transmit Clock Timing Diagram 128
Figure-50 Receive Clock Timing Diagram 128
Figure-51 CLKE1 Clock Timing Diagram 129
Figure-52 E1 Jitter Tolerance Performance 130
Figure-53 E1 Jitter Transfer Performance 131
Figure-54 Read Operation in Serial Microprocessor Interface 132
Figure-55 Write Operation in Serial Microprocessor Interface 132
Figure-56 Timing Diagram 133
Figure-57 Parallel Motorola Non-Multiplexed Microprocessor Interface Read Cycle 134
Figure-58 Parallel Motorola Non-Multiplexed Microprocessor Interface Write Cycle 135
Figure-59 Parallel Intel Non-Multiplexed Microprocessor Interface Read Cycle 136
Figure-60 Parallel Intel Non-Multiplexed Microprocessor Interface Write Cycle 137
Figure-61 Parallel Motorola Multiplexed Microprocessor Interface Read Cycle 138
Figure-62 Parallel Motorola Multiplexed Microprocessor Interface Write Cycle 139
Figure-63 Paralle Intel Multiplexed Microprocessor Interface Read Cycle 140
Figure-64 Paralle Intel Multiplexed Microprocessor Interface Write Cycle 141
Figure-65 JTAG Timing 142

FEATURES

- Integrates 21+1 channels E1 short haul line interface units for 120Ω E1 twisted pair cable and 75Ω E1 coaxial cable applications

- Per-channel configurable Line Interface options

- Supports various line interface options
- Differential and Single Ended line interfaces
- true Single Ended termination on primary and secondary side of transformer for E1 75Ω coaxial cable applications
- transformer-less for Differential interfaces
- Fully integrated and software selectable receive and transmit termination
- Option 1: Fully Internal Impedance Matching with integrated receive termination resistor
- Option 2: Partially Internal Impedance Matching with common external resistor for improved device power dissipation
- Option 3: External impedance Matching termination
- Supports global configuration and per-channel configuration to E1 mode
- Per-channel programmable features
- Provides E1 short haul waveform templates and userprogrammable arbitrary waveform templates
- Provides two JAs (Jitter Attenuator) for each channel of receiver and transmitter
- Supports AMI/HDB3 encoding and decoding
- Per-channel System Interface options
- Supports Single Rail, Dual Rail with clock or without clock and sliced system interface
- Integrated Clock Recovery for the transmit interface to recover transmit clock from system transmit data

- Per-channel system and diagnostic functions

- Provides transmit driver over-current detection and protection with optional automatic high impedance of transmit interface
- Detects and generates PRBS (Pseudo Random Bit Sequence), ARB (Arbitrary Pattern) and IB (Inband Loopback) in either receive or transmit direction
- Provides defect and alarm detection in both receive and transmit directions.
- Defects include BPV (Bipolar Violation) /CV (Code Violation) and EXZ (Excessive Zeroes)
- Alarms include LLOS (Line LOS), SLOS (System LOS), TLOS (Transmit LOS) and AIS (Alarm Indication Signal)
- Programmable LLOS detection /clear levels. Compliant with ITU and ANSI specifications
- Various pattern, defect and alarm reporting options
- Serial hardware LLOS reporting (LLOS, LLOSO) for all 22 channels
- Configurable per-channel hardware reporting with RMF/TMF (Receive /Transmit Multiplex Function)
- Register access to individual registers or 16-bit error counters
- Supports Analog Loopback, Digital Loopback and Remote Loopback
- Supports T1.102 line monitor
- Channel 0 monitoring options
- Channel 0 can be configured as monitoring channel or regular channel to increase capacity
- Supports all internal G. 772 Monitoring for Non-Intrusive Monitoring of any of the 21 channels of receiver or transmitter
- Jitter Measurement per ITU 0.171

- Hitless Protection Switching (HPS) without external Relays

- Supports $1+1$ and 1:1 hitless protection switching
- Asynchronous hardware control (OE, RIM) for fast global high impedance of receiver and transmitter (hot switching between working and backup board)
- High impedance transmitter and receiver while powered down
- Per-channel register control for high impedance, independent for receiver and transmitter
- Clock Inputs and Outputs
- Flexible master clock ($\mathrm{N} \times 2.048 \mathrm{MHz}$) $(1 \leq \mathrm{N} \leq 8, \mathrm{~N}$ is an integer number)
- Two selectable reference clock outputs
- from the recovered clock of any of the 22 channels
- from external clock input
- from device master clock
- Integrated clock synthesizer can multiply or divide the reference clock to a wide range of frequencies: $8 \mathrm{KHz}, 64 \mathrm{KHz}, 2.048 \mathrm{MHz}$, 4.096 MHz, 8.192 MHz, 19.44 MHz and 32.768 MHz
- Cascading is provided to select a single reference clock from multiple devices without the need for any external logic

- Microprocessor Interface

- Supports Serial microprocessor interface and Parallel Intel / Motorola Non-Multiplexed /Multiplexed microprocessor interface
- Other Key Features
- IEEE1149.1 JTAG boundary scan
- Two general purpose I/O pins
- $3.3 \mathrm{~V} \mathrm{I/O} \mathrm{with} 5 \mathrm{~V}$ tolerant inputs
- 3.3 V and 1.8 V power supply
- Package: 640-pin TEPBGA (31 mm X 31 mm)

Applicable Standards

- AT\&T Pub 62411 Accunet T1.5 Service
- ANSI T1. 102 and T1.403
- Bellcore TR-TSY-000009, GR-253-CORE and GR-499-CORE
- ETSI CTR12/13
- ETS 300166 and ETS 300233
- G.703, G.735, G.736, G.742, G.772, G.775, G. 783 and G. 823
- 0.161
- ITU I. 431 and ITU 0.171

APPLICATIONS

- SDH/SONET multiplexers
- Central office or PBX (Private Branch Exchange)
- Digital access cross connects
- Remote wireless modules
- Microwave transmission systems

DESCRIPTION

The IDT82P2521 is a $21+1$ channels high-density E1 short haul Line Interface Unit. Each channel of the IDT82P2521 can be independently configured. The configuration is performed through a Serial or Parallel Intel/Motorola Non-Multiplexed/Multiplexed microprocessor interface.

In the receive path, through a Single Ended or Differential line interface, the received signal is processed by an adaptive Equalizer and then sent to a Slicer. Clock and data are recovered from the digital pulses output from the Slicer. After passing through an enabled or disabled Receive Jitter Attenuator, the recovered data is decoded using AMI/ HDB3 line code rule in Single Rail NRZ Format mode and output to the system, or output to the system without decoding in Dual Rail NRZ Format mode and Dual Rail RZ Format mode.

In the transmit path, the data to be transmitted is input on TDn in Single Rail NRZ Format mode or TDPn/TDNn in Dual Rail NRZ Format mode and Dual Rail RZ Format mode, and is sampled by a transmit reference clock. The clock can be supplied externally from TCLKn or recovered from the input transmit data by an internal Clock Recovery. A selectable JA in Tx path is used to de-jitter gapped clocks. To meet E1 waveform standards, two E1 templates, as well as an arbitrary waveform generator are provided. The data through the Waveform Shaper, the Line Driver and the Tx Transmitter is output on TTIPn and TRINGn.

Alarms (including LOS, AIS) and defects (including BPV, EXZ) are detected in both receive line side and transmit system side. AIS alarm, PRBS, ARB and IB patterns can be generated /detected in receive / transmit direction for testing purpose. Analog Loopback, Digital Loopback and Remote Loopback are all integrated for diagnostics.

Channel 0 is a special channel. Besides normal operation as the other 21 channels, channel 0 also supports G. 772 Monitoring and Jitter Measurement per ITU 0.171.

A line monitor function per T1.102 is available to provide a Non-Intrusive Monitoring of channels of other devices.

JTAG per IEEE 1149.1 is also supported by the IDT82P2521.

BLOCK DIAGRAM

Figure-1 Functional Block Diagram

1 PIN ASSIGNMENT

Figure-2 shows the outline of the pin assignment. For a clearer description, four segments are divided in this figure and the details of each are shown from Figure-3 to Figure-6.

Figure-2 640-Pin TEPBGA (Top View) - Outline

Figure-3 640-Pin TEPBGA (Top View) - Top Left

Figure-4 640-Pin TEPBGA (Top View) - Top Right

Figure-5 640-Pin TEPBGA (Top View) - Bottom Left

Figure-6 640-Pin TEPBGA (Top View) - Bottom Right

2 PIN DESCRIPTION

Name	$1 / 0$	Pin No. ${ }^{1}$	Description
Line Interface			
RTIPn RRINGn (n=0~21)	Input	P3, R5, V4, W5, AA4, AB5, AE28, AE26, AA26, W28, T28, R26, L28, L26, G26, F28, D6, D4, D3, G4, H5, M5 N3, P5, U4, V5, Y4, AA5, AD28, AD26, Y26, W27, R28, P26, K28, K26, F26, E28, E6, D5, E3, F4, G5, L5	RTIPn / RRINGn: Receive Bipolar Tip/Ring for Channel 0 ~ 21 The receive line interface supports both Receive Differential mode and Receive Single Ended mode. In Receive Differential mode, the received signal is coupled into RTIPn and RRINGn via a 1:1 transformer or without a transformer (transformer-less). In Receive Single Ended mode, RRINGn should be left open. The received signal is input on RTIPn via a 2:1 (step down) transformer or without a transformer (transformer-less). These pins will become High-Z globally or channel specific in the following conditions: - Global High-Z: - Connecting the RIM pin to low; - Loss of MCLK - During and after power-on reset, hardware reset or global software reset; - Per-channel High-Z - Receiver power down by writing '1' to the R_OFF bit (b5, RCF0,...)
TTIPn TRINGn (n=0~21)	Output	L1, M1, R1, U1, Y1, AA1, AF30, AD30, AA30, W30, T30, P30, L30, J30, F30, D30, A5, A4, A3, C1, F1 J1 K1, M2, R2, T1, W1, AA2, AE30, AC30, Y30, V30, R30, N30, K30, H30, E30, C30, A6, B4, B3, D1, E1, J2	TTIPn / TRINGn: Transmit Bipolar Tip /Ring for Channel 0 ~ 21 The transmit line interface supports both Transmit Differential mode and Transmit Single Ended mode. In Transmit Differential mode, TTIPn outputs a positive differential pulse while TRINGn outputs a negative differential pulse. The pulses are coupled to the line side via a 1:2 (step up) transformer or without a transformer (transformer-less). In Transmit Single Ended mode, TRINGn should be left open (it is shorted to ground internally). The signal presented at TTIPn is output to the line side via a 1:2 (step up) transformer. These pins will become High-Z globally or channel specific in the following conditions: - Global High-Z: - Connecting the OE pin to low; - Loss of MCLK; - During and after power-on reset, hardware reset or global software reset; - Per-channel High-Z - Writing ' 0 ' to the OE bit (b6, TCFO,...) ${ }^{2}$; - Loss of TCLKn in Transmit Single Rail NRZ Format mode or Transmit Dual Rail NRZ Format mode, except that the channel is in Remote Loopback or transmit internal pattern with XCLK ${ }^{3}$; - Transmitter power down by writing ' 1 ' to the T_OFF bit (b5, TCF0,...); - Per-channel software reset; - The THZ_OC bit (b4, TCF0,...) is set to ' 1 ' and the transmit driver over-current is detected. Refer to Section 3.2.8 Output High-Z on TTIP and TRING for details.

Note:

1. The pin number of the pins with the footnote ' n ' is listed in order of channel ($\mathrm{CH} 0 \sim \mathrm{CH} 21$).
2. The content in the brackets indicates the position and the register name of the preceding bit. After the register name, if the punctuation ',...' is followed, this bit is in a per-channel register. If there is no punctuation following the address, this bit is in a global register or in a channel 0 only register. The addresses and details are included in Chapter 5 Programming Information. 3. XCLK is derived from MCLK. It is 2.048 MHz .

Name	$1 / 0$	Pin No.	Description
System Interface			
RDn / RDPn $(\mathrm{n}=0 \sim 21)$	Output	AH9, AC4, AG1, AH3, AH6, AK8, AK20, AH21, AH24, AK26, AH29, A27, A24, C23, C20, A18, C17, B15, D14, B12, D11, D8	RDn: Receive Data for Channel $0 \sim 21$ When the receive system interface is configured to Single Rail NRZ Format mode, this multiplex pin is used as RDn. The decoded NRZ data is updated on the active edge of RCLKn. The active level on RDn is selected by the RD_INV bit (b3, RCF1,...). When the receiver is powered down, RDn will be in High-Z state or low, as selected by the RHZ bit (b6, RCFO,...). RDPn: Positive Receive Data for Channel 0 ~ 21 When the receive system interface is configured to Dual Rail NRZ Format mode, Dual Rail RZ Format mode or Dual Rail Sliced mode, this multiplex pin is used as RDPn. In Receive Dual Rail NRZ Format mode, the un-decoded NRZ data is output on RDPn and RDNn and updated on the active edge of RCLKn. In Receive Dual Rail RZ Format mode, the un-decoded RZ data is output on RDPn and RDNn and updated on the active edge of RCLKn. In Receive Dual Rail Sliced mode, the raw RZ sliced data is output on RDPn and RDNn. For Receive Differential line interface, an active level on RDPn indicates the receipt of a positive pulse on RTIPn and a negative pulse on RRINGn; while an active level on RDNn indicates the receipt of a negative pulse on RTIPn and a positive pulse on RRINGn. For Receive Single Ended line interface, an active level on RDPn indicates the receipt of a positive pulse on RTIPn; while an active level on RDNn indicates the receipt of a negative pulse on RTIPn. The active level on RDPn and RDNn is selected by the RD_INV bit (b3, RCF1,...). When the receiver is powered down, RDPn and RDNn will be in High-Z state or low, as selected by the RHZ bit (b6, RCFO,...).
RDNn / RMFn $(\mathrm{n}=0 \sim 21)$	Output	AG9, AD1, AH1, AG3, AG6, AJ8, AJ20, AG21, AG24, AJ26, AH30, B28, D25, B23, B20, D19, B17, A15, C14, A12, C11, C8	RDNn: Negative Receive Data for Channel 0 ~ 21 When the receive system interface is configured to Dual Rail NRZ Format mode, Dual Rail RZ Format mode or Dual Rail Sliced mode, this multiplex pin is used as RDNn. (Refer to the description of RDPn for details). RMFn: Receive Multiplex Function for Channel 0 ~ 21 When the receive system interface is configured to Single Rail NRZ Format mode, this multiplex pin is used as RMFn. RMFn is configured by the RMF_DEF[2:0] bits (b7 5, RCF1,...) and can indicate PRBS/ARB, LAIS, LEXZ, LBPV, LEXZ+LBPV, LLOS, output recovered clock (RCLK) or XOR output of positive and negative sliced data. Refer to Section 3.4.7.1 RMFn Indication for details. The output on RMFn is updated on the active edge of RCLKn. The active level of RMFn is always high. When the receiver is powered down, RMFn will be in High-Z state or low, as selected by the RHZ bit (b6, RCFO,...).

Name	$1 / 0$	Pin No.	Description
RCLKn / RMFn $(n=0 \sim 21)$	Output	AK10, AD2, AH2, AK4, AK7, AH8, AH20, AK22, AK25, AH26, AG29, A28, C25, A23, A20, C19, A17, C16, B14, D13, B11, B8	RCLKn: Receive Clock for Channel 0 ~ 21 When the receive system interface is configured to Single Rail NRZ Format mode, Dual Rail NRZ Format mode or Dual Rail RZ Format mode, this multiplex pin is used as RCLKn. RCLKn outputs a 2.048 MHz clock which is recovered from the received signal. The data output on RDn and RMFn (in Receive Single Rail NRZ Format mode) or RDPn/ RDNn (in Receive Dual Rail NRZ Format mode, Receive Dual Rail RZ Format mode and Receive Dual Rail Sliced) is updated on the active edge of RCLKn. The active edge is selected by the RCK_ES bit (b4, RCF1,...). In LLOS condition, RCLKn output high or XCLK, as selected by the RCKH bit (b7, RCF0,...) (refer to Section 3.4.3.1 Line LOS (LLOS) for details). When the receiver is powered down, RCLKn will be in High-Z state or low, as selected by the RHZ bit (b6, RCFO,...). RMFn: Receive Multiplex Function for Channel 0 ~ 21 When the receive system interface is configured to Dual Rail Sliced mode, this multiplex pin is used as RMFn. (Refer to the description of RMFn of the RDNn/RMFn multiplex pin for details).
LLOS	Output	AF17	LLOS: Receive Line Loss Of Signal LLOS synchronizes with the output of CLKE1 and can indicate the LLOS (Line LOS) status of all 22 channels in a serial format. When the clock output on CLKE1 is enabled, LLOS indicates the LLOS status of the 22 channels in a serial format and repeats every twenty-two cycles. Channel 0 is positioned by LLOSO. Refer to the description of LLOSO below for details. The last 7 redundant clock cycles are low and should be ignored. LLOS is updated on the rising edge of CLKE1 and is always active high. When the clock output of CLKE1 is disabled, LLOS will be held in High-Z state. (Refer to Section 3.4.3.1 Line LOS (LLOS) for details.)
LLOSO	Output	AF18	LLOSO: Receive Line Loss Of Signal for Channel 0 LLOSO can indicate the position of channel 0 on the LLOS pin. When the clock output on CLKE1 is enabled, LLOSO pulses high for one CLKE1 clock cycle to indicate the position of channel 0 on the LLOS pin. When CLKE1 outputs 8 KHz clock, LLOSO pulses high for one 8 KHz clock cycle ($125 \mu \mathrm{~s}$) every twenty-nine 8 KHz clock cycles; when CLKE1 outputs 2.048 MHz clock, LLOS0 pulses high for one 2.048 MHz clock cycle (488 ns) every twenty-nine 2.048 MHz clock cycles. LLOSO is updated on the rising edge of CLKE1. When the clock output on CLKE1 is disabled, LLOS0 will be held in High-Z state. (Refer to Section 3.4.3.1 Line LOS (LLOS) for details.)

Name	$1 / 0$	Pin No.	Description			
TDn / TDPn$(n=0 \sim 21)$	Input	AG8, AC1, AF1, AG2, AG5, AJ7, AJ19, AG20, AG23, AJ25, AJ28, D27, D24, B22, B19, D18, B16, A14, C13, A11, C10, C7	TDn: Transmit Data for Channel 0 ~ 21 When the transmit system interface is configured to Single Rail NRZ Format mode, this multiplex pin is used as TDn. TDn accepts Single Rail NRZ data. The data is sampled into the device on the active edge of TCLKn. The active level on TDn is selected by the TD_INV bit (b3, TCF1,...). TDPn: Positive Transmit Data for Channel 0 ~ 21 When the transmit system interface is configured to Dual Rail NRZ Format mode or Dual Rail RZ Format mode, this multiplex pin is used as TDPn. In Transmit Dual Rail NRZ Format mode, the pre-encoded NRZ data is input on TDPn and TDNn and sampled on the active edge of TCLKn. In Transmit Dual Rail RZ Format mode, the pre-encoded RZ data is input on TDPn and TDNn. The line code is as follows (when the TD_INV bit (b3, TCF1,...) is ' 0 '):			
			TDP	TDNn	utput Pulse on TTIPn	*
			0	0	Space	Space
			0	1	Negative Pulse	Positive Pulse
			1	0	Positive Pulse	Negative Pulse
			1	1	Space	Space
			Note: * For Transmit Single Ended line interface, TRINGn should be open.			
			The active level on TDPn and TDNn is selected by the TD_INV bit (b3, TCF1,...).			
TDNn / TMFn $(n=0 \sim 21)$	Input / Output	AK9, AC2, AF2, AK3, AK6, AH7, AH19, AK21, AK24, AH25, AH28, C27, C24, A22, A19, C18, A16, D15, B13, D12, B10, B7	TDNn: Negative Transmit Data for Channel $0 \sim 21$ When the transmit system interface is configured to Dual Rail NRZ Format mode, this multiplex pin is used as TDNn. (Refer to the description of TDPn for details). TMFn: Transmit Multiplex Function for Channel 0 ~ 21 When the transmit system interface is configured to Single Rail NRZ Format mode or Dual Rail RZ Format mode, this multiplex pin is used as TMFn. TMFn is configured by the TMF_DEF[2:0] bits (b7~5, TCF1,...) and can indicate PRBS/ARB, SAIS, TOC, TLOS, SEXZ, SBPV, SEXZ+SBPV, SLOS. Refer to Section 3.4.7.2 TMFn Indication for details. The output on TMFn is updated on the active edge of TCLKn (if available). The active level of TMFn is always high.			
TCLKn / TDNn $(\mathrm{n}=0 \sim 21)$	Input	AJ9, AC3, AF3, AJ3, AJ6, AG7, AG19, AJ21, AJ24, AG25, AG28, B27, B24, D23, D20, B18, D17, C15, A13, C12, A10, A7	TCLKn: Transmit Clock for Channel 0 ~ 21 When the transmit system interface is configured to Single Rail NRZ Format mode or Dual Rail NRZ Format mode, this multiplex pin is used as TCLKn. TCLKn inputs a 2.048 MHz clock. The data input on TDn (in Transmit Single Rail NRZ Format mode) or TDPn/TDNn (in Transmit Dual Rail NRZ Format mode) is sampled on the active edge of TCLKn. The data output on TMFn (in Transmit Single Rail NRZ Format mode) is updated on the active edge of TCLKn. The active edge is selected by the TCK_ES bit (b4, TCF1,...). TDNn: Negative Transmit Data for Channel 0 ~ 21 When the transmit system interface is configured to Dual Rail RZ Format mode, this multiplex pin is used as TDNn. (Refer to the description of TDPn for details).			

Note:

1. jitter is no more than 0.001 UI .

Name	$1 / 0$	Pin No.	Description
REFB	Output	AJ18	REFB: Reference Clock Output B REFB can output a recovered clock of one of the 22 channels, an external clock input on CLKB or a free running clock. Refer to Section 3.5.2 Clock Outputs on REFA/REFB for details. The output on REFB can also be disabled, as determined by the REFB_EN bit (b6, REFB). When the output is disabled, REFB is in High-Z state.
CLKA	Input	AH17	CLKA: External E1 Clock Input A External E1 clock is input on this pin. The CKA_E1 bit (b5, REFA) should be set to match the clock frequency. When not used, this pin should be connected to GNDD.
CLKB	Input	AG17	CLKB: External E1 Clock Input B External E1 clock is input on this pin. The CKB_E1 bit (b5, REFB) should be set to match the clock frequency. When not used, this pin should be connected to GNDD.
Common Control			
VCOM[0] VCOM[1]	Output	R4 P28	VCOM: Voltage Common Mode [1:0] These pins are used only when the receive line interface is in Receive Differential mode and connected without a transformer (transformer-less). To enable these pins, the VCOMEN pin must be connected high. Refer to Figure-10 for the connection. When these pins are not used, they should be left open.
VCOMEN	Input (Pull-Down)	AF26	VCOMEN: Voltage Common Mode Enable This pin should be connected high only when the receive line interface is in Receive Differential mode and connected without a transformer (transformer-less). When not used, this pin should be left open.
REF	-	D29	REF: Reference Resistor An external resistor ($10 \mathrm{~K} \Omega, \pm 1 \%$) is used to connect this pin to ground to provide a standard reference current for internal circuit. This resistor is required to ensure correct device operation.
RIM	Input (Pull-Down)	AH10	RIM: Receive Impedance Matching In Receive Differential mode, when RIM is low, all 22 receivers become High-Z and only external impedance matching is supported. In this case, the per-channel impedance matching configuration bits - the R_TERM[2:0] bits (b2~0, RCFO,...) and the R120IN bit (b4, RCF0,...) - are ignored. In Receive Differential mode, when RIM is high, impedance matching is configured on a perchannel basis by the R_TERM[2:0] bits (b2~0, RCF0,...) and the R120IN bit (b4, RCF0,...). This pin can be used to control the receive impedance state for Hitless Protection applications. Refer to Section 4.4 Hitless Protection Switching (HPS) Summary for details. In Receive Single Ended mode, this pin should be left open.
OE	Input	AJ10	OE: Output Enable OE enables or disables all Line Drivers globally. A high level on this pin enables all Line Drivers while a low level on this pin places all Line Drivers in High-Z state and independent from related register settings. Note that the functionality of the internal circuit is not affected by OE . If this pin is not used, it should be tied to VDDIO. This pin can be used to control the transmit impedance state for Hitless protection applications. Refer to Section 4.4 Hitless Protection Switching (HPS) Summary for details.

Name	$1 / 0$	Pin No.	Description
GPIO[0] GPIO[1]	Output / Input	AF9 AF10	GPIO: General Purpose I/O [1:0] These two pins can be defined as input pins or output pins by the DIR[1:0] bits (b1~0, GPIO) respectively. When the pins are input, their polarities are indicated by the LEVEL[1:0] bits (b3~2, GPIO) respectively. When the pins are output, their polarities are controlled by the LEVEL[1:0] bits (b3~2, GPIO) respectively.
$\overline{\mathrm{RST}}$	Input	AG10	$\overline{\text { RST: }}$ Reset (Active Low) A low pulse on this pin resets the device. This hardware reset process completes in 2μ s maximum. Refer to Section 4.1 Reset for an overview on reset options.
MCU Interface			
$\overline{\text { INT }}$	Output	AK16	$\overline{\mathrm{INT}}$: Interrupt Request This pin indicates interrupt requests for all unmasked interrupt sources. The output characteristics (open drain or push-pull internally) and the active level are determined by the INT_PIN[1:0] bits (b3~2, GCF).
$\overline{\mathrm{CS}}$	Input	AJ17	$\overline{\mathrm{CS}}$: Chip Select (Active Low) This pin must be asserted low to enable the microprocessor interface. A transition from high to low must occur on this pin for each Read/Write operation and $\overline{\mathrm{CS}}$ should remain low until the operation is over.
P/ \bar{S}	Input	AG16	P/信: Parallel or Serial Microprocessor Interface Select P/S selects Serial or Parallel microprocessor interface for the device: GNDD - Serial microprocessor interface. VDDIO - Parallel microprocessor interface. Serial microprocessor interface consists of the $\overline{C S}$, SCLK, SDI, SDO pins. Parallel microprocessor interface consists of the $\overline{\mathrm{CS}}, \operatorname{INT} / \overline{\mathrm{MOT}}, \mathrm{IM}, \overline{\mathrm{DS}} / \overline{\mathrm{RD}}, \mathrm{ALE} / \mathrm{AS}, \mathrm{R} / \bar{W} / \overline{\mathrm{WR}}$, $\overline{A C K} / R D Y, D[7: 0], A[10: 0]$ pins.
INT/MOT	$\begin{aligned} & \text { Input } \\ & \text { (Pull-Up) } \end{aligned}$	AF14	INT/MOT: Intel or Motorola Microprocessor Interface Select In Parallel microprocessor interface, INT/MOT selects Intel or Motorola microprocessor interface for the device: GNDD - Parallel Motorola microprocessor interface. Open - Parallel Intel microprocessor interface. In Serial microprocessor interface, this pin should be left open.
IM	$\begin{aligned} & \text { Input } \\ & \text { (Pull-Up) } \end{aligned}$	AF15	IM: Interface Mode Selection In Parallel Motorola or Intel microprocessor interface, IM selects multiplexed bus or non-multiplexed bus for the device: GNDD - Parallel Motorola /Intel Non-Multiplexed microprocessor interface. Open - Parallel Motorola /Intel Multiplexed microprocessor interface. In Serial microprocessor interface, this pin should be connected to GNDD.
ALE / AS	Input	AG15	ALE: Address Latch Enable In Parallel Intel Multiplexed microprocessor interface, this multiplex pin is used as ALE. The address on $\mathrm{A}[10: 8]$ and $\mathrm{D}[7: 0]$ (A[7:0] are ignored) is sampled into the device on the falling edges of ALE. AS: Address Strobe In Parallel Motorola Multiplexed microprocessor interface, this multiplex pin is used as AS. The address on $\mathrm{A}[10: 8]$ and $\mathrm{D}[7: 0]$ ($\mathrm{A}[7: 0]$ are ignored) is latched into the device on the falling edges of AS. In Parallel Motorola /Intel Non-Multiplexed microprocessor interface, this pin should be pulled high. In Serial microprocessor interface, this pin should be connected to GNDD.

Name	$1 / 0$	Pin No.	Description
SCLK / $\overline{\mathrm{SS}} / \overline{\mathrm{RD}}$	Input	AK17	SCLK: Shift Clock In Serial microprocessor interface, this multiplex pin is used as SCLK. SCLK inputs the shift clock for the Serial microprocessor interface. Data on SDI is sampled by the device on the rising edge of SCLK. Data on SDO is updated on the falling edge of SCLK. $\overline{\mathrm{DS}}$: Data Strobe (Active Low) In Parallel Motorola microprocessor interface, this multiplex pin is used as $\overline{\mathrm{DS}}$. During a write operation $(R / \bar{W}=0)$, data on $D[7: 0]$ is sampled into the device. During a read operation $(R / \bar{W}=1)$, data is driven to $D[7: 0]$ by the device. $\overline{\mathrm{RD}}$: Read Strobe (Active Low) In Parallel Intel microprocessor interface, this multiplex pin is used as $\overline{\mathrm{RD}}$. $\overline{\mathrm{RD}}$ is asserted low by the microprocessor to initiate a read operation. Data is driven to $\mathrm{D}[7: 0]$ by the device during the read operation.
SDI/R/W/ \bar{W}	Input	AH16	SDI: Serial Data Input In Serial microprocessor interface, this multiplex pin is used as SDI. Address and data on this pin are serially clocked into the device on the rising edge of SCLK. R/W: Read / Write Select In Parallel Motorola microprocessor interface, this multiplex pin is used as R / \bar{W}. R / \bar{W} is asserted low for write operation or high for read operation. WR: Write Strobe (Active Low) In Parallel Intel microprocessor interface, this multiplex pin is used as $\overline{W R}$. $\overline{\mathrm{WR}}$ is asserted low by the microprocessor to initiate a write operation. Data on $\mathrm{D}[7: 0]$ is sampled into the device during a write operation.
SDO / $\overline{\text { ACK }} /$ RDY	Output	AJ16	SDO: Serial Data Output In Serial microprocessor interface, this multiplex pin is used as SDO. Data on this pin is serially clocked out of the device on the falling edge of SCLK. $\overline{\text { ACK: Acknowledge Output (Active Low) }}$ In Parallel Motorola microprocessor interface, this multiplex pin is used as $\overline{\text { ACK }}$. A low level on $\overline{A C K}$ indicates that valid information on the data bus is ready for a read operation or acknowledges the acceptance of the written data during a write operation. RDY: Ready Output In Parallel Intel microprocessor interface, this multiplex pin is used as RDY. A high level on RDY reports to the microprocessor that a read/write cycle can be completed. A low level on RDY reports that wait states must be inserted.
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7]	Output / Input	AG12 AH12 AJ12 AK12 AG11 AH11 AJ11 AK11	D[7:0]: Bi-directional Data Bus In Parallel Motorola /Intel Non-Multiplexed microprocessor interface, these pins are the bidirectional data bus of the microprocessor interface. In Parallel Motorola /Intel Multiplexed microprocessor interface, these pins are the multiplexed bi-directional address /data bus. In Serial microprocessor interface, these pins should be connected to GNDD.

Name	$1 / 0$	Pin No.	Description
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10]	Input	AH15 AJ15 AK15 AG14 AH14 AJ14 AK14 AG13 AH13 AJ13 AK13	A[10:0]: Address Bus In Parallel Motorola /Intel Non-Multiplexed microprocessor interface, these pins are the address bus of the microprocessor interface. In Parallel Motorola /Intel Multiplexed microprocessor interface, $\mathrm{A}[10: 8]$, together with $\mathrm{D}[7: 0]$, are the address bus; while A[7:0] should be connected to GNDD. In Serial microprocessor interface, these pins should be connected to GNDD.
JTAG (per IEEE 1149.1)			
TRST	$\begin{gathered} \text { Input } \\ \text { Pull-Down } \end{gathered}$	AF4	TRST: JTAG Test Reset (Active Low) A low signal on this pin resets the JTAG test port. To ensure deterministic operation of the test logic, TMS should be held high when the signal on TRST changes from low to high. This pin may be left unconnected when JTAG is not used. This pin has an internal pull-down resistor.
TMS	Input Pull-up	AE5	TMS: JTAG Test Mode Select The signal on this pin controls the JTAG test performance and is sampled on the rising edge of TCK. To ensure deterministic operation of the test logic, TMS should be held high when the signal on TRST changes from low to high. This pin may be left unconnected when JTAG is not used. This pin has an internal pull-up resistor.
TCK	Input	AF6	TCK: JTAG Test Clock The clock for the JTAG test is input on this pin. TDI and TMS are sampled on the rising edge of TCK and TDO is updated on the falling edge of TCK. When TCK is idle at low state, all stored-state devices contained in the test logic shall retain their state indefinitely. This pin should be connected to GNDD when JTAG is not used.
TDI	Input Pull-up	AF5	TDI: JTAG Test Data Input The test data is input on this pin. It is clocked into the device on the rising edge of TCK. This pin has an internal pull-up resistor. This pin may be left unconnected when JTAG is not used.
TDO	Output	AF7	TDO: JTAG Test Data Output The test data is output on this pin. It is clocked out of the device on the falling edge of TCK. TDO is a High-Z output signal except during the process of data scanning.
Power \& Ground			
VDDIO		E7, E8, E10, E11, E12, E21, E22, E23, E24, E25, AE9, AE10, AE15, AE16, AE17, AE18, AE22, AE23, AE24	VDDIO: 3.3 V I/O Power Supply
VDDA		A2, B2, J26, K27, L4, L27, M4, M26, T4, W4, Y5, Y27, Y28, AA27, AA28, AD5, AJ2, AK2	VDDA: 3.3 V Analog Core Power Supply
VDDD		E14, E15, E16, E17, E18, E19, AE11, AE14, AE19, AE20, AE21	VDDD: 1.8 V Digital Core Power Supply
VDDRn $(\mathrm{N}=0 \sim 21)$		N4, N5, T5, U5, AB4, AC5, AF28, AF27, AD27, U27, T27, R27, N26, G27, E26, E27, E5, E4, F3, F5, G3, H3	VDDRn: 3.3 V Power Supply for Receiver

Name	$1 / 0$	Pin No.	Description
$\begin{aligned} & \text { VDDTn } \\ & (\mathrm{N}=0 \sim 21) \end{aligned}$		K2, L2, P2, R3, W2, Y2, AF29, AC29, AA29, Y29, R29, P29, K29, J29, F29, E29, C6, C4, C3, C2, F2, H2	VDDTn: 3.3 V Power Supply for Transmitter Driver
GNDA		A1, A29, A30, B1, B29, B30, F6, F7, F8, F25, G6, G25, H6, H25, J6, J25, K6, K25, L6, L25, M6, M25, N6, N25, P6, P25, R6, R25, T6, T25, U6, U25, V6, V25, W6, W25, W26, Y6, Y25, AA6, AA25, AB1, AB6, AB25, AB26, AC6, AC25, AC26, AD6, AD25, AE6, AE25, AJ1, AJ29, AJ30, AK1, AK29, AK30	GNDA: GND for Analog Core / Receiver
GNDD		F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24, M12, M13, M14, M15, M16, M17, M18, M19, N12, N13, N14, N15, N16, N17, N18, N19, P12, P13, P14, P15, P16, P17, P18, P19, R12, R13, R14, R15, R16, R17, R18, R19, T12, T13, T14, T15, T16, T17, T18, T19, U12, U13, U14, U15, U16, U17, U18, U19, V12, V13, V14, V15, V16, V17, V18, V19, W12, W13, W14, W15, W16, W17, W18, W19, AE7, AE8, AE12, AE13, AF23, AF24	GNDD: Digital GND
GNDT		$\begin{gathered} \text { B5, B6, C5, D2, D28, E2, H28, H29, } \\ \text { J3, J5, J28, K3, K5, L3, M3, M28, } \\ \text { N28, N29, T2, U2, U28, V28, V29, } \\ \text { W29, AA3, AB2, AB28, AD29, AE29 } \end{gathered}$	GNDT: Analog GND for Transmitter Driver
			TEST
IC	-	AF13, AF12	IC: Internal Connected This pin is for IDT use only and should be connected to GNDD.
IC	-	AH18, AF11	IC: Internal Connected This pin is for IDT use only and should be left open.

Name	$1 / 0$	Pin No.	Description
			Others
			NC: Not Connected

3 FUNCTIONAL DESCRIPTION

3.1 RECEIVE PATH

3.1.1 $\quad R_{X}$ TERMINATION

The receive line interface supports Receive Differential mode and Receive Single Ended mode, as selected by the R_SING bit (b3, RCF0,...). In Receive Differential mode, both RTIPn and RRINGn are used to receive signal from the line side. In Receive Single Ended mode, only RTIPn is used to receive signal.

In Receive Differential mode, the line interface can be connected with E1 120Ω twisted pair cable or E1 75Ω coaxial cable. In Receiver Single Ended mode, the line interface can only be connected with 75Ω coaxial cable.

The receive impedance matching is realized by using internal impedance matching or external impedance matching for each channel in different applications.

3.1.1.1 Receive Differential Mode

In Receive Differential mode, three kinds of impedance matching are supported: Fully Internal Impedance Matching, Partially Internal Impedance Matching and External Impedance Matching. Figure-7 shows an overview of how these Impedance Matching modes are switched.

Fully Internal Impedance Matching circuit uses an internal programmable resistor (IM) only and does not use an external resistor. This configuration saves external components and supports 1:1 Hitless Protection Switching (HPS) applications without relays. Refer to Section 4.4 Hitless Protection Switching (HPS) Summary.

Partially Internal Impedance Matching circuit consists of an internal programmable resistor (IM) and a value-fixed 120Ω external resistor (Rr). Compared with Fully Internal Impedance Matching, this configuration provides considerable savings in power dissipation of the device. For example, In E1 120Ω PRBS mode, the power savings would be 0.57 W. For power savings in other modes, please refer to Chapter 8 Physical And Electrical Specifications.

External Impedance Matching circuit uses an external resistor (Rr) only.

Figure-7 Switch between Impedance Matching Modes
To support some particular applications, such as hot-swap or Hitless Protection Switch (HPS) hot-switchover, RTIPn/RRINGn must be forced to enter high impedance state (i.e., External Impedance Matching). For hot-swap, RTIPn/RRINGn must be always held in high impedance state during /after power up; for HPS hot-switchover, RTIPn/RRINGn must enter high impedance state immediately after switchover. Though each channel can be individually configured to External Impedance Matching through register access, it is too slow for hitless switch. Therefore, a hardware pin - RIM - is provided to globally control the high impedance for all 22 receivers.

When RIM is low, only External Impedance Matching is supported for all 22 receivers and the per-channel impedance matching configuration bits - the R_TERM[2:0] bits (b2~0, RCFO,...) and the R120IN bit (b4, RCFO,...) - are ignored.

When RIM is high, impedance matching is configured on a perchannel basis. Three kinds of impedance matching are all supported and selected by the R_TERM[2:0] bits (b2~0, RCF0,...) and the R120IN bit (b4, RCF0,...). The R_TERM[2] bit (b2, RCF0,...) should be set to match internal or external impedance. If the R_TERM[2] bit (b2, RCF0,...) is ' 0 ', internal impedance matching is enabled. The R120IN bit (b4, RCF0,...) should be set to select Partially Internal Impedance Matching or Fully Internal Impedance Matching. The internal programmable resistor (IM) is determined by the R_TERM[1:0] bits (b1~0, RCF0, ...). If the R_TERM[2] bit (b2, RCF0,...) is ' 1 ', external impedance matching is enabled. The configuration of the R120IN bit (b4, RCF0,...) and the R_TERM[1:0] bits (b1~0, RCF0,...) is ignored.

A twisted pair cable can be connected with a 1:1 transformer or without a transformer (transformer-less), while a coaxial cable must be connected with a $1: 1$ transformer. Table 1 lists the recommended impedance matching value in different applications. Figure-8 to Figure-10 show the connection for one channel.

The transformer-less connection will offer a termination option with reduced cost and board space. However, the waveform amplitude is not standard compliant, and surge protection and common mode depression should be enhanced depending on equipment environment.

Table-1 Impedance Matching Value in Receive Differential Mode

Cable Condition	Partially Internal Impedance Matching$(R 120 I N=0)^{1}$		Fully Internal Impedance Matching$(\mathrm{R} 120 \mathrm{IN}=1)^{1,2}$		External Impedance Matching	
	R_TERM[2:0]	Rr	R_TERM[2:0]	Rr	R_TERM[2:0] ${ }^{3}$	Rr
E1 120Ω twisted pair (with transformer)	010	120Ω	010	(open)	1XX	120Ω
E1 75Ω coaxial (with transformer)	011		011			75Ω
E1 120Ω twisted pair (transformer-less ${ }^{4}$)	010		(not supported)			120Ω
Note: 1. Partially Internal Impedance Matching and Fully Internal Impedance Matching are not supported when RIM is low. 2. Fully Internal Impedance Matching is not supported in transformer-less applications. 3. When RIM is low, the setting of the R_TERM[2:0] bits is ignored. 4. In transformer-less applications, the device should be protected against overvoltage. There are three important standards for overvoltage protection: - UL1950 and FCC Part 68; - Telcordia (Bellcore) GR-1089 - ITU-T K. 20 , K. 21 and K. 41						

Figure-8 Receive Differential Line Interface with Twisted Pair Cable (with transformer)

Figure-9 Receive Differential Line Interface with Coaxial Cable (with transformer)

Note: 1. Two $\mathrm{Rr} / 2$ resistors should be connected to VCOM[1:0] that are coupled to ground via a $10 \mu \mathrm{~F}$ capacitor, which provide 60Ω common mode input resistance.
2. In this mode, lightning protection should be enhanced.
3. The maximum input dynamic range of RTIP/TRING pin is $-0.3 \mathrm{~V} \sim 3.6 \mathrm{~V}$ (in line monitor mode it is $-0.3 \mathrm{~V} \sim 2 \mathrm{~V}$)

Figure-10 Receive Differential Line Interface with Twisted Pair Cable (transformer-less, non standard compliant)

3.1.1.2 Receive Single Ended Mode

Receive Single Ended mode can only be used in 75Ω coaxial cable applications.

In Receive Single Ended mode, only External Impedance Matching is supported. External Impedance Matching circuit uses an external resistor (Rr) only. The value of the resistor is 18.75Ω (see Figure- 11 for details) when the single end is connected with a $2: 1$ transformer or is 75 Ω (see Figure-12 for details) when the single end is connected without a transformer.

In Receive Single Ended mode, the RIM pin should be left open and the configuration of the R_TERM[2:0] bits (b2~0, RCF0,...) is ignored.

Figure-11 Receive Single Ended Line Interface with Coaxial Cable (with transformer)

Note: In this mode, port protection should be enhanced.
Figure-12 Receive Single Ended Line Interface with Coaxial Cable (transformer-less, non standard compliant)

3.1.2 EQUALIZER

The equalizer compensates high frequency attenuation to enhance receive sensitivity.

3.1.2.1 Line Monitor

In E1 short haul applications, the Protected Non-Intrusive Monitoring per T1.102 can be performed between two devices. The monitored channel of one device is in normal operation, and the monitoring channel of the other device taps the monitored one through a high impedance bridging circuit (refer to Figure-13 and Figure-14).

After the high resistance bridging circuit, the signal arriving at RTIPn/ RRINGn of the monitoring channel is dramatically attenuated. To compensate this bridge resistive attenuation, Monitor Gain can be used to boost the signal by $20 \mathrm{~dB}, 26 \mathrm{~dB}$ or 32 dB , as selected by the $\mathrm{MG}[1: 0$] bits (b1~0, RCF2,...). For normal operation, the Monitor Gain should be set to 0 dB , i.e., the Monitor Gain of the monitored channel should be 0 dB.

The monitoring channel can be configured to any of the External, Partially Internal or Fully Internal Impedance Matching mode. Here the external r or internal IM is used for voltage division, not for impedance matching. That is, the $r(I M)$ and the two R make up of a resistance bridge. The resistive attenuation of this bridge is $20 \lg (r /(2 R+r)) d B$.

Note that line monitor is only available in differential line interface.
A channel 0 monitoring function is provided (refer to Section 3.4.9 Channel 0 Monitoring). If multiple High-Density LIUs are used in an application, The G. 772 function of channel 0 can be used to route the signals of channel 1~21 Receive and Transmit to channel 0 of the same device. This channel 0 Transmit TTIP and TTRING could then be monitored by another device through the Line Monitor function.

3.1.2.2 Receive Sensitivity

The receive sensitivity is the minimum range of receive signal level for which the receiver recovers data error-free with -18 dB interference signal added.

For Receive Differential line interface, the receive sensitivity is -15 dB.

For Receive Single Ended line interface, the receive sensitivity is -12 dB.

Figure-13 Receive Path Monitoring

Figure-14 Transmit Path Monitoring

3.1.3 SLICER

The Slicer is used to generate a standard amplitude mark or a space according to the amplitude of the input signals. The input signal is sliced at 50% of the peak value.

3.1.4 R_{X} CLOCK \& DATA RECOVERY

The Rx Clock \& Data Recovery is used to recover the clock signal from the received data. It is accomplished by an integrated Digital Phase Locked Loop (DPLL). The recovered clock tracks the jitter in the data output from the Slicer and keeps the phase relationship between data and clock during the absence of the incoming pulse.

Note that the IDT82P2521 also provides programmable REFA and REFB pins to output any of the 22 recovered line clocks. Refer to Section 3.5 Clock Inputs and Outputs for details.

3.1.5 DECODER

The Decoder is used only when the receive system interface is in Single Rail NRZ Format mode. When the receive system interface is in other modes, the Decoder is bypassed automatically. (Refer to Section 3.1.6 Receive System Interface for the description of the receive system interface).

The received signal is decoded by AMI or HDB3 line code rule. The line code rule is selected by the R_CODE bit (b2, RCF1,...).

3.1.6 RECEIVE SYSTEM INTERFACE

The received data can be output to the system side in four modes: Single Rail NRZ Format mode, Dual Rail NRZ Format mode, Dual Rail RZ Format mode and Dual Rail Sliced mode, as selected by the R_MD[1:0] bits (b1~0, RCF1).

If data is output on RDn in NRZ format and the recovered clock is output on RCLKn, the receive system interface is in Single Rail NRZ Format mode. In this mode, the data is decoded and updated on the active edge of RCLKn. RCLKn outputs a 2.048 MHz clock. The Receive Multiplex Function (RMFn) signal is updated on the active edge of RCLKn and can be selected to indicate PRBS/ARB, LAIS, LEXZ, LBPV, LEXZ + LBPV, LLOS, output recovered clock (RCLK) or XOR output of positive and negative sliced data. Refer to Section 3.4.7.1 RMFn Indication for the description of RMFn.

If data is output on RDPn and RDNn in NRZ format and the recovered clock is output on RCLKn, the receive system interface is in Dual Rail NRZ Format mode. In this mode, the data is un-decoded and updated on the active edge of RCLKn. RCLKn outputs a 2.048 MHz clock.

If data is output on RDPn and RDNn in RZ format and the recovered clock is output on RCLKn, the receive system interface is in Dual Rail RZ Format mode. In this mode, the data is un-decoded and updated on the active edge of RCLKn. RCLKn outputs a 2.048 MHz clock.

If data is output on RDPn and RDNn in RZ format directly after passing through the Slicer, the receive system interface is in Dual Rail Sliced mode. In this mode, the data is raw sliced and un-decoded. RMFn can be selected to indicate PRBS/ARB, LAIS, LEXZ, LBPV, LEXZ + LBPV, LLOS, output recovered clock (RCLK) or XOR output of positive and negative sliced data. Refer to Chapter 3.4.7.1 RMFn Indication for the description of RMFn.

Table-2 summarizes the multiplex pin used in different receive system interface.

Table-2 Multiplex Pin Used in Receive System Interface

Receive System Interface	Multiplex Pin Used On Receive System Interface		
	RDn / RDPn	RDNn / RMFn	RCLKn / RMFn
Single Rail NRZ Format	RDn ${ }^{1}$	RMFn ${ }^{2}$	RCLKn ${ }^{3}$
Dual Rail NRZ Format	RDPn ${ }^{1}$	RDNn ${ }^{1}$	RCLKn ${ }^{3}$
Dual Rail RZ Format	RDPn ${ }^{1}$	RDNn ${ }^{1}$	RCLKn ${ }^{3}$
Dual Rail Sliced	RDPn ${ }^{1}$	RDNn ${ }^{1}$	RMFn ${ }^{2}$
Note: 1. The active level on RDn, RDPn and RDNn is selected by the RD_INV bit (b3, RCF1,...). 2. RMFn is always active high. 3. The active edge of RCLKn is selected by the RCK_ES bit (b4, RCF1,...).			

3.1.7 RECEIVER POWER DOWN

Set the R_OFF bit (b5, RCF0,...) to '1' will power down the corresponding receiver.

In this way, the corresponding receive circuit is turned off and the RTIPn/RRINGn pins are forced to High-Z state. The pins on receive system interface (including RDn/RDPn, RDNn/RMFn, RCLKn/RMFn) will be in High-Z state if the RHZ bit (b6, RCF0,...) is '1' or in low level if the RHZ bit ($b 6$, RCFO,\ldots) is ' 0 '.

After clearing the R_OFF bit ($\mathrm{b} 5, \mathrm{RCF} 0, \ldots$), it will take 1 ms for the receiver to achieve steady state, i.e., to return to the previous configuration and performance.

3.2 TRANSMIT PATH

3.2.1 TRANSMIT SYSTEM INTERFACE

The data from the system side is input to the device in three modes: Single Rail NRZ Format mode, Dual Rail NRZ Format mode and Dual Rail RZ Format mode, as selected by the T_MD[1:0] bits (b1~0, TCF1,...).

If data is input on TDn in NRZ format and a 2.048 MHz clock is input on TCLKn, the transmit system interface is in Single Rail NRZ Format mode. In this mode, the data is encoded and sampled on the active edge of TCLKn. TMFn is updated on the active edge of TCLKn and can be selected to indicate PRBS/ARB, SAIS, TOC, TLOS or SEXZ. Refer to Section 3.4.7.2 TMFn Indication for the description of TMFn.

If data is input on TDPn and TDNn in NRZ format and a 2.048 MHz clock is input on TCLKn, the transmit system interface is in Dual Rail NRZ Format mode. In this mode, the data is pre-encoded and sampled on the active edge of TCLKn.

If data is input on TDPn and TDNn in RZ format and no transmit clock is input, the transmit system interface is in Dual Rail RZ Format mode. In this mode, the data is pre-encoded. TMFn can be selected to indicate PRBS/ARB, SAIS, TOC, TLOS, SEXZ, SBPV, SEXZ + SBPV or SLOS. Refer to Section 3.4.7.2 TMFn Indication for the description of TMFn. The Tx Clock Recovery block is used to recover the clock signal from the data input on TDPn and TDNn. Refer to Section 3.2.2 Tx Clock Recovery.

Table-3 summarizes the multiplex pin used in different transmit system interface.

Table-3 Multiplex Pin Used in Transmit System Interface

Transmit System Interface	Multiplex Pin Used On Transmit System Interface		
	TDn / TDPn	TDNn / TMFn	TCLKn / TDNn
Single Rail NRZ Format	TDn ${ }^{1}$	TMFn ${ }^{2}$	TCLK ${ }^{3}$
Dual Rail NRZ Format	TDPn ${ }^{1}$	TDNn ${ }^{1}$	TCLK ${ }^{3}$
Dual Rail RZ Format	TDPn ${ }^{1}$	TMFn ${ }^{2}$	TDNn ${ }^{1}$

Note:

1. The active level on TDn, TDPn and TDNn is selected by the TD_INV bit (b3, TCF1,...).
2. TMFn is always active high.
3. The active edge of TCLKn is selected by the TCK_ES bit (b4, TCF1,...). If TCLKn is missing, i.e., no transition for more than 64 E1 clock cycles, the TCKLOS_S bit (b3, STAT0,...) will be set. A transition from '0' to '1' on the TCKLOS_S bit (b3, STAT0,...) or any transition (from '0' to ' 1 ' or from ' 1 ' to ' 0 ') on the TCKLOS_S bit (b3, STAT0,...) will set the TCKLOS_IS bit (b3, INTSO,...) to '1', as selected by the TCKLOS_IES bit (b3, INTES,...). When the TCKLOS_IS bit (b3, INTS0,...) is ' 1 ', an interrupt will be reported by $\overline{\mathrm{NT}}$ if not masked by the TCKLOS_IM bit (b3, INTM0,...).

3.2.2 T_{X} CLOCK RECOVERY

The Tx Clock Recovery is used only when the transmit system interface is in Dual Rail RZ Format mode. When the transmit system interface is in other modes, the Tx Clock Recovery is bypassed automatically.

The Tx Clock Recovery is used to recover the clock signal from the data input on TDPn and TDNn.

3.2.3 ENCODER

The Encoder is used only when the transmit system interface is in Single Rail NRZ Format mode. When the transmit system interface is in other modes, the Encoder is bypassed automatically.

The data to be transmitted is encoded by AMI or HDB3 line code rule. The line code rule is selected by the T_{-}CODE bit (b2, TCF1,...).

3.2.4 WAVEFORM SHAPER

The IDT82P2521 provides two ways to manipulate the pulse shape before data is transmitted:

- Preset Waveform Template;
- User-Programmable Arbitrary Waveform.

32.4.1 Preset Waveform Template

The waveform template meets G.703, as shown in Figure-15. It is measured in the near end line side, as shown in Figure-16.

The PULS[3:0] should be set to '0000' if differential signals (output from TTIP and TRING) are coupled to a 75Ω coaxial cable using Internal Impedance matching mode; the PULS[3:0] should be set to ' 0001 ' for other E1 interfaces. Refer to Table-4 for details.

Figure-15 E1 Waveform Template

Figure-16 E1 Waveform Template Measurement Circuit

Table-4 PULS[3:0] Setting

Interface Conditions	PULS[3:0]
E1 75Ω differential interface, Internal Impedance matching mode	0000
Other E1 interface	0001

After one of the preset waveform templates is selected, the preset waveform amplitude can be adjusted to get the desired waveform.

The SCAL[5:0] bits (b5~0, SCAL,...) should be set to '100001' to get the standard amplitude. The adjusting is made by increasing or decreasing by ' 1 ' from the standard value to scale up or down at a percentage ratio of 3%.

In summary, do the following step by step, the desired waveform will be got based on the preset waveform template:

- Select one preset waveform template by setting the PULS[3:0] bits (b3~0, PULS,...);
- Write ' 100001 to the SCAL[5:0] bits (b5~0, SCAL,...).
- Write the scaling value to the SCAL[5:0] bits (b5~0, SCAL,...) to scale the amplitude of the selected preset waveform template (this step is optional).

3.2.4.2 User-Programmable Arbitrary Waveform

When the PULS[3:0] bits (b3~0, PULS,...) are set to '1XXX', userprogrammable arbitrary waveform will be used in the corresponding channel.

Each waveform shape can extend up to $1 \frac{1}{4}$ Uls (Unit Interval), and is divided into 20 sub-phases that are addressed by the SAMP[4:0] bits (b4~0, AWG0,...). The waveform amplitude of each phase is represented by a binary byte, within the range from +63 to -63 , stored in the WDAT[6:0] bits (b6~0, AWG1,...) in signed magnitude form. The maximum number +63 (D) represents the maximum positive amplitude of the transmit pulse while the most negative number -63 (D) represents the maximum negative amplitude of the transmit pulse. Therefore, up to 20 bytes are used.

There are eight standard templates which are stored in a local ROM. One of them can be selected as reference and made some changes to get the desired waveform.

To do this, the first step is to choose a set of waveform value from the standard templates. The selected waveform value should be the most similar to the desired waveform shape. Table-5 and Table-6 list the sample data of each template.

Then modify the sample data to get the desired transmit waveform shape. By increasing or decreasing by ' 1 ' from the standard value in the SCAL[5:0] bits (b5~0, SCAL,...), the waveform amplitude will be scaled up or down.

In summary, do the following for the write operation:

- Modify the sample data in the AWG1 register;
- Write the AWGO register to implement the write operation, including:
- Write the sample address to the SAMP[4:0] bits (b4~0, AWG0,...);
- Write '0' to the RW bit (b5, AWG0,...);
- Write '1' to the DONE bit (b6, AWG0,...).

Do the following for the read operation:

- Write the AWG0 register, including:
- Write sample address to the SAMP[4:0] bits (b4~0, AWG0,...);
- Write '1' to the RW bit (b5, AWG0,...);
- Write '1' to the DONE bit (b6, AWG0,...);
- Read the AWG1 register to get the sample data.

When the write operation is completed, write the scaling value to the SCAL[5:0] bits (b5~0, SCAL,...) to scale the amplitude of the selected standard waveform (- this step is optional).

When more than one U I is used to compose the waveform template and the waveform amplitude is not set properly, the overlap of the two consecutive waveforms will make the waveform amplitude overflow (i.e., exceed the maximum limitation). This overflow is captured by the DAC_IS bit (b7, INTS0,...) and will be reported by the INT pin if enabled by the DAC_IM bit (b7, INTM0,...).

Refer to application note AN-513 'User-Programmable Arbitrary Waveform for DSX1' for more details.

Table-5 Transmit Waveform Value for E1 75 ohm

SAMP[4:0]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
WDAT[6:0]	00 H	00 H	00 H	0 CH	30 H	00 H														

Table-6 Transmit Waveform Value for E1 120 ohm

SAMP[4:0]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
WDAT[6:0]	00 H	00 H	00 H	0 FH	3 CH	00 H														

3.2.5 LINE DRIVER

The Line Driver can be set to High-Z for protection or in redundant applications.

The following two ways will set the Line Driver to High-Z:

- Setting the OE pin to low will globally set all the Line Drivers to High-Z;
- Setting the OE bit (b6, TCFO,...) to ' 0 ' will set the corresponding Line Driver to High-Z.

By these ways, the functionality of the internal circuit is not affected and TTIPn and TRINGn will enter High-Z state immediately.

3.2.5.1 Transmit Over Current Protection

The Line Driver monitors the Transmit Over Current (TOC) on the line interface. When TOC is detected, the driver's output (i.e., output on TTIPn/TRINGn) is determined by the THZ_OC bit (b4, TCF0,...). If the THZ_OC bit (b4, TCFO,...) is ' 0 ', the driver's output current (peak to peak) is limited to 100 mA ; if the THZ_OC bit (b4, TCFO,...) is ' 1 ', the driver's output will enter High-Z. TOC is indicated by the TOC_S bit (b4, STAT0,...). A transition from '0' to ' 1 ' on the TOC_S bit (b4, STAT0,...) or any transition (from ' 0 ' to ' 1 ' or from ' 1 ' to ' 0 ') on the TOC_S bit (b4, STAT0,...) will set the TOC_IS bit (b4, INTS0,...) to ' 1 ', as selected by the TOC_IES bit (b4, INTES,...). When the TOC_IS bit (b4, INTS0,...) is ' 1 ', an interrupt will be reported by $\overline{\text { INT }}$ if not masked by the TOC_IM bit (b4, INTM0,...).

TOC may be indicated by the TMFn pin. Refer to Section 3.4.7.2 TMFn Indication for details.

3.2.6 TX TERMINATION

The transmit line interface supports Transmit Differential mode and Transmit Single Ended mode, as selected by the T_SING bit (b3, TCFO,...). In Transmit Differential mode, both TTIPn and TRINGn are used to transmit signals to the line side. In Transmit Single Ended mode, only TTIPn is used to transmit signal.

The line interface can be connected with E1 120Ω twisted pair cable or E1 75Ω coaxial cable.

The transmit impedance matching is realized by using internal impedance matching or external impedance matching for each channel in different applications.

3.2.6.1 Transmit Differential Mode

In Transmit Differential mode, different applications have different impedance matching. For E1 applications, both Internal and External Impedance Matching are supported.

Internal Impedance Matching circuit uses an internal programmable resistor (IM) only.

External Impedance Matching circuit uses an external resistor (Rt) only.

A twisted pair cable can be connected with a 1:2 (step up) transformer or without a transformer (transformer-less), while a coaxial cable must be connected with a 1:2 transformer.

The T_TERM[2:0] bits (b2~0, TCF0,...) should be set according to different cable conditions, whether a transformer is used, and what kind of Impedance Matching is selected.

Table-7 lists the recommended impedance matching value in different applications. Figure-17 to Figure-19 show the connection for one channel in different applications.

The transformer-less connection will offer a termination option with reduced cost and board space. However, the waveform amplitude is not standard compliant, and surge protection and common mode depression should be enhanced depending on equipment environment..

Table-7 Impedance Matching Value in Transmit Differential Mode

Cable Condition	Internal Impedance Matching		External Impedance Matching	
	T_TERM[2:0]	Rt	T_TERM[2:0]	Rt
E1 120Ω twisted pair (with transformer), PULS[3:0]=0001	010	111	10Ω	
E1 75Ω coaxial (with transformer), PULS[3:0]=0000	011		10	
E1 120Ω twisted pair (transformer-less), PULS[3:0]=0001	110		(not supported)	

Figure-17 Transmit Differential Line Interface with Twisted Pair Cable (with Transformer)

Figure-18 Transmit Differential Line Interface with Coaxial Cable (with transformer)

Note: In this mode, port protection should be enhanced.

Figure-19 Transmit Differential Line Interface with Twisted Pair Cable (transformer-less, non standard compliant)

3.2.6.2 Transmit Single Ended Mode

Transmit Single Ended mode can only be used in 75Ω coaxial cable applications.

In Transmit Single Ended mode, only Internal Impedance Matching is supported. Internal Impedance Matching circuit uses an internal programmable resistor (IM) only. The T_TERM[2:0] bits (b2~0, TCF0,...) should be set to '011'. The output amplitude is 4.74 Vpp when PULS[3:0] is '0001' and the SCAL[5:0] bits (b5~0, SCAL,...) is '100001'.'

In Single Ended mode, special care has to be taken for termination and overall setup. Refer to separate application note for details.

A 1:2 (step up) transformer should be used in application.
Figure-20 shows the connection for one channel.

Figure-20 Transmit Single Ended Line Interface with Coaxial Cable (with transformer)

1. The waveform in this mode is not standard. However, if the arbitrary waveform generator is used, the waveform could pass the template marginally.

3.2.7 TRANSMITTER POWER DOWN

Set the T_OFF bit (b5, TCF0,...) to ' 1 ' will power down the corresponding transmitter.

In this way, the corresponding transmit circuit is turned off. The pins on the transmit line interface (including TTIPn and TRINGn) will be in High-Z state. The input on the transmit system interface (including TDn, TDPn, TDNn and TCLK) is ignored. The output on the transmit system interface (i.e. TMFn) will be in High-Z state.

After clearing the T_OFF bit (b5, TCF0,...), it will take 1 ms for the transmitter to achieve steady state, i.e., return to the previous configuration and performance.

3.2.8 OUTPUT HIGH-Z ON TTIP AND TRING

TTIPn and TRINGn can be set to High-Z state globally or on a perchannel basis.

The following three conditions will set TTIPn and TRINGn to High-Z state globally:

- Connecting the OE pin to low;
- Loss of MCLK (i.e., no transition on MCLK for more than 1 ms);
- Power on reset, hardware reset by pulling $\overline{\mathrm{RST}}$ to low for more than $2 \mu \mathrm{~s}$ or global software reset by writing the RST register.

The following six conditions will set TTIPn and TRINGn to High-Z state on a per-channel basis:

- Writing ' 0 ' to the OE bit (b6, TCF0,...);
- Loss of TCLKn in Transmit Single Rail NRZ Format mode or Transmit Dual Rail NRZ Format mode (i.e., no transition on TCLKn for more than 64 XCLK 1 cycles) except that the channel is in Remote Loopback or transmit internal pattern with XCLK;
- Transmitter power down;
- Per-channel software reset by writing ' 1 ' to the CHRST bit (b1, CHCF,...);
- Setting the THZ_OC bit (b4, TCF0,...) to '1' when transmit driver over-current is detected.

[^0]
3.3 JITTER ATTENUATOR (RJA \& TJA)

Two Jitter Attenuators are provided for each channel of receiver and transmitter. Each Jitter Attenuator can be enabled or disabled, as determined by the RJA_EN/TJA_EN bit (b3, RJA/TJA,...) respectively.

Each Jitter Attenuator consists of a FIFO and a DPLL, as shown in Figure-21.

Figure-21 Jitter Attenuator
The FIFO is used as a pool to buffer the jittered input data, then the data is clocked out of the FIFO by a de-jittered clock. The depth of the FIFO can be 32 bits, 64 bits or 128 bits, as selected by the RJA_DP[1:0]/ TJA_DP[1:0] bits (b2~1, RJA/TJA,...). Accordingly, the typical delay produced by the Jitter Attenuator is 16 bits, 32 bits or 64 bits. The 128bit FIFO is used when large jitter tolerance is expected, while the 32-bit FIFO is used in delay sensitive applications.

The DPLL is used to generate a de-jittered clock to clock out the data stored in the FIFO. The DPLL can only attenuate the incoming jitter whose frequency is above Corner Frequency (CF) by 20 dB per decade falling off. The jitter whose frequency is lower than the CF passes through the DPLL without any attenuation. The CF of the DPLL is 6.77 Hz or 0.87 Hz . The CF is selected by the RJA_BW/TJA_BW bit (b0, RJA/TJA,...). The lower the CF is, the longer time is needed to achieve synchronization.

If the incoming data moves faster than the outgoing data, the FIFO will overflow. If the incoming data moves slower than the outgoing data, the FIFO will underflow. The overflow and underflow are both captured by the RJA_IS/TJA_IS bit (b5/6, INTS0,...). The occurrence of overflow or underflow will be reported by the $\overline{\mathrm{NT}}$ pin if enabled by the RJA_IM/ TJA_IM bit (b5/6, INTM0,...).

To avoid overflow or underflow, the JA-Limit function can be enabled by setting the RJA_LIMT/TJA_LIMT bit (b4, RJA/TJA,...). When the JALimit function is enabled, the speed of the outgoing data will be adjusted automatically if the FIFO is 2-bit close to its full or emptiness. Though the JA-Limit function can reduce the possibility of FIFO overflow and underflow, the quality of jitter attenuation is deteriorated.

The performance of the Jitter Attenuator meets ITUT I.431, G.703, G.736-739, G.823, G.824, ETSI 300011, ETSI TBR12/13, AT\&T TR62411, TR43802, TR-TSY 009, TR-TSY 253 and TR-TRY 499. Refer to Section 8.10 Jitter Attenuation Characteristics for the jitter performance.

3.4 DIAGNOSTIC FACILITIES

The diagnostic facilities include:

- BPV (Bipolar Violation) / CV (Code Violation) detection and BPV insertion;
- EXZ (Excessive Zero) detection;
- LOS (Loss Of Signal) detection;
- AIS (Alarm Indication Signal) detection and generation;
- Pattern generation and detection, including PRBS (Pseudo Random Bit Sequence), ARB (Arbitrary Pattern) and IB (Inband Loopback).
The above defects, alarms or patterns can be counted by an internal Error Counter, indicated by the respective interrupt bit and indicated by RMFn or TMFn.

For diagnostic purposes, loopbacks and channel 0 monitoring can also be implemented.

3.4.1 BIPOLAR VIOLATION (BPV) / CODE VIOLATION (CV) DETECTION AND BPV INSERTION

3.4.1.1 Bipolar Violation (BPV) / Code Violation (CV) Detection

BPV/CV is monitored in both the receive path and the transmit path. BPV is detected when the data is AMI coded and CV is detected when the data is HDB3 coded. If the transmit system interface is in Transmit Single Rail NRZ Format mode, the BPV/CV detection is disabled in the transmit path automatically.

A BPV is detected when two consecutive pulses of the same polarity are received.

A CV is detected when two consecutive BPVs of the same polarity that are not a part of the HDB3 zero substitution are received.

When BPV/CV is detected in the receive path, the Line Bipolar Violation LBPV_IS bit (b4, INTS2,...) will be set and an interrupt will be reported by $\overline{\mathrm{INT}}$ if not masked by the LBPV_IM bit (b4, INTM2,...).

When BPV/CV is detected in the transmit path, the System Bipolar Violation SBPV_IS bit (b5, INTS2,...) will be set and an interrupt will be reported by $\overline{\mathrm{NT}}$ if not masked by the SBPV_IM bit (b5, INTM2,...).

BPV/CV may be counted by an internal Error Counter or may be indicated by the RMFn or TMFn pin. Refer to Section 3.4.6 Error Counter and Section 3.4.7 Receive /Transmit Multiplex Function (RMF / TMF) Indication respectively.

3.4.1.2 Bipolar Violation (BPV) Insertion

The BPV can only be inserted in the transmit path.
A BPV will be inserted on the next available mark in the data stream to be transmitted by writing a ' 1 ' to the BPV_INS bit (b6, ERR,...). This bit will be reset once BPV insertion is done.

3.4.2 EXCESSIVE ZEROES (EXZ) DETECTION

EXZ is monitored in both the receive path and the transmit path.
Different line code has different definition of the EXZ. The IDT82P2521 provides two standards of EXZ definition for each kind of line code rule. The standards are ANSI and FCC, as selected by the EXZ_DEF bit (b7, ERR,...). Refer to Table-8 for details.
Table-8 EXZ Definition

Line Code Rule	Definition		
	ANSI (EXZ_DEF = 0)	FCC (EXZ_DEF = 1)	
AMI	An EXZ is detected when any string of more than 15 lonsecutive '0's are received.	An EXZ is detected when any string of more than 15 consecutive '0's are received.	
HDB3	An EXZ is detected when any string of more than 3 lonsecutive '0's are received.	An EXZ is detected when any string of more than 3 lonsecutive '0's are received.	
Note: If the transmit system interface is in Transmit Single Rail NRZ Format mode, the EXZ is detected according to the standard of AMI.			

When EXZ is detected in the receive path, the LEXZ_IS bit (b2, INTS2,...) will be set and an interrupt will be reported by INT if not masked by the LEXZ_IM bit (b2, INTM2,...).

When EXZ is detected in the transmit path, the SEXZ_IS bit (b3, INTS2,...) will be set and an interrupt will be reported by INT if not masked by the SEXZ_IM bit (b3, INTM2,...).

EXZ may be counted by an internal Error Counter or may be indicated by the RMFn or TMFn pin. Refer to Chapter 3.4.6 Error Counter and Chapter 3.4.7 Receive /Transmit Multiplex Function (RMF / TMF) Indication respectively.

3.4.3 LOSS OF SIGNAL (LOS) DETECTION

The IDT82P2521 detects three kinds of LOS:

- LLOS: Line LOS, detected in the receive path;
- SLOS: System LOS, detected in the transmit system side;
- TLOS: Transmit LOS, detected in the transmit line side.

3.4.3.1 Line LOS (LLOS)

The amplitude and density of the data received from the line side are monitored. When the amplitude of the data is less than Q Vpp for N consecutive pulse intervals, LLOS is declared. When the amplitude of the data is more than P Vpp and the average density of marks is at least 12.5% for M consecutive pulse intervals starting with a mark, LLOS is cleared. Here Q is defined by the ALOS[2:0] bits (b6~4, LOS,...). P is the sum of Q and 250 mVpp . N and M are defined by the LAC bit (b7, LOS,...). Refer to Table-9 for details.

LLOS detection supports G. 775 and ETSI 300233/I.431. The criteria are selected by the LAC bit (b7, LOS,...).

When LLOS is detected, the LLOS_S bit (b0, STAT0,...) will be set. A transition from ' 0 ' to ' 1 ' on the LLOS_S bit (b0, STAT0,...) or any transition (from ' 0 ' to ' 1 ' or from ' 1 ' to ' 0 ') on the LLOS_S bit (b0, STAT0,...) will set the LLOS_IS bit (b0, INTS0,...) to ' 1 ', as selected by the LOS_IES bit (b1, INTES,...). When the LLOS_IS bit (b0, INTS0,...) is ' 1 ', an interrupt will be reported by $\overline{\mathrm{NT}}$ if not masked by the LLOS_IM bit (b0, INTM0,...).

Two pins (LLOSO and LLOS) are dedicated to LLOS indication. Whether LLOS is detected in channel 0 or not, LLOSO is high for a CLKE1 clock cycle to indicate the channel 0 position on LLOS. LLOS indicates LLOS status of all 22 channels in a serial format and repeats every 22 cycles. Refer to Figure-22. LLOS0 and LLOS are updated on the rising edge of CLKE1. When the clock output on CLKE1 is disabled, LLOS0 and LLOS will be held in High-Z state. The output on CLKE1 is controlled by the CLKE1_EN bit (b3, CLKG) and the CLKE1 bit (b2, CLKG). Refer to section 8.9 on page 129 for CLKE1 timing characteristics.

LLOS may be counted by an internal Error Counter or may be indicated by the RMFn pin. Refer to Section 3.4.6 Error Counter and Section 3.4.7.1 RMFn Indication respectively.

During LLOS, in Receive Single Rail NRZ Format mode, Receive Dual Rail NRZ Format mode and Receive Dual Rail RZ Format mode, RDn and RDPn/RDNn output low level. In Receive Dual Rail Sliced mode RDPn/RDNn still output sliced data. RCLKn (if available) outputs high level or XCLK ${ }^{1}$, as selected by the RCKH bit (b7, RCF0, ...).

During LLOS, if any of AIS, pattern generation in the receive path or Digital Loopback is enabled, RDn, RDPn/RDNn and RCLKn output corresponding data and clock, and the setting of the RCKH bit (b7, RCFO,...) is ignored. Refer to the corresponding chapters for details.

[^1]Table-9 LLOS Criteria

Operation Mode	LAC	Criteria	LLOS Declaring	LLOS Clearing
E1	0	G.775	below Q Vpp, $\mathrm{N}=32$ bits	above P Vpp, 12.5\% mark density with less than 16 consecutive zeros, $\mathrm{M}=32$ bits
	1	ETSI $300233 /$ 1.431	below Q Vpp, $\mathrm{N}=2048$ bits	above P Vpp, 12.5\% mark density with less than 16 consecutive zeros, $\mathrm{M}=32$ bits

Figure-22 LLOS Indication on Pins

3.4.3.2 System LOS (SLOS)

SLOS can only be detected when the transmit system interface is in Dual Rail NRZ Format mode or in Dual Rail RZ Format mode.

The amplitude and density of the data input from the transmit system side are monitored. When the input '0's are equal to or more than N consecutive pulse intervals, SLOS is declared. When the average density of marks is at least 12.5% for M consecutive pulse intervals starting with a mark, SLOS is cleared. Here N and M are defined by the LAC bit (b7, LOS,...). Refer to Table-10 for details.

SLOS detection supports G. 775 and ETSI 300233/I.431. The criteria are selected by the LAC bit (b7, LOS,...).

When SLOS is detected, the SLOS_S bit (b1, STAT0,...) will be set. A transition from ' 0 ' to ' 1 ' on the SLOS_S bit (b1, STAT0,...) or any transition (from '0' to ' 1 ' or from ' 1 ' to ' 0 ') on the SLOS_S bit (b1, STAT0,...) will set the SLOS_IS bit (b1, INTS0,...) to ' 1 ', as selected by the LOS_IES bit (b1, INTES,...). When the SLOS_IS bit (b1, INTSO, ...) is ' 1 ', an interrupt will be reported by $\overline{N T}$ if not masked by the SLOS_IM bit (b1, INTM0,...).

SLOS may be counted by an internal Error Counter or may be indicated by the TMFn pin. Refer to Section 3.4.6 Error Counter and Section 3.4.7.2 TMFn Indication respectively.

Table-10 SLOS Criteria

Operation Mode	LAC	Criteria	SLOS Declaring 1	SLOS Clearing 1

Note:

1. System input ports are schmitt-trigger inputs)

3.4.3.3 Transmit LOS (TLOS)

The amplitude and density of the data output on the transmit line side are monitored. When the amplitude of the data is less than a certain voltage for a certain period, TLOS is declared. The voltage is defined by the TALOS[1:0] bits (b3~2, LOS,...). The period is defined by the TDLOS[1:0] bits (b1~0, LOS,...). When a valid pulse is detected, i.e., the amplitude is above the setting in the TALOS[1:0] bits (b3~2, LOS,...), TLOS is cleared.

When TLOS is detected, the TLOS_S bit (b2, STAT0,...) will be set. A transition from ' 0 ' to ' 1 ' on the TLOS_S bit (b2, STAT0,...) or any transition (from ' 0 ' to ' 1 ' or from ' 1 ' to ' 0 ') on the TLOS_S bit (b2, STAT0,...) will set the TLOS_IS bit (b2, INTS0,...) to '1', as selected by the TLOS_IES bit (b2, INTES,...). When the TLOS_IS bit (b2, INTS0,...) is ' 1 ', an interrupt will be reported by $\overline{\mathrm{NT}}$ if not masked by the TLOS_IM bit (b2, INTM0,...).

TLOS may be counted by an internal Error Counter or may be indicated by the TMFn pin. Refer to Section 3.4.6 Error Counter and Section 3.4.7.2 TMFn Indication respectively.

TLOS can be used to monitor the LOS in the transmit line side between two channels. The connection between the two channels is shown in Figure-23. The two channels can be of the same device or different devices on the premises that the transmit line interfaces are in the same mode and at least the output of one channel is in High-Z state. Table-11 lists each results in this case. In the left two columns, the OE bit ($\mathrm{b} 6, \mathrm{TCF} 0, \ldots$) of the two channels controls the output status in the
transmit line side to ensure that at least one channel is in High-Z state. The middle two columns list the internal operation status. In the right two columns, the TLOS_S bit (b2, STAT0,...) of the two channels indicates the TLOS status in the transmit line side.

Figure-23 TLOS Detection Between Two Channels

Table-11 TLOS Detection Between Two Channels

Output Status ~ Controlled By the OE Bit		Internal Operation Status		TLOS Status ~ Indicated By the TLOS_S Bit	
Channel \#1	Channel \#2	Channel \#1	Channel \#2	Channel \#1	Channel \#2
Normal ~ 1	High-Z ~ 0	Normal	(don't-care)	No TLOS ~ 0	No TLOS ~ 0
Normal ~ 1	High-Z ~ 0	Failure	Normal	TLOS Detected ~ 1 *	TLOS Detected ~ 1
High-Z ~ 0	Normal ~ 1	(don't-care)	Normal	No TLOS ~ 0	No TLOS ~ 0
High-Z ~ 0	Normal ~ 1	Normal	Failure	TLOS Detected ~ 1	TLOS Detected ~ ${ }^{\text {* }}$
High-Z ~ 0	High-Z ~ 0	(don't-care)	(don't-care)	TLOS Detected ~ 1	TLOS Detected ~ 1
Note: *The TLOS_S bit (b2, STAT0,...) may not be set if there is any catastrophic failure in the channel.					

3.4.4 ALARM INDICATION SIGNAL (AIS) DETECTION AND GENERATION

3.4.4.1 Alarm Indication Signal (AIS) Detection

AIS is monitored in both the receive path and the transmit path.
When the mark density in the received data or in the data input from the transmit system side meets certain criteria, AIS is declared or cleared. In E1 mode, the criteria are in compliance with ITU G. 775 or ETSI 300233, as selected by the LAC bit (b7, LOS,...). Refer to Table-12 for details.

Table-12 AIS Criteria

	ITU G.775 for E1 (LAC = 0)	ETSI 300233 for E1 (LAC = 1)
AIS Declaring	Less than 3 zeros are received in each of two consecutive 512-bit data streams.	Less than 3 zeros are received in a 512-bit data stream.
AIS Clearing	3 or more zeros are received in each of two consecutive 512-bit data streams.	3 or more zeros are received in a 512-bit data stream.

When AIS is detected in the receive path, the LAIS_S bit (b6, STAT1,...) will be set. A transition from ' 0 ' to ' 1 ' on the LAIS_S bit (b6, STAT1,...) or any transition (from '0' to ' 1 ' or from ' 1 ' to ' 0 ') on the LAIS_S bit (b6, STAT1,...) will set the LAIS_IS bit (b 6, INTS1,...) to ' 1 ', as selected by the AIS_IES bit (b6, INTES,...). When the LAIS_IS bit (b6, INTS1,...) is ' 1 ', an interrupt will be reported by $\overline{\mathrm{INT}}$ if not masked by the LAIS_IM bit (b6, INTM1,...).

When AIS is detected in the transmit path, the SAIS_S bit (b7, STAT1,...) will be set. A transition from ' 0 ' to ' 1 ' on the SAIS_S bit (b7, STAT1,...) or any transition (from ' 0 ' to ' 1 ' or from ' 1 ' to ' 0 ') on the SAIS_S bit (b7, STAT1,...) will set the SAIS_IS bit (b7, INTS1,...) to ' 1 ', as selected by the AIS_IES bit (b6, INTES,...). When the SAIS_IS bit (b7, INTS1,...) is ' 1 ', an interrupt will be reported by INT if not masked by the SAIS_IM bit (b7, INTM1,...).

AIS may be counted by an internal Error Counter or may be indicated by the RMFn or TMFn pin. Refer to Section 3.4.6 Error Counter and Section 3.4.7 Receive /Transmit Multiplex Function (RMF / TMF) Indication respectively.

3.4.4.2 (Alarm Indication Signal) AIS Generation

AIS can be generated automatically in the receive path and the transmit path.

In the receive path, when the ASAIS_LLOS bit (b2, AISG,...) is set, AIS will be generated automatically once LLOS is detected. When the ASAIS_SLOS bit (b3, AISG,...) is set, AIS will be generated automatically once SLOS is detected. When AIS is generated, RDn or RDPn/ RDNn output all ' 1 's. RCLKn (if available) outputs XCLK.

In the transmit path, when the ALAIS_LLOS bit (b0, AISG,...) is set, AIS will be generated automatically once LLOS is detected. When the ALAIS_SLOS bit (b1, AISG,...) is set, AIS will be generated automatically once SLOS is detected. When AIS is generated, TTIPn/TRINGn output all ' 1 's.

AIS generation uses XCLK 1 as reference clock.
If pattern (including PRBS, ARB and IB) is generated in the same direction, the priority of pattern generation is higher. The generated pattern will overwrite automatic AIS. Refer to Section 3.4.5.1 Pattern Generation for the output data and clock.

1. XCLK is derived from MCLK. It is 2.048 MHz .

3.4.5 PRBS, QRSS, ARB AND IB PATTERN GENERATION AND DETECTION

The pattern includes: Pseudo Random Bit Sequence (PRBS), QuasiRandom Signal Source (QRSS), Arbitrary Pattern (ARB) and Inband Loopback (IB).

3.4.5.1 Pattern Generation

The pattern can be generated in the receive path or the transmit path, as selected by the PG_POS bit (b3, PG,...).

The pattern to be generated is selected by the PG_EN[1:0] bits (b5~4, PG,...).

If PRBS is selected, three kinds of PRBS patterns with maximum zero restriction according to ITU-T 0.151 and AT\&T TR62411 are provided. They are: (2^20-1) QRSS per 0.150-4.5, (2^15-1) PRBS per 0.152 and $\left(2^{\wedge 11-1) ~ P R B S ~ p e r ~} 0.150\right.$, as selected by the PRBG_SEL[1:0] bits (b1~0, PG,...).

If ARB is selected, the content is programmed in the ARB[23:0] bits (b7~0, ARBH~ARBM~ARBL,...).

If IB is selected, the IB generation is in compliance with ANSI T1.403. The length of the IB code can be 3 to 8 bits, as determined by the IBGL[1:0] bits (b5~4, IBL,...). The content is programmed in the IBG[7:0] bits (b7~0, IBG,...).

The selected pattern is transmitted repeatedly until the PG_EN[1:0] bits ($\mathrm{b} 5 \sim 4, \mathrm{PG}, \ldots$) is set to ' 00 '.

When pattern is generated in the receive path, the reference clock is XCLK or the recovered clock from the received signal, as selected by the PG_CK bit (b6, PG,...). The selected reference clock is also output on RCLKn (if available).

When pattern is generated in the transmit path, the reference clock is XCLK ${ }^{1}$ or the transmit clock, as selected by the PG_CK bit ($\mathrm{b} 6, \mathrm{PG}, \ldots$). The transmit clock refers to the clock input on TCLKn (in Transmit Single Rail NRZ Format mode and in Transmit Dual Rail NRZ Format mode) or the clock recovered from the data input on TDPn and TDNn (in Transmit Dual Rail RZ Format mode).

In summary, do the followings step by step to generate pattern:

- Select the generation direction by the PG_POS bit (b3, PG,...);
- Select the reference clock by the PG_CK bit (b6, PG,...);
- Select the PRBS pattern by the PRBG_SEL[1:0] bits (b1~0, PG,...) when PRBS is to be generated; program the ARB pattern in the ARB[23:0] bits (b7~0, ARBH~ARBM~ARBL,...) when ARB is to be generated; or set the length and the content of the IB code in the IBGL[1:0] bits (b5~4, IBL,...) and in the IBG[7:0] bits (b7~0, IBG,...) respectively when IB is to be generated;
- Set the PG_EN[1:0] bits (b5~4, PG,...) to generate the pattern.

[^2]If PRBS or ARB is selected to be generated, the following two steps can be optionally implemented after the pattern is generated:

- Insert a single bit error by writing '1' to the ERR_INS bit (b5, ERR,...);
- Invert the generated pattern by setting the PAG_INV bit (b2, PG,...).
If pattern is generated in the receive path, the generated pattern should be encoded by using AMI HDB3 in Receive Dual Rail NRZ Format mode, Receive Dual Rail RZ Format mode and Receive Dual Rail Sliced mode. The encoding rule is selected by the R_CODE bit (b2, RCF1,...).

If pattern is generated in the transmit path, the generated pattern should be encoded by using AMI HDB3. The encoding rule is selected by the T_CODE bit (b2, TCF1,...).

The pattern generation is shown in Figure-24 and Figure-25.

Figure-24 Pattern Generation (1)

Figure-25 Pattern Generation (2)
The priority of pattern generation is higher than that of AIS generation. If they are generated in the same direction, the generated pattern will overwrite the generated AIS.

3.4.5.2 Pattern Detection

Data received from the line side or data input from the transmit system side may be extracted for pattern detection. The direction of data extraction is determined by the PD_POS bit (b3, PD,...). One of PRBS or ARB pattern is selected for detection and IB detection is always active.

If data is extracted from the receive path, before pattern detection the data should be decoded by using AMI / HDB3. The decoding rule is selected by the R_CODE bit (b2, RCF1, ...).

If data is extracted from the transmit path, before pattern detection the data should be decoded by using AMI HDB3 in Transmit Dual Rail NRZ Format mode and Transmit Dual Rail RZ Format mode. The decoding rule is selected by the T_CODE bit (b2, TCF1,...).

Pseudo Random Bit Sequence (PRBS) /Arbitrary Pattern (ARB) Detection

The extracted data can be optionally inverted by the PAD_INV bit (b2, PD,...) before PRBS/ARB detection.

The extracted data is used to compare with the desired pattern. The desired pattern is re-generated from the extracted data if the desired pattern is $\left(2^{\wedge} 20-1\right)$ QRSS per $0.150-4.5,\left(2^{\wedge} 15-1\right)$ PRBS per 0.152 or ($2^{\wedge 11-1) ~ P R B S ~ p e r ~} 0.150$; or the desired pattern is programmed in the ARB[23:0] bits (b7~0, ARBH~ARBM~ARBL,...) if the desired pattern is ARB. The desired pattern is selected by the PAD_SEL[1:0] bits (b1~0, PD,...).

In summary, do the followings step by step to detect PRBS/ARB:

- Select the detection direction by the PD_POS bit (b3, PD,...);
- Set the ARB[23:0] bits (b7~0, ARBH~ARBM~ARBL,...) if the ARB pattern is desired - this step is omitted if the PRBS pattern is desired;
- Select the desired PRBS/ARB pattern by the PAD_SEL[1:0] bits (b1~0, PD,...).

The priority of decoding, data inversion, pattern re-generation, bit programming and pattern comparison is shown in Figure-26.

Figure-26 PRBS / ARB Detection
During comparison, if the extracted data coincides with the re-generated PRBS pattern or the programmed ARB pattern for more than 64-bit hopping window, the pattern is synchronized and the PA_S bit (b5, STAT1,...) will be set.

In synchronization state, if more than 6 PRBS/ARB errors are detected in a 64-bit hopping window, the pattern is out of synchronization and the PA_S bit (b5, STAT1,...) will be cleared.

In synchronization state, each mismatched bit will generate a PRBS/ ARB error. When a PRBS/ARB error is detected during the synchronization, the ERR_IS bit (b1, INTS2,...) will be set and an interrupt will be reported by $\overline{\mathrm{INT}}$ if not masked by the ERR_IM bit (b1, INTM2,...). The PRBS/ARB error may be counted by an internal Error Counter. Refer to Section 3.4.6 Error Counter.

A transition from '0' to ' 1 ' on the PA_S bit (b5, STAT1,...) or any transition (from ' 0 ' to ' 1 ' or from ' 1 ' to ' 0 ') on the PA_S bit (b5, STAT1,...) will set the PA_IS bit (b5, INTS1,...) to ' 1 ', as selected by the PA_IES bit (b5, INTES,...). When the PA_IS bit (b5, INTS1,...) is ' 1 ', an interrupt will be reported by $\overline{\mathrm{INT}}$ if not masked by the PA_IM bit (b5, INTM1,...).

The PRBS/ARB synchronization status may be indicated by the RMFn or TMFn pin. Refer to Section 3.4.7 Receive /Transmit Multiplex Function (RMF / TMF) Indication.

Inband Loopback (IB) Detection

The IB detection is in compliance with ANSI T1.403.
The extracted data is used to compare with the target IB code. The length of the target activate/deactivate IB code can be 3 to 8 bits, as determined by the IBAL[1:0]/IBDL[1:0] bits (b3~2/b1~0, IBL,...). The content of the target activate/deactivate IB code is programmed in the IBA[7:0]/IBD[7:0] bits (b7~0, IBDA/IBDD,...). Refer to Figure-27.

Figure-27 IB Detection
During comparison, if the extracted data coincides with the target activate/deactivate IB code with no more than 10^{-2} bit error rate for a certain period, the IB code is detected. The period depends on the setting of the AUTOLP bit (b3, LOOP,...).

If the AUTOLP bit (b 3, LOOP,...) is ' 0 ', Automatic Digital/Remote Loopback is disabled. In this case, when the activate IB code is detected for more than 40 ms , the IBA_S bit (b1, STAT1,...) will be set to indicate the activate IB code detection; when the deactivate IB code is detected for more than 30 ms , the IBD_S bit (b0, STAT1,...) will be set to indicate the deactivate IB code detection.

If the AUTOLP bit (b3, LOOP,...) is ' 1 ', Automatic Digital/Remote Loopback is enabled. In this case, when the activate IB code is detected for more than 5.1 seconds, the IBA_S bit (b1, STAT1,...) will be set to indicate the activate IB code detection. The detection of the activate IB code in the receive path will activate Remote Loopback or the detection of the activate IB code in the transmit path will activate Digital Loopback (refer to Section 3.4.8.2 Remote Loopback \& Section 3.4.8.3 Digital Loopback). When the deactivate IB code is detected for more than 5.1 seconds, the IBD_S bit (b0, STAT1,...) will be set to indicate the deactivate IB code detection. The detection of the deactivate IB code in the receive path will deactivate Remote Loopback or the detection of the deactivate IB code in the transmit path will deactivate Digital Loopback (refer to Section 3.4.8.2 Remote Loopback \& Section 3.4.8.3 Digital Loopback).

A transition from ' 0 ' to ' 1 ' on the IBA_S/IBD_S bit (b1/b0, STAT1,...) or any transition (from '0' to ' 1 ' or from ' 1 ' to ' 0 ') on the IBA_S/IBD_S bit (b1/b0, STAT1,...) will set the IBA_IS/IBD_IS bit (b1/b0, INTS1,...) to ' 1 '
respectively, as selected by the IB_IES bit ($\mathrm{b} 0, \mathrm{INTES}, \ldots$.). When the IBA_IS/IBD_IS bit ($\mathrm{b} 1 / \mathrm{b} 0$, INTS1,...) is ' 1 ', an interrupt will be reported on $\overline{\text { INT }}$ if not masked by the IBA_IM/IBD_IM bit (b1/b0, INTM1,...).

3.4.6 ERROR COUNTER

An internal 16-bit Error Counter is used to count one of the following errors:

- LBPV: BPV/CV detected in the receive path (line side);
- LEXZ: EXZ detected in the receive path (line side);
- LBPV + LEXZ: BPV/CV and EXZ detected in the receive path (line side);
- SBPV: BPV/CV detected in the transmit path (system side) (disabled in Transmit Single Rail NRZ Format mode);
- SEXZ: EXZ detected in the transmit path (system side);
- SBPV + SEXZ: BPV/CV and EXZ detected in the transmit path (system side) (disabled in Transmit Single Rail NRZ Format mode);
- PRBS/ARB error.

The CNT_SEL[2:0] bits (b4~2, ERR,...) select one of the above errors to be counted.

The Error Counter is buffered. It is updated automatically or manually, as determined by the CNT_MD bit (b1, ERR,...).

The Error Counter is accessed by reading the ERRCH and ERRCL registers.

3.4.6.1 Automatic Error Counter Updating

When the CNT_MD bit ($\mathrm{b} 1, \mathrm{ERR}, \ldots$) is ' 1 ', the Error Counter is updated every one second automatically.

The one-second timer uses MCLK as clock reference. The expiration of each one second will set the TMOV_IS bit (b0, INTTM) and induce an interrupt reported by $\overline{\mathrm{NT}}$ if not masked by the TMOV_IM bit (b0, GCF).

When each one second expires, the Error Counter transfers the accumulated error numbers to the ERRCH and ERRCL registers and the Error Counter will be cleared to start a new round counting. The ERRCH and ERRCL registers should be read in the next second, otherwise they will be overwritten.

When the ERRCH and ERRCL registers are all ' 1 's and there is still error to be accumulated, the registers will be overflowed. The overflow is indicated by the CNTOV_IS bit (b0, INTS2,...) and will induce an interrupt reported by $\overline{\mathrm{INT}}$ if not masked by the CNTOV_IM (b0, INTM2,...).

The process of automatic Error Counter updating is illustrated in Figure-28.

Figure-28 Automatic Error Counter Updating

3.4.6.2 Manual Error Counter Updating

When the CNT_MD bit (b1, ERR,...) is ' 0 ', the Error Counter is updated manually.

When there is a transition from ' 0 ' to ' 1 ' on the CNT_STOP bit (b0, ERR,...), the Error Counter transfers the accumulated error numbers to the ERRCH and ERRCL registers and the Error Counter will be cleared to start a new round counting. The ERRCH and ERRCL registers should be read in the next round of error counting, otherwise they will be overwritten.

When the ERRCH and ERRCL registers are all ' 1 's and there is still error to be accumulated, the registers will be overflowed. The overflow is indicated by the CNTOV_IS bit (b0, INTS2,...) and will induce an interrupt reported by INT if not masked by the CNTOV_IM (b0, INTM2,...).

The process of manual Error Counter updating is illustrated in Figure-29.

Figure-29 Manual Error Counter Updating

3.4.7 RECEIVE /TRANSMIT MULTIPLEX FUNCTION (RMF / TMF) INDICATION

3.4.7.1 RMFn Indication

In Receive Single Rail NRZ Format mode, the RDNn/RMFn pin is used as RMFn. In Receive Dual Rail Sliced mode, the RCLKn/RMFn pin is used as RMFn. Refer to Table-2 Multiplex Pin Used in Receive System Interface for details.

RMFn can indicate the status of PRBS/ARB, LAIS, LEXZ, LBPV, LEXZ + LBPV, LLOS, output recovered clock (RCLK) or XOR output of positive and negative sliced data, as selected by the RMF_DEF[2:0] bits (b7~5, RCF1,...). Refer to Table-13 for details.

Table-13 RMFn Indication

RMF_DEF[2:0]	Indication On RMF	
000	PRBS/ARB	RMFn is high if PRBS/ARB is detected in synchronization in the receive path. During the synchronization, RMFn goes low for a E1 clock cycle if a PRBS/ARB error is detected. RMFn is low if PRBS/ARB is out of synchronization. Refer to Section 3.4.5 PRBS, QRSS, ARB and IB Pattern Generation and Detection.
001	Line Alarm Indication Signal (LAIS)	RMFn is high if AIS is detected in the receive path and low if it is cleared. This indication corresponds to the LAIS_S bit (b6, STAT1,...). Refer to Section 3.4.4 Alarm Indication Signal (AIS) Detection and Generation.
010	XOR result of positive and negative sliced data	RMFn outputs XOR data of positive and negative sliced data.
011	recovered clock (RCLK)	RMFn outputs the recovered clock as RCLKn. All the description about RCLKn is applicable for RMFn.
100	Line Excessive Zeroes (LEXZ)	RMFn goes high for a E1 clock cycle if an EXZ is detected in the receive path, otherwise it is low. Refer to Section 3.4.2 Excessive Zeroes (EXZ) Detection.
110	Line Bipolar Violation (LBPV)	RMFn goes high for a E1 clock cycle if a BPV/CV is detected in the receive path, otherwise it is low. Refer to Section 3.4.1 Bipolar Violation (BPV) / Code Violation (CV) Detection and BPV Insertion.
111	LEXZ + LBPV	RMFn goes high for a E1 clock cycle if an EXZ or a BPV/CV is detected in the receive path, otherwise it is low. (LLOS)

3.4.7.2 TMFn Indication

In Transmit Single Rail NRZ Format mode and Transmit Dual Rail RZ Format mode, the TDNn/TMFn pin is used as TMFn. Refer to Table-3 Multiplex Pin Used in Transmit System Interface for details.

TMFn can indicate the status of PRBS/ARB, SAIS, TOC, TLOS, SEXZ, SBPV, SEXZ + SBPV or SLOS, as selected by the TMF_DEF[2:0] bits (b7~5, TCF1,...). However, the indication of SBPV, SEXZ + SBPV and SLOS is disabled automatically in Transmit Single Rail NRZ Format mode. Refer to Table-14 for details.

Table-14 TMFn Indication

TMF_DEF[2:0]	Indication On TMF			
000	PRBS/ARB	TMFn is high if PRBS/ARB is detected in synchronization in the transmit path. During the synchronization, TMFn goes low for a E1 clock cycle if a PRBS/ARB error is detected. TMFn is low if PRBS/ARB is out of synchronization.		
001	System Alarm Indication Signal (SAIS)	TMFn is high if AIS is detected in the transmit path and low if it is cleared. This indication corresponds to the SAIS_S bit (b7, STAT1,...). Refer to Section 3.4.4 Alarm Indication Signal (AIS) Detection and Generation.		
010	Transmit Over Current (TOC)	TMFn is high if transmit over current is detected and low if it is cleared. This indication corresponds to the TOC_S bit (b4, STAT0,...). Refer to Section 3.2.5.1 Transmit Over Current Protection.		
011	Transmit Loss of Signal (TLOS)	TMFn is high if LOS is detected in the transmit line side and low if it is cleared. This indication corresponds to the TLOS_S bit (b2, STAT0,...). Refer to Section 3.4.3.3 Transmit LOS (TLOS).		
100	System Excessive Zeroes (SEXZ)	TMFn goes high for a E1 clock cycle if an EXZ is detected in the transmit path, otherwise it is low. Refer to Section 3.4.2 Excessive Zeroes (EXZ) Detection		
110	System Bipolar Violation (SBPV) *	TMFn goes high for a E1 clock cycle if a BPV/CV is detected in the transmit path, otherwise it is low. Refer to Section 3.4.1 Bipolar Violation (BPV) / Code Violation (CV) Detection and BPV Insertion.		
System Excessive Zeroes				
(SEXZ) + System Bipolar				
Violation (SBPV) *			\quad	TMFn goes high for a E1 clock cycle if an EXZ or a BPV/CV is detected in the transmit path, otherwise it is low.
:---				

3.4.8 LOOPBACK

There are four kinds of loopback:

- Analog Loopback
- Remote Loopback
- Digital Loopback
- Dual Loopback

Refer to Figure-1 for loopback location.

3.4.8.1 Analog Loopback

Analog Loopback is enabled by the ALP bit (b0, LOOP,...). The data stream to be transmitted on the TTIPn/TRINGn pins is internally looped to the RTIPn/RRINGn pins.

In Analog Loopback mode, the data stream to be transmitted is still output to the line side, while the data stream received from the line side is covered by the Analog Loopback data.

Anytime when Analog Loopback is set, the other loopbacks (i.e., Digital Loopback and Remote Loopback) are disabled.

In Analog Loopback, the priority of the diagnostic facilities in the receive path is: pattern generation > looped data. AIS generation is disabled in both the receive path and the transmit path. Refer to Figure30.

Figure-30 Priority Of Diagnostic Facilities During Analog Loopback

3.4.8.2 Remote Loopback

Remote Loopback can be configured manually or automatically. Either manual Remote Loopback configuration or automatic Remote Loopback configuration will enable Remote Loopback.

Manual Remote Loopback is enabled by the RLP bit (b1, LOOP,...).
Automatic Remote Loopback is enabled when the pattern detection is assigned in the receive path (i.e., the PD_POS bit (b3, PD,...) is ' 0 ') and the AUTOLP bit (b3, LOOP,...) is ' 1 '. The corresponding channel will enter Remote Loopback when the activate IB code is detected in the receive path for more than 5.1 sec .; and will return from Remote Loopback when the deactivate IB code is detected in the receive path for more than 5.1 sec. Refer to section Inband Loopback (IB) Detection on page 49 for details. When automatic Remote Loopback is active, setting the AUTOLP bit (b3, LOOP,...) back to ' 0 ' will also stop automatic

Remote Loopback. The setting of the PD_POS bit (b3, PD,...) should not be changed during automatic Remote Loopback. The AUTOLP_S bit (b7, STAT0,...) indicates the automatic Remote Loopback status.

In Remote Loopback mode, the data stream output from the RJA (if enabled) is internally looped to the Waveform Shaper. The data stream received from the line side is still output to the system side, while the data stream input from the system side is covered by the Remote Loopback data and the status on TCLKn does not affect the Remote Loopback. However, the BPV/CV, EXZ, SLOS, AIS and pattern detection in the transmit path still monitors the data stream input from the system side.

In Remote Loopback mode, the priority of the diagnostic facilities in the receive path is: pattern generation > AIS generation; the priority of the diagnostic facilities in the transmit path is: pattern generation > looped data. AIS generation is disabled in the transmit path. Refer to Figure-31.

Figure-31 Priority Of Diagnostic Facilities During Manual Remote Loopback

3.4.8.3 Digital Loopback

The Digital Loopback can be configured manually or automatically. Either manual Digital Loopback configuration or automatic Digital Loopback configuration will enable Digital Loopback.

Manual Digital Loopback is enabled by the DLP bit (b2, LOOP,...).
Automatic Digital Loopback is enabled when the pattern detection is assigned in the transmit path (i.e., the PD_POS bit (b3, PD,...) is ' 1 ') and the AUTOLP bit ($\mathrm{b} 3, \mathrm{LOOP}, \ldots$) is ' 1 '. The corresponding channel will enter Digital Loopback when the activate IB code is detected in the transmit path for more than 5.1 sec .; and will return from Digital Loopback when the deactivate IB code is detected in the transmit path for more than 5.1 sec. Refer to section Inband Loopback (IB) Detection on page 49 for details. When automatic Digital Loopback is active, setting the AUTOLP bit (b3, LOOP,...) back to ' 0 ' will also stop automatic Digital

Loopback. The setting of the PD_POS bit (b3, PD,...) should not be changed during automatic Digital Loopback. The AUTOLP_S bit (b7, STATO,...) indicates the automatic Digital Loopback status.

In Digital Loopback mode, the data stream output from the TJA (if enabled) is internally looped to the Decoder (if enabled). The data stream to be transmitted is still output to the line side, while the data stream received from the line side is covered by the Digital Loopback data. However, LLOS and AIS detection in the receive path still monitors the data stream received from the line side.

In Digital Loopback mode, the priority of the diagnostic facilities in the receive path is: pattern generation > looped data; the priority of the diagnostic facilities in the transmit path is: pattern generation > looped data > AIS generation. AIS generation is disabled in the receive path.

Figure-32 Priority Of Diagnostic Facilities During Digital Loopback

3.4.8.4 Dual Loopback

Dual Loopback refers to the simultaneous implementation of Remote Loopback and Digital Loopback. Two kinds of combinations are supported:

- Manual Remote Loopback + Manual Digital Loopback;
- Manual Remote Loopback + Automatic Digital Loopback.

Note that when Digital Loopback is active, automatic Remote Loopback is unavailable as the pattern detection is within the digital loop.

In Dual Loopback mode, the data stream received from the line side outputs from the RJA (if enabled), loops to the Waveform Shaper internally and does not output to the system side. The data stream to be transmitted from the system side outputs from the TJA (if enabled), loops to the Decoder (if enabled) internally and does not output to the line side. LLOS, AIS detection in the receive path monitors the data stream received from the line side. The BPV/CV, EXZ and pattern detection in the receive path monitors the digital looped data. The BPV/CV, EXZ, SLOS, AIS and pattern detection in the transmit path monitors the data stream input from the system side.

Manual Remote Loopback + Manual Digital Loopback

This combination of Dual Loopback is enabled when both manual Remote Loopback and manual Digital Loopback are enabled. Manual Remote Loopback is enabled by the RLP bit (b1, LOOP,...). Manual Digital Loopback is enabled by the DLP bit (b2, LOOP,...).

In this condition, the priority of the diagnostic facilities in the receive path is: pattern generation > digital looped data; the priority of the diagnostic facilities in the transmit path is: remote looped data > pattern generation. AIS generation is disabled in both the receive path and the transmit path.

Refer to Figure-33.

Manual Remote Loopback + Automatic Digital Loopback

This combination of Dual Loopback is enabled when both manual Remote Loopback and automatic Digital Loopback are enabled. Manual Remote Loopback is enabled by the RLP bit (b1, LOOP,...). Automatic Digital Loopback is enabled when the pattern detection is assigned in the transmit path (i.e., the PD_POS bit (b3, PD,...) is ' 1 ') and the AUTOLP bit (b3, LOOP,...) is ' 1 '. The corresponding channel will enter Digital Loopback when the activate IB code is detected in the transmit path for more than 5.1 sec .; and will return from Digital Loopback when the deactivate IB code is detected in the transmit path for more than 5.1 sec . Refer to section Inband Loopback (IB) Detection on page 49 for details. When automatic Digital Loopback is active, setting the AUTOLP bit (b3, LOOP,...) back to ' 0 ' will also stop automatic Digital Loopback. The setting of the PD_POS bit (b3, PD,...) should not be changed during automatic Digital Loopback. The AUTOLP_S bit (b7, STAT0,...) indicates the automatic Digital Loopback status.

In this condition, the priority of the diagnostic facilities in the receive path is: pattern generation > digital looped data. AIS generation in both the receive path and the transmit path, the pattern generation in the transmit path are disabled.

Refer to Figure-34.

Figure-33 Priority Of Diagnostic Facilities During Manual Remote Loopback + Manual Digital Loopback

Figure-34 Priority Of Diagnostic Facilities During Manual Remote Loopback + Automatic Digital Loopback

3.4.9 CHANNEL 0 MONITORING

Channel 0 is a special channel. It can be used in normal operation as the other 21 channels, or it can be used as a monitoring channel. Channel 0 supports G. 772 Monitoring and Jitter Measurement.

3.4.9.1 G. 772 Monitoring

Selected by the MON[5:0] bits (b5~0, MON), any receiver or transmitter of the other 21 channels can be monitored by channel 0 (as shown in Figure-35).

When the G. 772 Monitoring is implemented (the MON[5:0] bits (b5~0, MON) is not ' 0 '), the registers of the receiver of channel 0 should be the same as those of the selected receiver /transmitter except the line interface related registers.

Once the G. 772 Monitoring is implemented, the receiver of channel 0 switches to External Impedance Matching mode automatically, and the setting in the R_TERM[2:0] bits (b2~0, RCFO,...) of channel 0 is ignored.

During the G .772 Monitoring, channel 0 processes as normal after data is received from the selected path and the operation of the monitored path is not effected.

The signal which is monitored goes through the Clock \& Data Recovery of monitoring channel (channel 0). The monitored clock can output on RCLKO. The monitored data can be observed digitally on the output pin of RCLK0, RDO/RDPO and RDNO. LOS detector is still in use in channel 0 for the monitored signal.

In monitoring mode, channel 0 can be configured to Remote Loopback. The signal which is being monitored will output on TTIPO and TRINGO. The output signal can then be connected to a standard test equipment for non-intrusive monitoring.

Figure-35 G.772 Monitoring

3.4.9.2 Jitter Measurement (JM)

The RJA of channel 0 consists of a Jitter Measurement (JM) module. When the RJA is enabled in channel 0 , the JM is used to measure the positive and negative peak value of the demodulated jitter signal of the received data stream. The bandwidth of the measured jitter is selected by the JM_BW bit (b0, JM).

The greatest positive peak value monitored in a certain period is indicated by the JIT_PH and JIT_PL registers, while the greatest negative peak value monitored in the same period is indicated by the JIT_NH and JIT_NL registers. The relationship between the greatest positive /negative peak value and the indication in the corresponding registers is:

Positive Peak = [JIT_PH, JIT_PL] / 16 (Ulpp);
Negative Peak = [JIT_NH, JIT_NL] / 16 (Ulpp).
The period is determined by the JM_MD bit (b1, JM).
When the $\mathrm{JM} _M D$ bit ($\mathrm{b} 1, \mathrm{JM}$) is ' 1 ', the period is one second automatically. The one-second timer uses MCLK as clock reference. The expiration of each one second will set the TMOV_IS bit (b0, INTTM) and induce an interrupt reported by INT if not masked by the TMOV_IM bit (b0, GCF). The TMOV_IS bit (b0, INTTM) is cleared after a ' 1 ' is written to this bit. When each one second expires, internal buffers transfer the greatest positive/negative peak value accumulated in this one second to the JIT_PH and JIT_PL / JIT_NH and JIT_NL registers respectively and the internal buffers will be cleared to start a new round measurement. The registers should be read in the next second, otherwise they will be overwritten. Refer to Figure-36 for the process.

When the JM_MD bit ($\mathrm{b} 1, \mathrm{JM}$) is ' 0 ', the period is controlled by the JM_STOP bit (b2, JM) manually. When there is a transition from ' 0 ' to ' 1 ' on the JM_STOP bit (b2, JM), the internal buffers transfer the greatest positive/negative peak value accumulated in this period to the JIT_PH and JIT_PL / JIT_NH and JIT_NL registers respectively and the internal buffers will be cleared to start a new round measurement. The registers should be read in the next round of jitter measurement, otherwise they will be overwritten. Refer to Figure- 37 for the process.

Figure-36 Automatic JM Updating

Figure-37 Manual JM Updating

3.5 CLOCK INPUTS AND OUTPUTS

The IDT82P2521 provides two kinds of clock outputs:

- Free running clock outputs on CLKE1
- Receiver clock outputs on REFA and REFB
- selected from any of the 22 recovered line clocks
- driven by MCLK (free running)
- driven by external CLKA/CLKB input

A Frequency Synthesizer is also available to scale REFA to 8 different frequencies.

The following Clock Inputs are provided:

- MCLK as programmable reference timing for the IDT82P2521.
- CLKA and CLKB as optional input clock source for REFA and REFB respectively

3.5.1 FREE RUNNING CLOCK OUTPUTS ON CLKE1

An internal clock generator uses MCLK as reference to generate all the clocks required by internal circuits and CLKE1 outputs. MCLK is a stable jitter-free ${ }^{1}$ clock input with ± 50 ppm accuracy. The clock
frequency of MCLK is $2.048 \times \mathrm{N} \mathrm{MHz}(1 \leq \mathrm{N} \leq 8, \mathrm{~N}$ is an integer number), as determined by MCKSEL[3:0]. Refer to Chapter 2 Pin Description for details.

The outputs on CLKE1 is free running (locking to MCLK). The output of CLKE1 is determined by the CLKE1_EN bit (b3, CLKG) and the CLKE1 bit (b2, CLKG). Refer to Table-15.
Table-15 Clock Output on CLKE1

Control Bits		Clock Output On CLKE1
CLKE1_EN	CLKE1	
0	(don't-care)	High-Z
1	0	8 KHz
	1	2.048 KHz

[^3]
3.5.2 CLOCK OUTPUTS ON REFA/REFB

The outputs on REFA and REFB can be enabled or disabled, as determined by the REFA_EN bit (b6, REFA) and the REFB_EN bit (b6, REFB) respectively.

When the output is disabled, REFA/REFB is in High-Z state.
When the output is enabled, the output of REFA and REFB varies in different operations. Refer to below for detailed description. Refer to Figure-38 and Figure-39 for an overview of REFA and REFB output options in normal operation.

3.5.2.1 REFA/REFB in Clock Recovery Mode

In this mode (default), the clock of REFA and REFB is derived from the recovered clock of one of the 22 channels as selected by the REFA[4:0] bits (b4~0,REFA) and REFB[4:0] bits (b4~0,REFB). Determined by the FS_BYPAS bit (b4, REFCF) a Frequency Synthesizer can be enabled for REFA (refer to Section 3.5.2.2 Frequency Synthesizer for REFA Clock Output). If the Frequency Synthesizer is disabled, REFA will output the recovered 2.048 MHz clock depending on the line mode of the selected channel. REFB output the recovered 2.048 MHz clock depending on the line mode of the selected channel.

The recovered line clock can be output to REFA and REFB before or after it passed the receive Jitter Attenuator (RJA) selected by the JA_BYPAS bit (b6, REFCF).

3.5.2.2 Frequency Synthesizer for REFA Clock Output

For REFA a Frequency Synthesizer can be enabled or bypassed (default) as selected by FS_BYPASS bit (b4, REFCF). The output frequency is selected by the FREQ[2:0] bits (b2~0, REFCF). Frequencies supported are $8 \mathrm{KHz}, 64 \mathrm{KHz}, 2.048 \mathrm{MHz}, 4.096 \mathrm{MHz}, 8.192 \mathrm{MHz}$, 19.44 MHz or 32.768 MHz .

3.5.2.3 Free Run Mode for REFA Clock Output

REFA can also be selected to provide a free running clock locked to MCLK. To enable this mode the Frequency Synthesizer has to be enabled by setting the FS_BYPAS bit (b4, REFCF) to ' 0 ', and the FREE bit (b3, REFCF) has to be set to ' 1 '. REFA will provide a frequency selected by the FREQ[2:0] ${ }^{1}$ bits (b2~0, REFCF) which is a free running clock locked to MCLK.

3.5.2.4 REFA/REFB Driven by External CLKA/CLKB Input

In this mode, the clock of REFA and REFB is driven from an external clock input of CLKA and CLKB respectively. CLKA and CLKB are selected as an input source by setting REFA[4:0] bits (b4~0, REFA) and REFB[4:0] bits (b4~0, REFB) to any value from '11101' to '11111'.

1. ' 000 ' and ' 011 ' are reserved for FREQ[2:0] in this mode.

CLKA and CLKB are an external E1 (2.048 MHz) Clock Input. The CKA_E1 bit (b5, REFA) and CKB_E1 bit (b5, REFB) should be set to match the input clock frequency.

Determined by the FS_BYPASS bit (b4, REFCF), a Frequency Synthesizer can be enabled for REFA (refer to Section 3.5.2.2 Frequency Synthesizer for REFA Clock Output). If the Frequency Synthesizer is disabled, REFA and REFB will output the 2.048 MHz clock.

3.5.2.5 REFA and REFB in Loss of Signal (LOS) or Loss of Clock Condition

If the recovered clock of one of the 22 channels is selected as the clock source for REFA and REFB (refer to Section 3.5.2.1 REFA/REFB in Clock Recovery Mode) and Line LOS (LLOS) is detected in the corresponding channel, the state of output on REFA and REFB can be selected by the REFH bit (b5, REFCF). If REFH is set to ' 1 ', REFA and REFB will output a high level in case of LLOS. If REFH is set to ' 0 ' and LLOS is detected, REFA and REFB clock outputs will be locked to MCLK while the selected clock frequency will remain unchanged.

LLOS condition is set when LLOS_S bit (b0, STAT0) is '1'. Refer to Section 3.4.3.1 Line LOS (LLOS).

Refer to Figure-40 for a detailed overview of REFA output in case of LLOS. REFB output option is only determined by the REFH bit (b5, REFCF) to be locked to MCLK or set to high level output.

If CLKA is selected as the clock source for REFA (refer to Section 3.5.2.4 REFA/REFB Driven by External CLKA/CLKB Input) and there is no clock input on CLKA for more than 8 E1 clock cycles if E1 mode is selected (i.e. CKA_E1 bit (b5, REFA) is ' 1 '), the state of the REFA output is determined by the FS_BYPAS bit (b4, REFCF) and the FREE bit (b3, REFCF). In case the Frequency Synthesizer is disabled (i.e. FS_BYPAS bit (b4, REFCF) is '0'). REFA will output a high level. If the Frequency Synthesizer is enabled and the FREE bit (b3, REFCF) is set to ' 0 ', REFA will output a high level. If the Frequency Synthesizer is enabled and the FREE bit (b3, REFCF) is set to ' 1 ', REFA will be locked to MCLK.

Refer to Figure-41 for a detailed overview of REFA output in case of loss of CLKA.

If CLKB is selected as the clock source for REFB (refer to section Section 3.5.2.4 REFA/REFB Driven by External CLKA/CLKB Input) and there is no clock input on CLKB for more than 8 E1 clock cycles if E1 mode is selected (i.e. CKB_E1 bit (b5, REFB) is ' 1 '), the output on REFB is determined by the REFH bit ($b 5$, REFCF). If REFH is set to ' 1 ', REFB will output a high level. If REFH is set to ' 0 ', the REFB clock output will be locked to MCLK.

Note *: '000' and '011' are reserved for FREQ[2:0] when REFA is free running.
Figure-38 REFA Output Options in Normal Operation

Figure-39 REFB Output Options in Normal Operation

Note *: '000' and ' 011 ' are reserved for FREQ[2:0] when REFA is free running.
Figure-40 REFA Output in LLOS Condition (When RCLKn Is Selected)

Note *: '000' and '011' are reserved for FREQ[2:0] when REFA is free running.
Figure-41 REFA Output in No CLKA Condition (When CLKA Is Selected)

3.5.3 MCLK, MASTER CLOCK INPUT

MCLK provides a stable reference timing for the IDT82P2521. MCLK should be a jitter-free ${ }^{1}$ clock with ± 50 ppm accuracy. The clock frequency of MCLK is set by pins MCKSEL[3:0] and can be $N \times 2.048$ MHz with $1 \leq \mathrm{N} \leq 8$ (N is an integer number). Refer to MCKSEL[3:0] pin description for details.

If there is a loss of MCLK (duty cycle is less than 30% for $10 \mu \mathrm{~s}$), the device will enter power down. In this case, both the receive and transmit circuits are turned off. The pins on the line interface will be in High-Z state. The pins on receive system interface will be in High-Z state or in low level, as selected by the RHZ bit (b6, RCF0,...). The input on the
transmit system interface is ignored and the output on the transmit system interface will be in High-Z state. Refer to Section 3.1.7 Receiver Power Down and Section 3.2.7 Transmitter Power Down for details.

If MCLK recovers after loss of MCLK the device will be reset automatically.

3.5.4 XCLK, INTERNAL REFERENCE CLOCK INPUT

XCLK is derived from MCLK. For the respective channel, it is 2.048 MHz . XCLK is used as selectable reference clock for

- pattern /AIS generation
- RCLKn in LLOS
- Loss of TCLKn to determine Transmit Output High-Z.

[^4]
3.6 INTERRUPT SUMMARY

There are altogether 20 kinds of interrupt sources as listed in Table16. Among them, No. 1 to No. 19 are per-channel interrupt sources, while No. 20 is a global interrupt source.

For interrupt sources from No. 1 to No.10, the occurrence of the event will cause the corresponding Status bit to be set to ' 1 '. And selected by the Interrupt Trigger Edges Select bit, either a transition from '0' to ' 1 ' or any transition from ' 0 ' to ' 1 ' or from ' 1 ' to ' 0 ' of the Status bit will cause the Interrupt Status bit to be set to ' 1 ', which indicates the occurrence of an interrupt event.

For interrupt sources from No. 11 to No.20, the occurrence of the event will cause the corresponding Interrupt Status Bit to be set to ' 1 '.

All the interrupt can be masked by the GLB_IM bit (b1, GCF) globally or by the corresponding interrupt mask bit individually. For all the interrupt sources, if not masked, the occurrence of the interrupt event will trigger an interrupt indicated by the INT pin. For per-channel interrupt sources, if not masked, the occurrence of the interrupt event will also cause the corresponding INT_CHn bit (INTCH1~4) to be set ' 1 '.

An interrupt event is cleared by writing ' 1 ' to the corresponding Interrupt Status bit. The INT_CHn bit (INTCH1~4) will not be cleared until all the interrupts in the corresponding channel are acknowledged. The INT pin will be inactive until all the interrupts are acknowledged. Refer to Figure-42 for interrupt service flow.

Table-16 Interrupt Summary

No.	Interrupt Source	Status Bit	Interrupt Trigger Edges Select Bit	Interrupt Status Bit	Interrupt Mask Bit
1	TCLKn is missing.	$\begin{gathered} \text { TCKLOS_S (b3, } \\ \text { STAT0,...) } \end{gathered}$	$\begin{gathered} \hline \text { TCKLOS_IES (b3, } \\ \text { INTES,...) } \end{gathered}$	$\begin{gathered} \hline \text { TCKLOS_IS (b3, } \\ \text { INTSO,...) } \end{gathered}$	$\begin{gathered} \text { TCKLOS_IM (b3, } \\ \text { INTM0,...) } \end{gathered}$
2	LLOS is detected.	LLOS_S (b0, STAT0,...)	LOS_IES (b1, INTES,...)	LLOS_IS (b0, INTS0,...)	LLOS_IM (b0, INTM0,...)
3	SLOS is detected.	SLOS_S (b1, STAT0,...)	LOS_IES (b1, INTES,...)	SLOS _IS (b1, INTS0,...)	SLOS_IM (b1, INTM0,...)
4	TLOS is detected.	TLOS_S (b2, STAT0,...)	TLOS_IES (b2, INTES,...)	TLOS_IS (b2, INTS0,...)	TLOS_IM (b2, INTM0,...)
5	LAIS is detected.	LAIS_S (b6, STAT1,...)	AIS_IES (b6, INTES,...)	LAIS_IS (b6, INTS1,...)	LAIS_IM (b6, INTM1,...)
6	SAIS is detected.	SAIS_S (b7, STAT1,...)	AIS_IES (b6, INTES,...)	SAIS_IS (b7, INTS1,...)	SAIS_IM (b7, INTM1,...)
7	TOC is detected.	TOC_S (b4, STAT0,...)	TOC_IES (b4, INTES,...)	TOC_IS (b4, INTS0,...)	TOC_IM (b4, INTM0,...)
8	The PRBS/ARB pattern is detected synchronized.	PA_S (b5, STAT1,...)	PA_IES (b5, INTES,...)	PA_IS (b5, INTS1,...)	PA_IM (b5, INTM1,...)
9	Activate IB code is detected.	IBA_S (b1, STAT1,...)	IB_IES (b0, INTES,...)	IBA_IS (b1, INTS1,...)	IBA_IM (b1, INTM1,...)
10	Deactivate IB code is detected.	IBD_S (b0, STAT1,...)	IB_IES (b0, INTES,...)	IBD_IS (b0, INTS1,...)	IBD_IM (b0, INTM1,...)
11	The FIFO of the RJA is overflow or underflow.	-	-	RJA_IS (b5, INTS0,...)	RJA_IM (b5, INTM0,...)
12	The FIFO of the TJA is overflow or underflow.	-	-	TJA_IS (b6, INTS0,...)	TJA_IM (b6, INTM0,...)
13	Waveform amplitude is overflow.	-	-	DAC_IS (b7, INTS0,...)	DAC_IM (b7, INTM0,...)
14	SBPV is detected.	-	-	SBPV_IS (b5, INTS2,...)	SBPV_IM (b5, INTM2,...)
15	LBPV is detected.	-	-	LBPV_IS (b4, INTS2,...)	LBPV_IM (b4, INTM2,...)
16	SEXZ is detected.	-	-	SEXZ_IS (b3, INTS2,...)	SEXZ_IM (b3, INTM2,...)
17	LEXZ is detected.	-	-	LEXZ_IS (b2, INTS2,...)	LEXZ_IM (b2, INTM2,...)
18	PRBS/ARB error is detected.	-	-	ERR_IS (b1, INTS2,...)	ERR_IM (b1, INTM2,...)
19	The ERRCH and ERRCL registers are overflowed.	-	-	CNTOV_IS (b0, INTS2,...)	CNTOV_IM (b0, INTM2,...)
20	One second time is over.	-	-	TMOV_IS (b0, INTTM)	TMOV_IM (b0, GCF)

Figure-42 Interrupt Service Process

4 MISCELLANEOUS

4.1 RESET

The reset operation resets all registers, state machines as well as I/O pins to their default value or status.

The IDT82P2521 provides 4 kinds of reset:

- Power-on reset;
- Hardware reset;
- Global software reset;
- Per-channel software reset.

The Power-on, Hardware and Global software reset operations reset all the common blocks (including clock generator/synthesizer and microprocessor interface) and channel-related parts. The Per-channel software reset operation resets the channel-related parts. Figure-43 shows a general overview of the reset options.

During reset, all the line interface pins (i.e., TTIPn/TRINGn and RTIPn/RRINGn) are in High-Z state.

Figure-43 Reset

After reset, all the items listed in Table-17 are true.

Table-17 After Reset Effect Summary

Effect On ...	Power-On Reset, Hardware Reset and Global Software Reset	Per-Channel Software Reset
TTIPn/TRINGn \& RTIPn/ RRINGn	All TTIPn/TRINGn \& RTIPn/RRINGn pins are in High-Z state.	Only TTIPn/TRINGn \& RTIPn/RRINGn in the corresponding chan- nel are in High-Z.
Line Interface Mode	Not E1 mode.	Not E1 mode.
System interface	All channels are in Dual Rail NRZ Format.	Only the corresponding channel is in Dual Rail NRZ Format.
General I/O pins (i.e., D[7:0] and GPIO[1:0])	As input pins.	(No effect)
INT	Open drain output.	(No effect)
CLKE1, REFA, REFB	Output enable.	(No effect)
LLOS, LLOS0	Output enable.	(No effect)
TDO, SDO/ACK/RDY	High-Z.	(No effect)
state machines	All state machines are reset.	The state machines in the corresponding channel are reset.
Interrupt sources	All interrupt sources are masked.	The registers in the corresponding channel are reset to their default value except that there is no effect on the E1 bit.
Registers	All registers are reset to their default value.	

4.1.1 POWER-ON RESET

Power-on reset is initiated during power-up. When all VDD inputs (1.8 V and 3.3 V) reach approximately 60% of the standard value of VDD, power-on reset begins. If MCLK is applied, power-on reset will complete within 1 ms maximum; if MCLK is not applied, the device remains in reset state.

4.1.2 HARDWARE RESET

Pulling the $\overline{\text { RST }}$ pin to low will initiate hardware reset. The reset cycle should be more than $1 \mu \mathrm{~s}$. If the $\overline{\mathrm{RST}}$ pin is held low continuously, the device remains in reset state.

4.1.3 GLOBAL SOFTWARE RESET

Writing the RST register will initiate global software reset. Once initiated, global software reset completes in $1 \mu \mathrm{~s}$ maximum.

4.1.4 PER-CHANNEL SOFTWARE RESET

Writing a ' 1 ' to the CHRST bit (b1, CHCF,...) will initiate per-channel software reset. Once initiated, per-channel software reset completes in 1 μs maximum and the CHRST bit (b1, CHCF,...) is self cleared.

This reset is different from other resets, for:

- It does not reset the global registers, state machines and common pins (including the pins of clock generator, microprocessor interface and JTAG interface);
- It does not reset the other channels.

4.2 MICROPROCESSOR INTERFACE

The microprocessor interface provides access to read and write the registers in the device. The interface consists of:

- Serial microprocessor interface;
- Parallel Motorola Non-Multiplexed microprocessor interface;
- Parallel Motorola Multiplexed microprocessor interface;
- Parallel Intel Non-Multiplexed microprocessor interface;
- Parallel Intel Multiplexed microprocessor interface.

The microprocessor interface is selected by the P/S, INT/MOT and IM pins, as shown in Table-18. The interfaced pins in different interfaces are also listed in Table-18. Refer to Section 8.11 Microprocessor Interface Timing for the timing characteristics.

Table-18 Microprocessor Interface

P/ \bar{S}	INT/MOT	IM	Microprocessor Interface	Interfaced Pins
GNDD	Open	GNDD	Serial microprocessor interface	$\overline{\mathrm{CS}}$, SCLK, SDI, SDO
VDDIO	GNDD	GNDD	Parallel Motorola Non-Multiplexed microprocessor interface	$\overline{\mathrm{CS}}, \overline{\mathrm{DS}}, \mathrm{R} \bar{W}, \overline{A C K}, \mathrm{D}[7: 0], \mathrm{A}[10: 0]$
		Open	Parallel Motorola Multiplexed microprocessor interface	$\overline{\mathrm{CS}}, \mathrm{AS}, \overline{\mathrm{DS}}, \mathrm{R} / \bar{W}, \overline{\mathrm{ACK}}, \mathrm{D}[7: 0], \mathrm{A} 10: 8]$
	Open	GNDD	Parallel Intel Non-Multiplexed microprocessor interface	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{RDY}, \mathrm{D}[7: 0], \mathrm{A}[10: 0]$
		Open	Parallel Intel Multiplexed microprocessor interface	$\overline{\mathrm{CS}}, \mathrm{ALE}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{RDY}, \mathrm{D}[7: 0], \mathrm{A}[10: 8]$

4.3 POWER UP

No power up sequencing for the VDD inputs (1.8 V and 3.3 V) has to be provided for the IDT82P2521. A Power-on reset will be initiated during power up. Refer to Section 4.1 Reset.

4.4 HITLESS PROTECTION SWITCHING (HPS) SUMMARY

In today's telecommunication systems, ensuring no traffic loss is becoming increasingly important. To combat these problems, redundancy protection must be built into the systems carrying this traffic. There are many types of redundancy protection schemes, including $1+1$ and 1:1 hardware protection without the use of external relays. Refer to

Figure-44, Figure-45 and Figure-46 for different protection schemes. The IDT82P2521 provides an enhanced architecture to support both protection schemes.

IDT82P2521 highlights for HPS support:

- Independent programmable receive and transmit high impedance for Tip and Ring inputs and outputs to support $1+1$ and 1:1 redundancy
- Fully integrated receive termination, required to support 1:1 redundancy
- Enhanced internal architecture to guarantee High Impedance for Tip and Ring Inputs and Outputs during Power Off or Power Failure
- Asynchronous hardware control (OE, RIM) for fast global high impedance of receiver and transmitter (hot switching between working and backup board)

Rx: Partially Internal Impedance Matching mode. A fixed external 120Ω resistor is placed on the backplane and provides a common termination for E1 applications. The R_TERM[2:0] bits (b2~0, RCF0,...) setting is as follows: ' 010 ' for E1 120Ω twisted pair cable and ' 011 ' for E1 75Ω coaxial cable.
Tx: Internal Impedance Matching mode. The T_TERM[2:0] bits (b2~0, TCF0,...) setting is as follows: ' 010 ' for E1 120Ω twisted pair cable and ' 011 ' for E1 75Ω coaxial cable.

Figure-44 1+1 HPS Scheme, Differential Interface (Shared Common Transformer)

Rx: Fully Internal Impedance Matching mode. In this mode, there is no external resistor required. The R_TERM[2:0] bits (b2~0, RCF0,...) setting is as follows: ' 010 ' for E1 120Ω twisted pair cable and ' 011 ' for E1 75Ω coaxial cable.
Tx: Internal Impedance Matching mode. The T_TERM[2:0] bits (b2~0, TCFO,...) setting is as follows: '010' for E1 120Ω twisted pair cable and ' 011 ' for E1 75Ω coaxial cable.

Figure-45 1:1 HPS Scheme, Differential Interface (Individual Transformer)

backup line card
Rx: 75Ω External Impedance Matching mode. In this mode, there is no external resistor required. The RIM pin should be left open and the configuration of the R_TERM[2:0] bits (b2~0, RCF0,...) is ignored.
Tx: 75Ω Internal Impedance Matching mode. The T_TERM[2:0] bits (b2~0, TCF0,...) should be set to ' 011 '.

Figure-46 1+1 HPS Scheme, E1 75 ohm Single-Ended Interface (Shared Common Transformer)

5 PROGRAMMING INFORMATION

5.1 REGISTER MAP

5.1.1 GLOBAL REGISTER

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
Common Control										
000	ID - Device ID Register	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	P 77
040	RST - Global Reset Register	RST7	RST6	RST5	RST4	RST3	RST2	RST1	RSTO	P 77
080		-	-	-	COPY	INT_PIN1	INT_PIN0	GLB_IM	TMOV_IM	P 78
OCO	MON - G. 772 Monitor Configuration Register	-	-	MON5	MON4	MON3	MON2	MON1	MONO	P 79
100	GPIO - General Purpose I/O Pin Definition Register	-	-	-	-	LEVEL1	LEVELO	DIR1	DIRO	P 80
Reference Clock Timing Option										
1C0	CLKG - CLKE1 Generation Control Register	-	-	-	-	CLKE1_EN	CLKE1	-	-	P 80
200	REFCF - REFA/B Output Configuration Register	-	JA_BYPAS	REFH	FS_BYPAS	FREE	FREQ2	FREQ1	FREQ0	P 81
240	REFA - REFA Clock Sources Configuration Register	-	REFA_EN	CKA_E1	REFA4	REFA3	REFA2	REFA1	REFAO	P 83
280	REFB - REFB Clock Sources Configuration Register	-	REFB_EN	CKB_E1	REFB4	REFB3	REFB2	REFB1	REFB0	P 83
Interrupt Indication										
2C0	INTCH1 - Interrupt Requisition Source Register 1	INT_CH8	INT_CH7	INT_CH6	INT_CH5	INT_CH4	INT_CH3	INT_CH2	INT_CH1	P 84
300	INTCH2 - Interrupt Requisition Source Register 2	INT_CH16	INT_CH15	INT_CH14	INT_CH13	INT_CH12	INT_CH11	INT_CH10	INT_CH9	P 84
340	INTCH3 - Interrupt Requisition Source Register 3	-	-	-	INT_CH21	INT_CH2O	INT_CH19	INT_CH18	INT_CH17	P 84
380	INTCH4 - Interrupt Requisition Source Register 4	INT_CH0	-	-	-	-	-	-	-	P 85
3C0	INTTM - One Second Timer Interrupt Status Register	-	-	-	-	-	-	-	TMOV_IS	P 85

5.1.2 PER-CHANNEL REGISTER

Except for registers 7E5~7E9, which are channel 0 related registers, only the address of channel 1 is listed in the 'Address (Hex)' column of the following table. For the addresses of the other channels, refer to the description of each register.

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
Channel Control										
001	CHCF - Channel Configuration Register	-	-	-	-	-	-	CHRST	-	P 85
JA Configuration										
002	TJA - Transmit Jitter Attenuation Configuration Register	-	-	-	TJA_LIMT	TJA_EN	TJA_DP1	TJA_DP0	TJA_BW	P 86
003	RJA - Receive Jitter Attenuation Configuration Register				RJA_LIMT	RJA_EN	RJA_DP1	RJA_DP0	RJA_BW	P 87
Transmit Path Configuration										
004	TCFO - Transmit Configuration Register 0	-	OE	T_OFF	THZ_OC	T_SING	T_TERM2	T_TERM1	T_TERM0	P 88
005	TCF1 - Transmit Configuration Register 1	TMF_DEF2	TEM_DEF1	TMF_DEF0	TCK_ES	TD_INV	T_CODE	T_MD1	T_MD0	P 89
006	PULS - Transmit Pulse Configuration Register	-	-	-	-	PULS3	PULS2	PULS1	PULSO	P 90
007	SCAL - Amplitude Scaling Control Register	-	-	SCAL5	SCAL4	SCAL3	SCAL2	SCAL1	SCALO	P 91
008	AWGO - Arbitrary Waveform Generation Control Register 0	-	DONE	RW	SAMP4	SAMP3	SAMP2	SAMP1	SAMP0	P 91
009	AWG1 - Arbitrary Waveform Generation Control Register 1	-	WDAT6	WDAT5	WDAT4	WDAT3	WDAT2	WDAT1	WDAT0	P 92
Receive Path Configuration										
00A	RCFO - Receive Configuration Register 0	RCKH	RHZ	R_OFF	R120IN	R_SING	R_TERM2	R_TERM1	R_TERM0	P 93
00B	RCF1 - Receive Configuration Register 1	RMF_DEF2	RMF_DEF1	RMF_DEFO	RCK_ES	RD_INV	R_CODE	R_MD1	R_MD0	P 94
OOC	RCF2 - Receive Configuration Register 2	-	-	-	-	-	-	MG1	MG0	P 95
Diagnostics										
OOD	LOS - LOS Configuration Register	LAC	ALOS2	ALOS1	ALOSO	TALOS1	TALOSO	TDLOS1	TDLOSO	P 96
00E	ERR - Error Detection \& Insertion Control Register	EXZ_DEF	BPV_INS	ERR_INS	CNT_SEL2	CNT_SEL1	CNT_SELO	CNT_MD	CNT_STOP	P 97
00F	AISG - AIS Generation Control Register	-	-	-	-	$\begin{gathered} \text { ASAIS_SL } \\ \text { OS } \end{gathered}$	$\begin{gathered} \text { ASAIS_LLO } \\ \mathrm{S} \end{gathered}$	$\begin{gathered} \text { ALAIS_SLO } \\ \mathrm{S} \end{gathered}$	$\begin{gathered} \text { ALAIS_LLO } \\ \mathrm{S} \end{gathered}$	P98
010	PG - Pattern Generation Control Register	-	PG_CK	PG_EN1	PG_EN0	PG_POS	PAG_INV	$\begin{gathered} \text { PRBG_SEL } \\ 1 \end{gathered}$	$\begin{gathered} \text { PRBG_SEL } \\ 0 \end{gathered}$	P 99

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
011	PD - Pattern Detection Control Register	-	-	-	-	PD_POS	PAD_INV	PAD_SEL1	PAD_SELO	P 100
012	ARBL - Arbitrary Pattern Generation / Detection Low-Byte Register	ARB7	ARB6	ARB5	ARB4	ARB3	ARB2	ARB1	ARBO	P 101
013	ARBM - Arbitrary Pattern Generation / Detection Middle-Byte Register	ARB15	ARB14	ARB13	ARB12	ARB11	ARB10	ARB9	ARB8	P 101
014	ARBH - Arbitrary Pattern Generation / Detection High-Byte Register	ARB23	ARB22	ARB21	ARB20	ARB19	ARB18	ARB17	ARB16	P 101
015	IBL - Inband Loopback Control Register	-	-	IBGL1	IBGLO	IBAL1	IBALO	IBDL1	IBDLO	P 102
016	IBG - Inband Loopback Generation Code Definition Register	IBG7	IBG6	IBG5	IBG4	IBG3	IBG2	IBG1	IBG0	P 102
017	IBDA - Inband Loopback Detection Target Activate Code Definition Register	IBA7	IBA6	IBA5	IBA4	IBA3	IBA2	IBA1	IBA0	P 103
018	IBDD - Inband Loopback Detection Target Deactivate Code Definition Register	IBD7	IBD6	IBD5	IBD4	IBD3	IBD2	IBD1	IBD0	P 103
019	LOOP - Loopback Control Register	-	-	-	-	AUTOLP	DLP	RLP	ALP	P 104
Interrupt Edge Selection										
01A	INTES - Interrupt Trigger Edges Select Register	-	AIS_IES	PA_IES	TOC_IES	$\begin{array}{\|c} \hline \text { TCKLOS_I } \\ \text { ES } \end{array}$	TLOS_IES	LOS_IES	IB_IES	P 105
Interrupt Mask										
01B	INTM0 - Interrupt Mask Register 0	DAC_IM	TJA_IM	RJA_IM	TOC_IM	$\begin{gathered} \hline \text { TCKLOS_I } \\ \mathrm{M} \end{gathered}$	TLOS_IM	SLOS_IM	LLOS_IM	P 106
01C	INTM1 - Interrupt Mask Register 1	SAIS_IM	LAIS_IM	PA_IM	-	-	-	IBA_IM	IBD_IM	P 107
01D	INTM2 - Interrupt Mask Register 2	-	-	SBPV_IM	LBPV_IM	SEXZ_IM	LEXZ_IM	ERR_IM	CNTOV_IM	P 108
Status Indication										
01E	STATO - Status Register 0	AUTOLP_S	-	-	TOC_S	TCKLOS_S	TLOS_S	SLOS_S	LLOS_S	P 109
01F	STAT1 - Status Register 1	SAIS_S	LAIS_S	PA_S	-	-	-	IBA_S	IBD_S	P 110
Interrupt Status Indication										
020	INTSO - Interrupt Status Register 0	DAC_IS	TJA_IS	RJA_IS	TOC_IS	$\begin{array}{\|c} \hline \text { TCKLOS_I } \\ S \end{array}$	TLOS_IS	SLOS_IS	LLOS_IS	P 111
021	INTS1 - Interrupt Status Register 1	SAIS_IS	LAIS_IS	PA_IS	-	-	-	IBA_IS	IBD_IS	P 112
022	INTS2 - Interrupt Status Register 2	-	-	SBPV_IS	LBPV_IS	SEXZ_IS	LEXZ_IS	ERR_IS	CNTOV_IS	P 113

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
Counter										
023	ERRCL - Error Counter LowByte Register	ERRC7	ERRC6	ERRC5	ERRC4	ERRC3	ERRC2	ERRC1	ERRCO	P 114
024	ERRCH - Error Counter HighByte Register	ERRC15	ERRC14	ERRC13	ERRC12	ERRC11	ERRC10	ERRC9	ERRC8	P 114
Jitter Measurement (channel 0 Only)										
7E5	JM - Jitter Measurement Configuration For Channel 0 Register	-	-	-	-	-	JM_STOP	JM_MD	JM_BW	P 115
7E6	JIT_PL - Positive Peak Jitter Measurement Low-Byte Register	JIT_P7	JIT_P6	JIT_P5	JIT_P4	JIT_P3	JIT_P2	JIT_P1	JIT_P0	P 115
7E7	JIT_PH - Positive Peak Jitter Measurement High-Byte Register	-	-	-	-	JIT_P11	JIT_P10	JIT_P9	JIT_P8	P 115
7E8	JIT_NL - Negative Peak Jitter Measurement Low-Byte Register	JIT_N7	JIT_N6	JIT_N5	JIT_N4	JIT_N3	JIT_N2	JIT_N1	JIT_N0	P 116
7E9	JIT_NH - Negative Peak Jitter Measurement High-Byte Register	-	-	-	-	JIT_N11	JIT_N10	JIT_N9	JIT_N8	P 116

5.2 REGISTER DESCRIPTION

5.2.1 GLOBAL REGISTER

ID - Device ID Register

Address: 000H Type: Read Default Value: 20H							
7	6	5	4	3	2	1	0
ID7	ID6	ID5	ID4	ID3	ID2	ID1	IDO
Bit	Name	Description					
7-0	ID[7:0]	The ID[7:0] bits are pre-set. The ID[7:4] bits represent the device ID for the IDT82P2521. The ID[3:0] bits represent the current version number (' 0000 ' is for the first version).					

RST - Global Reset Register

$\begin{array}{\|l\|} \hline \text { Address: } 040 \mathrm{H} \\ \text { Type: Write } \\ \text { Default Value: } \end{array}$							
7	6	5	4	3	2	1	0
RST7	RST6	RST5	RST4	RST3	RST2	RST1	RST0
Bit	Name						
7-0	RST[7:0]	Writing this register	global so	This re	es in 1		

GCF - Global Configuration Register

MON - G. 772 Monitor Configuration Register

Address: 0 COH Type: Read / Write Default Value: 00H		
7	6	$\begin{array}{llllll}5 & 4 & 3 & 2 & \end{array}$
		MON5
Bit	Name	Description
7-6	-	Reserved.
5-0	MON[5:0]	These bits determine whether the G. 772 Monitor is implemented. When the G. 772 Monitor is implemented, these bits select one transmitter or receiver to be monitored by channel 0 . 000000: No transmitter or receiver is monitored. (default) 000001: The receiver of channel 1 is monitored. 000010: The receiver of channel 2 is monitored. 010100: The receiver of channel 20 is monitored. 010101: The receiver of channel 21 is monitored. 010110 ~ 011111: Reserved. 100000: No transmitter or receiver is monitored. 100001: The transmitter of channel 1 is monitored. 100010: The transmitter of channel 2 is monitored. 110100: The transmitter of channel 20 is monitored. 110101: The transmitter of channel 21 is monitored. 110110 ~ 111111: Reserved.

GPIO - General Purpose I/O Pin Definition Register

CLKG - CLKE1 Generation Control Register

REFCF - REFA/B Output Configuration Register

2-0	FREQ[2:0]	These bits are valid only when the Frequency Synthesizer on REFA is enabled. These bits determine the output clock frequency.		
		FREQ[2:0]	Output when FS_BYPAS=0, FREE=0 and the Frequency Synthesizer uses RCLKn or CLKA as reference clock	Output when FS_BYPAS=0 and FREE=1 (the Frequency Synthesizer is free running)
		000	2.048 MHz	-
		001	8 kHz	8 kHz
		010	64 kHz	64 kHz
		011	Reserved	-
		100	4.096 MHz	4.096 MHz
		101	8.192 MHz	8.192 MHz
		110	19.44 MHz	19.44 MHz
		111	32.768 MHz	32.768 MHz

REFA - REFA Clock Sources Configuration Register

REFB - REFB Clock Sources Configuration Register

INTCH1 - Interrupt Requisition Source Register 1

Address: 2COH Type: Read / W Default Value:							
7	6	5	4	3	2	1	0
INT_CH8	INT_CH7	7 INT_CH6	INT_CH5	INT_CH4	INT_CH3	INT_CH2	INT_CH1
Bit	Name						
7-0	INT_CH[8:1]	These bits indicate w channel 8 to 1 respec 0 : No interrupt is gen 1: At least one interru	here is an all the inte erated in th	generated cleared in ponding cha	responding sponding ch	. The INT_C default)	bits correspond to

INTCH2 - Interrupt Requisition Source Register 2

Address: 300H Type: Read / Write Default Value: 00H							
7	6	5	4	3	2	1	0
INT_CH16	INT_CH15	15 INT_CH14	INT_CH13	INT_CH12	INT_CH11	INT_CH10	INT_CH9
Bit	Name						
7-0	INT_CH[16:9]	These bits indicate wh channel 16 to 9 respec 0 : No interrupt is gener 1: At least one interrup	here is an in all the inter nerated in the	generated in e cleared in ponding cha	responding esponding	The INT_ (default)	bits corres

INTCH3 - Interrupt Requisition Source Register 3

Address: 340 Type: Read Default Value							
7	6	5	4	3	2	1	0
-	-	-	INT_CH21	INT_CH2O	INT_CH19	INT_CH18	INT_CH17
Bit	Name						
7-5	-	Reserved.					
4-0	INT_CH[21:17]	These bits indicat channel 21 to 17 0: No interrupt is 1: At least one int	here is an int r all the inter nerated in the	generated in e cleared in sponding ch	responding responding	. The INT_C (default)	bits correspond to

INTCH4 - Interrupt Requisition Source Register 4

Address: 380H Type: Read / W Default Value:							
7	6	5	4	3	2	1	0
INT_CH0		-	-	-	-	-	-
Bit	Name						
7	INT_CH0	This bit indicates 0 : No interrupt is 1: At least one int	the ed		def		
6-0	-	Reserved.					

INTTM - One Second Timer Interrupt Status Register

Address: 3COH Type: Read / Write Default Value: 00H							
7	6	5	4	3	2	1	0
-		-	-			-	TMOV_IS
Bit	Name	Description					
7-1	-	Reserved.					
0	TMOV_IS	This bit is valid only when the TMOV_IM bit (b0, GCF) is ' 0 '. This bit indicates the interrupt status of one second time over. 0 : No one second time over interrupt is generated; or a ' 1 ' is written to this bit. (default) 1: One second time over interrupt is generated and is reported by the $\overline{\mathrm{NT}}$ pin.					

5.2.2 PER-CHANNEL REGISTER

CHCF - Channel Configuration Register

TJA - Transmit Jitter Attenuation Configuration Register

RJA - Receive Jitter Attenuation Configuration Register

TCFO - Transmit Configuration Register 0

Address: 004 204 404 $7 C 4 H$ Type: Read / Default Value	$\begin{aligned} & 44 \mathrm{H}, 084 \mathrm{H}, 0 \mathrm{C} 4 \mathrm{H} \\ & 44 \mathrm{H}, 284 \mathrm{H}, 2 \mathrm{C} 4 \\ & 44 \mathrm{H}, 484 \mathrm{H}, 4 \mathrm{C} 4 \\ & \mathrm{CHO} \\ & \mathrm{e} \\ & \mathrm{H} \end{aligned}$				
7	6	3	2	1	0
-	OE	T_SING	T_TERM2	T_TERM1	T_TERM0
Bit	Name				
7	-				
6	OE	the outp	TTIPn and	pins.	
5	T_OFF	red down			
4	THZ_OC	., the outp ult) the first 1	TTIPn and the TOC is	pins when and then the	detected. is in High-Z
3	T_SING	nd TRING is used to	d to transm it signal. TR	to the line s ould be left	ault)
2-0	T_TERM[2:0]	the trans lected for cted for E lected for for E1 120	to match the Ω twisted pa coaxial cable Ω twisted pa ed pair cable	mpedance. (with transfo nsformer). transformer 5Ω coaxial	with transform

TCF1 - Transmit Configuration Register 1

PULS - Transmit Pulse Configuration Register

Address: 006H, 046H, 086H, 0C6H, 106H, 146H, 186H, 1C6H, (CH1~CH8)
$206 \mathrm{H}, 246 \mathrm{H}, 286 \mathrm{H}, 2 \mathrm{C} 6 \mathrm{H}, 306 \mathrm{H}, 346 \mathrm{H}, 386 \mathrm{H}, 3 \mathrm{C} 6 \mathrm{H},(\mathrm{CH} 9 \sim \mathrm{CH} 16)$
$406 \mathrm{H}, 446 \mathrm{H}, 486 \mathrm{H}, 4 \mathrm{C} 6 \mathrm{H}, 506 \mathrm{H},(\mathrm{CH} 17 \sim \mathrm{CH} 21)$
7 C 6 H (CHO)
Type: Read / Write
Default Value: 02H

7	6	5	4	3	2	1
-	-	-	-	PULS3	PULS2	PULS1

Bit	Name	Description					
7-4	-	Reserved.					
3-0	PULS[3:0]	These bits select one of the eight preset waveform templates for short haul application or enable user-programmable arbitrary waveform.					
		PULS[3:0]	Operation Mode	Transmit Clock	Cable Impedance	Cable Range	Cable Loss
		0000	E1	2.048 MHz	E1 75Ω differential interface, Internal Impedance matching mode	-	$0 \sim 12 \mathrm{~dB}$
		0001	E1	2.048 MHz	Other E1 interfaces	-	$0 \sim 12 \mathrm{~dB}$
		1XXX	User-programmable arbitrary waveform				
		others	Reserved.				

SCAL - Amplitude Scaling Control Register

AWG0 - Arbitrary Waveform Generation Control Register 0

AWG1 - Arbitrary Waveform Generation Control Register 1

RCFO - Receive Configuration Register 0

RCF1 - Receive Configuration Register 1

RCF2 - Receive Configuration Register 2

LOS - LOS Configuration Register

Address: 00DH, 04DH, 08DH, 0CDH, 10DH, 14DH, 18DH, 1CDH, (CH1~CH8)
20DH, 24DH, 28DH, 2CDH, 30DH, 34DH, 38DH, 3CDH, (CH9~CH16)
40DH, 44DH, 48DH, 4CDH, 50DH, (CH17~CH21)
7CDH (CHO)
Type: Read / Write
Default Value: 15H

$1-0$	TDLOS[1:0]	These bits select the period. When the amplitude of the data is less than a certain voltage for the period, TLOS is declared. The voltage is determined by the TALOS bits (b3~2, LOS,...). 00: 16-pulse. $01: 32$-pulse. (default) $1 X: 64-$ pulse.

ERR - Error Detection \& Insertion Control Register

Address: 00EH, 20EH, 40EH, 7 CEH Type: Read / Writ Default Value: 00	4EH, 08EH, 0CEH $4 \mathrm{EH}, 28 \mathrm{EH}, 2 \mathrm{CEH}$ 4EH, 48EH, 4CEH (CHO)	H, 10EH, 14EH, 18EH, H, 30EH, 34EH, 38EH, , 50EH, (CH17~CH21)	$\begin{aligned} & , ~(\mathrm{CH} 1 ~ \mathrm{CH} 8) \\ & ,(\mathrm{CH} \sim \mathrm{CH} 16) \end{aligned}$				
7	6	5	4	3	2	1	0
EXZ_DEF	BPV_INS	S ERR_INS	CNT_SEL2	CNT_SEL1	CNT_SELO	CNT_MD	CNT_STOP
Bit	Name			Des			
7	EXZ_DEF	This bit selects the EX 0: ANSI. (default) 1: FCC.	ition standard				
6	BPV_INS	This bit controls wheth Writing ' 1 ' to this bit wil This bit is cleared once	sert a bipolar t a BPV on th PPV insertion	on (BPV) to th available mark pleted.	smit path. data stream	ansmitted.	
5	ERR_INS	This bit controls wheth A transition from '0' to This bit is cleared once	isert a single this bit will ins ingle bit error	to the gene ingle bit error on is complete	RBS/ARB pa generated PR	B pattern.	
4-2	CNT_SEL[2:0]	$\begin{aligned} & \text { These bits select what } \\ & \text { 000: Disable. (default) } \\ & \text { 001: LBPV. } \\ & \text { 010: LEXZ. } \\ & \text { 011: LBPV + LEXZ. } \\ & \text { 100: SBPV. } \\ & \text { 101: SEXZ. } \\ & \text { 110: SBPV + SEXZ. } \\ & \text { 111: PRBS/ARB error. } \end{aligned}$	f error to be	by the intern	r Counter.		
1	CNT_MD	This bit determines wh 0 : Manually by setting 1: Every-one second	the ERRCH \& T_STOP bit tically.	L registers a R,...). (defaul)	ated automati	manually.	
0	CNT_STOP	This bit is valid only wh A transition from '0' to This bit must be cleared	CNT_MD bi this bit updat re the next ro	RR,...) is ' 0 '. ERRCH \& ER	gisters.		

AISG - AIS Generation Control Register

PG - Pattern Generation Control Register

Address: 010 210 410 7 DO Type: Read / Default Value:	$\begin{aligned} & 050 \mathrm{H}, 090 \mathrm{H}, 0 \mathrm{DOH}, \\ & 250 \mathrm{H}, 290 \mathrm{H}, 2 \mathrm{DOH}, \\ & 450 \mathrm{H}, 490 \mathrm{H}, 4 \mathrm{DOH}, \\ & \mathrm{CHO} \text {, } \\ & \text { ite } \\ & 0 \mathrm{H} \end{aligned}$	$110 \mathrm{H}, 150 \mathrm{H}, 190 \mathrm{H}$, $310 \mathrm{H}, 350 \mathrm{H}, 390 \mathrm{H}$, 510H, (CH17~CH21)	$\begin{aligned} & \mathrm{H} 1 \sim \mathrm{CH} 8) \\ & \mathrm{H} 9 \sim \mathrm{CH} 16) \end{aligned}$				
7	6	5	4	3	2	1	0
-	PG_CK	PG_EN1	PG_EN0	PG_POS	PAG_INV	PRBG_SEL1	PRBG_SELO
Bit	Name						
7	-	Reserved.					
6	PG_CK	This bit selects the re When the pattern is g 0 : XCLK. (default) 1: Recovered clock fro When the pattern is g 0 : XCLK. (default) 1: Transmit clock, i.e. mat mode) or the cloc	lock when in the rece ceived sig in the tran k input on red from th	rn (including in Transmit put on TDP	, ARB \& IB) Rail NRZ For DNn (in Tran	rated. ode and in Tra ual Rail RZ Fo	Dual Rail NR mode)
5-4	PG_EN[1:0]	These bits select the 00: Disable. (default) 01: PRBS. 10: ARB. 11: IB.	be genera				
3	PG_POS	This bit selects the p 0 : Transmit path. (def 1: Receive path.	cluding PR	\& IB) gener	ection.		
2	PAG_INV	This bit controls whe 0: Normal. (default) 1: Invert.	ert the gen	RBS/ARB p			
1-0	PRBG_SEL[1:0]	$\begin{aligned} & \text { These bits are valid o } \\ & \text { 00: } 2^{20}-1 \text { QRSS. (de } \\ & 01: 2^{15}-1 \text { PRBS. } \\ & 1 \mathrm{X}: 2^{11}-1 \text { PRBS. } \end{aligned}$	the PRBS	s generated	select the PR		

PD - Pattern Detection Control Register

ARBL - Arbitrary Pattern Generation / Detection Low-Byte Register

ARBM - Arbitrary Pattern Generation / Detection Middle-Byte Register

Address: 013 H, 213 H, 413 H, 7 D 3 H Type: Read / W Default Value: 5	$\begin{aligned} & \mathrm{H}, 093 \mathrm{H}, 0 \mathrm{D} 3 \mathrm{H} \\ & \mathrm{H}, 293 \mathrm{H}, 2 \mathrm{D} 3 \mathrm{H} \\ & \mathrm{H}, 493 \mathrm{H}, 4 \mathrm{H} \\ & \text { 0) } \end{aligned}$	$\begin{aligned} & \mathrm{H}, 193 \mathrm{H}, \\ & \mathrm{H}, 393 \mathrm{H}, \\ & \mathrm{H} 17 \sim \mathrm{CH} 2 \end{aligned}$	$\begin{aligned} & \hline 11 \sim \mathrm{CH} 8) \\ & \text {-9~CH16) } \end{aligned}$				
7	6	5	4	3	2	1	0
ARB15	ARB14	ARB13	ARB12	ARB11	ARB10	ARB9	ARB8
Bit	Name						
7-0	ARB[15:8]	e descrip	ARBL reg				

ARBH - Arbitrary Pattern Generation / Detection High-Byte Register

Address: 014H, 054H, 094H, 0D4H, 114H, 154H, 194H, 1D4H, (CH1~CH8)
$214 \mathrm{H}, 254 \mathrm{H}, 294 \mathrm{H}, 2 \mathrm{D} 4 \mathrm{H}, 314 \mathrm{H}, 354 \mathrm{H}, 394 \mathrm{H}, 3 \mathrm{~B} 4 \mathrm{H},(\mathrm{CH} 9 \sim \mathrm{CH} 16)$
$414 \mathrm{H}, 454 \mathrm{H}, 494 \mathrm{H}, 4 \mathrm{D} 4 \mathrm{H}, 514 \mathrm{H},(\mathrm{CH} 17 \sim \mathrm{CH} 21)$
7D4H (CH0)
Type: Read / Write
Default Value: 55H

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARB23 | ARB22 | ARB21 | ARB20 | ARB19 | ARB18 | ARB17 | ARB16 |
| Bit | Name | | | | | | |
| $7-0$ | ARB[23:16] | (Refer to the description of the ARBL register.) | | | | | |

IBL - Inband Loopback Control Register

Address: 015H, 055H, 095H, 0D5H, 115H, 155H, 195H, 1D5H, (CH1~CH8)
$215 \mathrm{H}, 255 \mathrm{H}, 295 \mathrm{H}, 2 \mathrm{D} 5 \mathrm{H}, 315 \mathrm{H}, 355 \mathrm{H}, 395 \mathrm{H}, 3 \mathrm{D} 5 \mathrm{H},(\mathrm{CH} 9 \sim \mathrm{CH} 16)$
415H, 455H, 495H, 4D5H, 515H, (CH17~CH21)
7D5H (CHO)
Type: Read / Write
Default Value: 01H

7	6	5	4	3	2	1
-	-	IBGL1	IBGL0	IBAL1	IBAL0	IBDL1

Bit	Name	Description
7-6	-	Reserved.
5-4	IBGL[1:0]	```These bits define the length of the valid IB generation code programmed in the IBG[7:0] bits (b7~0, IBG,...). 00:5-bit long in the IBG[4:0] bits (b4~0, IBG,...). (default) 01: 6-bit long in the IBG[5:0] bits (b5~0, IBG,...). 10:7-bit long in the IBG[6:0] bits (b6~0, IBG,...). 11: 8-bit long in the IBG[7:0] bits (b7~0, IBG,...).```
3-2	IBAL[1:0]	```These bits define the length of the valid target activate IB detection code programmed in the IBA[7:0] bits (b7~0, IBDA,...). 00:5-bit long in the IBA[4:0] bits (b4~0, IBDA,...). (default) 01: 6-bit long in the IBA[5:0] bits (b5~0, IBDA,...). 10:7-bit long in the IBA[6:0] bits (b6~0, IBDA,...). 11: 8-bit long in the IBA[7:0] bits (b7~0, IBDA,...).```
1-0	IBDL[1:0]	```These bits define the length of the valid target deactivate IB detection code programmed in the IBD[7:0] bits (b7~0, IBDD,...). 00: 5-bit long in the IBD[4:0] bits (b4~0, IBDD,...). 01: 6-bit long in the IBD[5:0] bits (b5~0, IBDD,...). (default) 10: 7-bit long in the IBD[6:0] bits (b6~0, IBDD,...). 11:8-bit long in the IBD[7:0] bits (b7~0, IBDD,...).```

IBG - Inband Loopback Generation Code Definition Register

IBDA - Inband Loopback Detection Target Activate Code Definition Register

IBDD - Inband Loopback Detection Target Deactivate Code Definition Register

Address: $018 \mathrm{H}, 058 \mathrm{H}, 098 \mathrm{H}, 0 \mathrm{D} 8 \mathrm{H}, 118 \mathrm{H}, 158 \mathrm{H}, 198 \mathrm{H}, 1 \mathrm{D} 8 \mathrm{H}$, (CH1~CH8) $218 \mathrm{H}, 258 \mathrm{H}, 298 \mathrm{H}, 2 \mathrm{D} 8 \mathrm{H}, 318 \mathrm{H}, 358 \mathrm{H}, 398 \mathrm{H}, 3 \mathrm{D} 8 \mathrm{H},(\mathrm{CH9} \mathrm{\sim CH16)}$ $418 \mathrm{H}, 458 \mathrm{H}, 498 \mathrm{H}, 4 \mathrm{D} 8 \mathrm{H}, 518 \mathrm{H},(\mathrm{CH} 17 \sim \mathrm{CH} 21)$ $7 \mathrm{D} 8 \mathrm{H}(\mathrm{CHO})$ Type: Read / Write \quad Default Value: 09 H							
7		5	4	3	2	1	0
IBD7		IBD5	IBD4	IBD3	IBD2	IBD1	IBDO
Bit	Name	Description					
7-0	IBD[7:0]	The IBD[X:0] bits define the content of the target deactivate IB detection code. The ' X ' is determined by the IBDL[1:0] bits (b1~0, IBL,...). The IBDO bit is the last bit to be detected.					

LOOP - Loopback Control Register

Address: 019H, 059H, 099H, 0D9H, 119H, 159H, 199H, 1D9H, (CH1~CH8)
$219 \mathrm{H}, 259 \mathrm{H}, 299 \mathrm{H}, 2 \mathrm{D} 9 \mathrm{H}, 319 \mathrm{H}, 359 \mathrm{H}, 399 \mathrm{H}, 3 \mathrm{D} 9 \mathrm{H}$, (CH9~CH16)
419H, 459H, 499H, 4D9H, 519H, (CH17~CH21)
7D9H (CHO)
Type: Read / Write
Default Value: 00H

INTES - Interrupt Trigger Edges Select Register

INTMO - Interrupt Mask Register 0

INTM1 - Interrupt Mask Register 1

INTM2 - Interrupt Mask Register 2

STATO - Status Register 0

Address: 01EH, 05EH, 09EH, 0DEH, 11EH, 15EH, 19EH, 1DEH, (CH1~CH8)
$21 \mathrm{EH}, 25 \mathrm{EH}, 29 \mathrm{EH}, 2 \mathrm{DEH}, 31 \mathrm{EH}, 35 \mathrm{EH}, 39 \mathrm{EH}, 3 \mathrm{DEH}$, (CH9~CH16)
$41 \mathrm{EH}, 45 \mathrm{EH}, 49 \mathrm{EH}, 4 \mathrm{DEH}, 51 \mathrm{EH},(\mathrm{CH} 17 \sim \mathrm{CH} 21)$
7DEH (CHO)
Type: Read
Default Value: 00H

7	6	5 4	3	2	1	0
AUTOLP_S	-	TOC_S	TCKLOS_S	TLOS_S	SLOS_S	LLOS_S
Bit	Name	Description				
7	AUTOLP_S	This bit indicates the automatic Digital/Remote Loopback status. 0: Out of automatic Digital/Remote Loopback. (default) 1: In automatic Digital/Remote Loopback.				
6-5	-	Reserved.				
4	TOC_S	This bit indicates the TOC status. 0 : No TOC is detected. (default) 1: TOC is detected.				
3	TCKLOS_S	This bit indicates the TCLKn missing status. 0 : TCLKn is not missing. (default) 1: TCLKn is missing.				
2	TLOS_S	This bit indicates the TLOS status. 0 : No TLOS is detected. (default) 1: TLOS is detected.				
1	SLOS_S	This bit indicates the SLOS status. 0 : No SLOS is detected. (default) 1: SLOS is detected.				
0	LLOS_S	This bit indicates the LLOS status. 0 : No LLOS is detected. (default) 1: LLOS is detected.				

STAT1 - Status Register 1

Address: 01FH, 05FH, 09FH, ODFH, 11FH, 15FH, 19FH, 1DFH, (CH1~CH8) 21FH, 25FH, 29FH, 2DFH, 31FH, 35FH, 39FH, 3DFH, (CH9~CH16) 41FH, 45FH, 49FH, 4DFH, 51FH, (CH17~CH21) 7DFH (CH0)
Type: Read Default Value: 00 H
7

INTSO - Interrupt Status Register 0

INTS1 - Interrupt Status Register 1

INTS2 - Interrupt Status Register 2

ERRCL - Error Counter Low-Byte Register

ERRCH - Error Counter High-Byte Register

JM - Jitter Measurement Configuration For Channel 0 Register

Address: 7E5H Type: Read / Write Default Value: 00H							
7	6	5	4	3	2	1	0
-	- -		-	-	JM_STOP	JM_MD	JM_BW
Bit	Name	Description					
7-3	-	Reserved.					
2	JM_STOP	This bit is valid only when the JM_MD bit ($\mathrm{b} 1, \mathrm{JM}$) is ' 0 '. A transition from ' 0 ' to ' 1 ' on this bit updates the JIT_PH, JIT_PL and JIT_NH, JIT_NL registers. This bit must be cleared before the next round.					
1	JM_MD	This bit selects the jitter measurement period. 0 : The period is determined manually by setting the JM_STOP bit (b2, JM). (default) 1: The period is one second automatically.					
0	JM_BW	This bit selects the bandwidth of the measured jitter. 0: $20 \mathrm{~Hz} \sim 100 \mathrm{KHz}$. (default) 1: $18 \mathrm{KHz} \sim 100 \mathrm{KHz}$.					

JIT_PL - Positive Peak Jitter Measurement Low-Byte Register

JIT_PH - Positive Peak Jitter Measurement High-Byte Register

Address: 7E Type: Read Default Value:							
7	6	5	4	3	2	1	0
-	-	-	-	JIT_P11	JIT_P10	JIT_P9	JIT_P8
Bit	Name						
7-4	-	Reserved.					
3-0	JIT_P[11:8]	(Refer to the des	_P				

JIT_NL - Negative Peak Jitter Measurement Low-Byte Register

JIT_NH - Negative Peak Jitter Measurement High-Byte Register

6 JTAG

The IDT82P2521 supports the digital Boundary Scan Specification as described in the IEEE 1149.1 standards.

The boundary scan architecture consists of data and instruction registers plus a Test Access Port (TAP) controller. The control of the TAP is achieved through signals applied to the Test Mode Select (TMS) and Test Clock (TCK) input pins. Data is shifted into the registers via the Test

Data Input (TDI) pin, and shifted out of the registers via the Test Data Output (TDO) pin. Both TDI and TDO are clocked at a rate determined by TCK.

The JTAG boundary scan registers include BSR (Boundary Scan Register), DIR (Device Identification Register), BR (Bypass Register) and IR (Instruction Register). These will be described in the following pages. Refer to Figure-47 for architecture.

Figure-47 JTAG Architecture

6.1 JTAG INSTRUCTION REGISTER (IR)

The IR with instruction decode block is used to select the test to be executed or the data register to be accessed or both.

The instructions include: EXTEST, SAMPLE/PRELOAD, IDCODE, BYPASS, CLAMP and HIGHZ.

6.2 JTAG DATA REGISTER

6.2.1 DEVICE IDENTIFICATION REGISTER (IDR)

The IDR can be set to define the Version, the Part Number, the Manufacturer Identity and a fixed bit.

6.2.2 BYPASS REGISTER (BYP)

The BYP consists of a single bit. It can provide a serial path between the TDI input and the TDO output. Bypassing the BYR will reduce test access times.

6.2.3 BOUNDARY SCAN REGISTER (BSR)

The bidirectional ports interface to 2 boundary scan cells:

- In cell: The input cell is observable only.
- Out cell: The output cell is controllable and observable.

6.3 TEST ACCESS PORT (TAP) CONTROLLER

The TAP controller is a 16 -state synchronous state machine. The states include: Test Logic Reset, Run-Test/Idle, Select-DR-Scan, Capture-DR, Shift-DR, Exit1-DR, Pause-DR, Exit2-DR, Update-DR, Select-IR-Scan, Capture-IR, Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR.

Figure-48 shows the state diagram. Note that the figure contains two main branches to access either the data or instruction registers. The value shown next to each state transition in this figure states the value present at TMS at each rising edge of TCK.

Figure-48 JTAG State Diagram

7 THERMAL MANAGEMENT

The device is designed to operate over the industry temperature range $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$. To ensure the functionality and reliability of the device, the maximum junction temperature, $\mathrm{T}_{\text {jmax }}$, should not exceed $125^{\circ} \mathrm{C}$. In some applications, the device will consume more power and a thermal solution should be provided to ensure the junction temperature T_{j} does not exceed $T_{j m a x}$. Below is a table listing thermal data for the IDT82P2521.

Package	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathbf{W}\right)^{\mathbf{1}}$	$\theta_{\mathrm{JB}}\left({ }^{\circ} \mathrm{C} / \mathbf{W}\right)^{\mathbf{2}}$	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathbf{W}\right)^{\mathbf{3}}$	Airflow (m/s)
			16.7	0
			12.8	1
640-pin TEPBGA	4.90	8.50	11.3	2
			10.5	3
			10.1	4
			9.9	5

Note:

1. Junction-to-Case Thermal Resistance
2. Junction-to-Board Thermal Resistance
3. Junction-to-Ambient Thermal Resistance

7.1 JUNCTION TEMPERATURE

Junction temperature T_{j} is the temperature of package typically at the geographical center of the chip where the device's electrical circuits are. It can be calculated as follows:

Equation 1: $\quad T_{j}=T_{A}+P^{*} \theta_{J A}$
Where:
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance of the package
$T_{j}=$ Junction Temperature
$T_{A}=$ Ambient Temperature
$P=$ Device Power Consumption
For the IDT82P2521, the above values are:
$\theta_{\mathrm{JA}}=16.7^{\circ} \mathrm{C} / \mathrm{W}$ (when airflow rate is $0 \mathrm{~m} / \mathrm{s}$. See the above table)
$T_{\text {jmax }}=125^{\circ} \mathrm{C}$
$T_{A}=-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
$P=$ Refer to Section 8.3 Device Power Consumption and Dissipation (Typical) 1

7.2 EXAMPLE OF JUNCTION TEMPERATURE CALCULATION

Assume:
$T_{A}=85^{\circ} \mathrm{C}$
$\theta_{J A}=12.8^{\circ} \mathrm{C} / W$ (airflow: $1 \mathrm{~m} / \mathrm{s}$)
$P=1.95 W$ ($E 1120 \Omega, 100 \%$ ones, External Impedance matching)
The junction temperature T_{j} can be calculated as follows:

$$
T_{j}=T_{A}+P^{*} \theta_{J A}=85^{\circ} \mathrm{C}+1.95 \mathrm{~W} X 12.8^{\circ} \mathrm{C} / W=110.0^{\circ} \mathrm{C}
$$

The junction temperature of $110.0^{\circ} \mathrm{C}$ is below the maximum junction temperature of $125^{\circ} \mathrm{C}$, so no extra heat enhancement is required.

In some operation environments, the calculated junction temperature might exceed the maximum junction temperature of $125{ }^{\circ} \mathrm{C}$ and an external thermal solution such as a heatsink is required.

7.3 HEATSINK EVALUATION

A heatsink is expanding the surface area of the device to which it is attached. $\theta_{J A}$ is now a combination of device case and heatsink thermal resistance, as the heat flowing from the die junction to ambient goes through the package and the heatsink. θ_{JA} can be calculated as follows:

$$
\text { Equation 2: } \quad \theta_{J A}=\theta_{J C}+\theta_{H A}
$$

Where:
$\theta_{J C}=$ Junction-to-Case (heatsink) Thermal Resistance
$\theta_{H A}=$ Heatsink-to-Ambient Thermal Resistance

For the IDT82P2521, θ_{JC} is $4.90^{\circ} \mathrm{C} / \mathrm{W}$.
$\theta_{\text {HA }}$ determines which heatsink can be selected to ensure the junction temperature does not exceed $\mathrm{T}_{\text {jmax }}$. According to Equation 1 and 2, the heatsink-to-ambient thermal resistance θ_{HA} can be calculated as follows:

Equation 3: $\quad \theta_{H A}=\left(T_{j}-T_{A}\right) / P-\theta_{J C}$
Assume:

$$
\begin{aligned}
& T_{j}=125^{\circ} \mathrm{C}\left(T_{j \max }\right) \\
& T_{A}=85^{\circ} \mathrm{C} \\
& P=3.53 \mathrm{~W}(E 175 \Omega, 100 \% \text { ones, Fully Internal Impedance matching }) \\
& \theta_{J C}=4.90^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

The Heatsink-to-Ambient thermal resistance θ_{HA} can be calculated as follows:

$$
\theta_{H A}=\left(125^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right) / 3.53 \mathrm{~W}-4.90^{\circ} \mathrm{C} / \mathrm{W}=6.43^{\circ} \mathrm{C} / \mathrm{W}
$$

That is, if a heatsink whose heatsink-to-ambient thermal resistance θ_{HA} is below or equal to $6.43^{\circ} \mathrm{C} / \mathrm{W}$ is used in such operation environment, the junction temperature will not exceed the maximum junction temperature.

8 PHYSICAL AND ELECTRICAL SPECIFICATIONS

8.1 ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
VDDD	Digital Core Power Supply	-0.5	2.2	V
VDDA	Analog Core Power Supply	-0.5	4.6	V
VDDIO	I/O Power Supply	-0.5	4.6	V
VDDT0~21	Power Supply for Transmitter Driver	-0.5	4.6	V
VDDR0~21	Power Supply for Receiver	-0.5	4.6	V
$V_{\text {in }}$	Input Voltage, Any Digital Pin	GND - 0.5	6	V
	Input Voltage, Any RTIP and RRING pin ${ }^{1}$	GND - 0.5	VDDR + 0.5	V
	ESD Voltage, Any Pin ${ }^{2}$	2000		V
$\mathrm{l}_{\text {in }}$	Transient Latch-up Current, Any Pin		100	mA
	Input Current, Any Digital Pin ${ }^{3}$	-10	10	mA
	DC Input Current, Any Analog Pin ${ }^{3}$		± 100	mA
Pd	Maximum Power Dissipation in Package		$2.4{ }^{4}$	W
T_{j}	Junction Temperature		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {s }}$	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$

Note:

1. Reference to ground.
2. Human body model.
3. Constant input current
4. If device power consumption exceeds this value, a heatsink must be used. Refer to Chapter 7 Thermal Management.

Caution:

Exceeding the above values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

8.2 RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ.	Max	Unit
$\mathrm{T}_{\text {op }}$	Operating Temperature Range	-40		85^{1}	${ }^{\circ} \mathrm{C}$
VDDIO	Digital I/O Power Supply	3.13	3.3	3.47	V
VDDA	Analog Core Power Supply	3.13	3.3	3.47	V
VDDD	Digital Core Power Supply	1.71	1.8	1.89	V
VDDT	Power Supply for Transmitter Driver	3.13	3.3	3.47	V
VDDR	Power Supply for Receiver	3.13	3.3	3.47	V
$\mathrm{~V}_{\text {IL }}$	Input Low Voltage	-0.5		0.8	V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.0		$\mathrm{VDDIO+0.5}$	V
Note: 1. An external thermal solution such as heatsink may be required depending on the mode of operation. Refer to Chapter 7 Thermal Management.					

8.3 DEVICE POWER CONSUMPTION AND DISSIPATION (TYPICAL) ${ }^{1}$

Mode	Parameter	Total Consumption (W)			Total Device Power Dissipation (for Thermal Consideration, W)			$\begin{gathered} \text { Per-Channel } \\ \text { Power Down Saving }(\mathrm{mW})^{2} \end{gathered}$		
		1.8 V	3.3 V	Total	Fully Internal $\mathrm{R} 120 \mathrm{IN}=1^{3}$	Partially Internal $\mathrm{R} 120 \mathrm{IN}=0{ }^{4}$	External ${ }^{5}$	Fully Internal $\mathrm{R} 120 \mathrm{IN}=1^{3}$	Partially Internal R120IN $=0{ }^{4}$	External ${ }^{5}$
$\mathrm{E} 1 / 120 \Omega$	PRBS	0.23	2.22	2.45	2.45	1.88	1.59	80	60	40
	100\% ones	0.23	3.00	3.23	3.23	2.40	1.95	130	90	70
E1/75 Ω	PRBS	0.23	2.40	2.62	2.62	2.28	1.64	90	60	50
	100\% ones	0.23	3.30	3.53	3.53	3.01	2.06	150	120	80

Note:

1. Test conditions: VDDx (typical) at $25^{\circ} \mathrm{C}$ operating temperature (ambient).
2. The R_OFF bit (b5, RCFO,...) and T_OFF bit (b5, TCFO,...) are set to ' 1 ' to enable per-channel power down.
3. The transmitter is in Internal Impedance Matching mode and the receiver is in Fully Internal Impedance Matching mode. That is, the R120IN bit (b4, RCF0,...) is set to ' 1 '. And the T_TERM[2:0] bits (b2~0, TCF0,...) and R_TERM[2:0] bits (b2~0, RCFO, ...) are set according to different cable conditions.
4. The transmitter is in Internal Impedance Matching mode and the receiver is in Partially Internal Impedance Matching mode. That is, the R120IN bit (b4, RCF0,...) is set to '0'. And the T_TERM[2:0] bits (b2~0, TCF0,...) and R_TERM[2:0] bits (b2~0, RCF0,...) are set according to different cable conditions.
5. For E1 mode, both the transmitter and the receiver are in External Impedance Matching mode. That is, the T_TERM[2:0] bits (b2~0, TCF0,...) are set to '111' and the R_TERM[2:0] bits (b2~0, RCF0,...) are set to ' $1 x x$ '.

8.4 DEVICE POWER CONSUMPTION AND DISSIPATION (MAXIMUM) ${ }^{1}$

Mode	Parameter	Total Consumption (W)			Total Device Power Dissipation (for Thermal Consideration, W)		
		1.89 V	3.47 V	Total	Fully Internal $\mathrm{R} 120 \mathrm{IN}=1^{2}$	Partially Internal $\mathrm{R} 120 \mathrm{IN}=0^{3}$	External ${ }^{4}$
E1/120 Ω	PRBS	0.27	2.39	2.66	2.66	2.09	1.71
	100\% ones	0.28	3.20	3.48	3.48	2.64	2.07
$\mathrm{E} 1 / 75 \Omega$	PRBS	0.27	2.55	2.82	2.82	2.47	1.71
	100\% ones	0.27	3.50	3.78	3.78	3.26	2.12

Note:

1. Test conditions: VDDx (maximum) at $85^{\circ} \mathrm{C}$ operating temperature (ambient).
2. The transmitter is in Internal Impedance Matching mode and the receiver is in Fully Internal Impedance Matching mode. That is, the R120IN bit (b4, RCF0,...) is set to ' 1 '. And the T_TERM[2:0] bits (b2~0, TCF0, ...) and R_TERM[2:0] bits (b2~0, RCF0, ...) are set according to different cable conditions.
3. The transmitter is in Internal Impedance Matching mode and the receiver is in Partially Internal Impedance Matching mode. That is, the R120IN bit (b4, RCF0,...) is set to ' 0 '. And the T_TERM[2:0] bits (b2~0, TCF0,...) and R_TERM[2:0] bits (b2~0, RCF0, ...) are set according to different cable conditions.
4. For E1 mode, both the transmitter and the receiver are in External Impedance Matching mode. That is, the T_TERM[2:0] bits (b2~0, TCF0,...) are set to '111' and the R_TERM[2:0] bits (b2~0, RCF0,...) are set to ' $1 x x$ '.

8.5 D.C. CHARACTERISTICS

@ TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDDIO}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{VDDD}=1.8 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min	Typ.	Max	Unit	Test Conditions
V_{OL}	Output Low Voltage			0.40	V	$\mathrm{VDDIO}=3.13 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, 8 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4		VDDIO	V	$\mathrm{VDDIO}=3.13 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=4 \mathrm{~mA}, 8 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{T}+}$	Schmitt Trigger Input Low to High Threshold	1.8			V	
$\mathrm{~V}_{\mathrm{T}-}$	Schmitt Trigger Input High to Low Threshold			0.7	V	
$\mathrm{R}_{\text {pu }}$	Internal Pull-up /Pull-down Resistor	50	70	115	$\mathrm{~K} \Omega$	
I_{IL}	Input Low Current	-1	0	+1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IL}}=\mathrm{GNDD}$
I_{IH}	Input High Current	-1	0	+1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IH}}=\mathrm{VDDIO}$
$\mathrm{C}_{\text {in }}$	Input Digital Pin Capacitance			10	pF	
$\mathrm{C}_{\text {out }}$	Output Load Capacitance			50	pF	
$\mathrm{C}_{\text {out }}$	Output Load Capacitance (bus pins)			100	pF	
I_{ZL}	Leakage Current of Digital Output in High-Z mode	-10		10	$\mu \mathrm{~A}$	$\mathrm{GNDIO}<\mathrm{V}_{\mathrm{O}}<\mathrm{VDDIO}$
Z_{OH}	Output High-Z on TTIPn, TRINGn pins	10			$\mathrm{~K} \Omega$	

8.6 E1 RECEIVER ELECTRICAL CHARACTERISTICS

Parameter		Min	Typ.	Max	Unit	Test Conditions
Receiver Sensitivity of Receive Differential mode with Cable Loss @ 1024 KHz			15		dB	with Nominal Pulse Amplitude of 3.0 V for 120Ω
Receiver Sensitivity of Receive Single Ended mode with Cable Loss @ 1024 kHz			12		dB	and 2.37 V for 75Ω termination, adding -18 dB interference signal.
Signal to Noise Interference Margin		-14			dB	@cable loss 0-6 dB
Analog LOS Level (Normal Mode)	$\begin{aligned} & \text { ALOS[2:0] } \\ & 000 \\ & 001 \text { (default) } \\ & 010 \\ & 011 \\ & 100 \\ & 101 \\ & 110 \\ & 111 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.7 \\ & 0.9 \\ & 1.2 \\ & 1.4 \\ & 1.6 \\ & 1.8 \\ & 2.0 \end{aligned}$		V_{pp}	In Differential mode, measured between RTIP and RRING pins. In Singled Ended mode, measured between RTIP and GNDA pins Refer to Table-9 for LLOS Criteria Declare and Clear.
	LOS hysteresis		0.25			
Analog LOS Level (Line Monitor Mode)	ALOS[2:0] 000 001 (default) 010 011 1xx (reserved)		$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.8 \\ & 2.2 \end{aligned}$		V_{pp}	Measured on the line with the monitor gain set by the MG[1:0] bits (b1~0, RCF2,...) equal to the resistive attenuation. Refer to Table-9 for LLOS Criteria Declare and Clear.
	LOS hysteresis		0.41			
Allowable Consecutive Zeros before LOS: $\text { G. } 775$ I. 431 / ETSI300233			$\begin{gathered} 32 \\ 2048 \end{gathered}$			
LOS Reset		12.5			\% ones	G.775, ETSI 300233
Receive Intrinsic Jitter				0.05	U.I.	JA disabled; wide band
Input Jitter Tolerance:$\begin{aligned} & 1 \mathrm{~Hz} \sim 20 \mathrm{~Hz} \\ & 20 \mathrm{~Hz} \sim 2.4 \mathrm{KHz} \\ & 18 \mathrm{KHz} \sim 100 \mathrm{KHz} \end{aligned}$		$\begin{gathered} 37 \\ 5 \\ 2 \end{gathered}$			U.I. U.I. U.I.	G.823, with 6 dB Cable Attenuation
Receiver Differential Input Impedance			2.6		$\mathrm{K} \Omega$	
Receiver Common Mode Input Impedance to GND			1.6		$\mathrm{K} \Omega$	@1024 KHz; Rx port is high-Z
Receiver Single Ended mode Input Impedance to GND			3.1		K Ω	The RRINGn pins are open.
Receive Return Loss:$\begin{aligned} & 51 \mathrm{KHz} \sim 102 \mathrm{KHz} \\ & 102 \mathrm{KHz} \sim 2.048 \mathrm{MHz} \\ & 2.048 \mathrm{MHz} \sim 3.072 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 12 \\ & 18 \\ & 14 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	G. 703
Receive Path Delay: Single Rail Dual Rail NRZ Dual Rail RZ				$\begin{aligned} & 6.6 \\ & 1.8 \\ & 1.5 \end{aligned}$	U.I. U.I. U.I.	JA Disabled

8.7 E1 TRANSMITTER ELECTRICAL CHARACTERISTICS

8.8 TRANSMITTER AND RECEIVER TIMING CHARACTERISTICS

Symbol	Parameter	Min	Typ.	Max	Unit
	MCLK Frequency: E1		$\begin{gathered} 2.048 \times n \\ (n=1 \sim 8) \end{gathered}$		MHz
	MCLK Tolerance	-100		100	ppm
	MCLK Duty Cycle	30		70	\%
Transmit Path					
	TCLK Frequency: E1		2.048		MHz
	TCLK Tolerance	-50		+50	ppm
	TCLK Duty Cycle	10		90	\%
t1	Transmit Data Setup Time	40			ns
t2	Transmit Data Hold Time	40			ns
	Delay Time of OE low to Driver High-Z			1	$\mu \mathrm{s}$
	Delay Time of TCLK low to Driver High-Z		TBD		$\mu \mathrm{s}$
Receive Path					
	Clock Recovery Capture Range ${ }^{1}$: E1		+80/-80		ppm
	RCLK Duty Cycle ${ }^{2}$	40	50	60	\%
t4	RCLK Pulse Width ${ }^{2}$: E1	457	488	519	ns
t5	RCLK Pulse Width Low Time: E1	203	244	285	ns
t6	RCLK Pulse Width High Time: E1	203	244	285	ns
	Rise/Fall Time ${ }^{3}$	20			ns
t7	Receive Data Setup Time: E1	200	244		ns
t8	Receive Data Hold Time: E1	200	244		ns
Note: 1. Relative to nominal frequency, MCLK $=+100$ or -100 ppm . 2. RCLK duty cycle width will vary depending on extent of the received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2 UI displacement for E1 per ITU G.823). 3. For all digital outputs. $\mathrm{C}_{\mathrm{load}}=15 \mathrm{pF}$.					

TCLKn

Dn/TDPn

TDNn/TMFn

Figure-49 Transmit Clock Timing Diagram

Figure-50 Receive Clock Timing Diagram

8.9 CLKE1 TIMING CHARACTERISTICS

Symbol	Parameter	Min	Typ.	Max	Unit
CLKE1 outputs 2.048 MHz clock					
t1	CLKE1 Pulse Width		488		ns
t2	CLKE1 Pulse Width High Time	232	244	256	ns
t3	CLKE1 Pulse Width Low Time	232	244	256	ns
t4	LLOS Data Setup Time	217	244	271	ns
t5	LLOS Data Hold Time	217	244	271	ns
CLKE1 outputs 8kHz clock					
t1	CLKE1 Pulse Width		125		$\mu \mathrm{s}$
t2	CLKE1 Pulse Width High Time	62.4	62.5	62.6	$\mu \mathrm{s}$
t3	CLKE1 Pulse Width Low Time	62.4	62.5	62.6	$\mu \mathrm{s}$
t4	LLOS Data Setup Time	62.38	62.5	62.62	$\mu \mathrm{s}$
t5	LLOS Data Hold Time	62.38	62.5	62.62	$\mu \mathrm{s}$

Figure-51 CLKE1 Clock Timing Diagram

8.10 JITTER ATTENUATION CHARACTERISTICS

Parameter	Min	Typ.	Max	Unit
Jitter Transfer Function Corner (-3 dB) Frequency:	JA_BW = 0			
E1, 32/64/128-bit FIFO	JA_BW $=1$		6.63	

Parameter	Min	Typ.	Max	Unit
Jitter Attenuator: E1 (G.736) @ 3 Hz @ 40 Hz @ 400 Hz @ 100 KHz	$\begin{gathered} -0.5 \\ -0.5 \\ +19.5 \\ +19.5 \end{gathered}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Jitter Attenuator Latency Delay: 32-bit FIFO 64-bit FIFO 128-bit FIFO		$\begin{aligned} & 16 \\ & 32 \\ & 64 \end{aligned}$		U.I. U.I. U.I.
Input Jitter Tolerance before FIFO Overflow or Underflow: 32-bit FIFO 64-bit FIFO 128-bit FIFO		$\begin{gathered} 28 \\ 56 \\ 120 \end{gathered}$		U.I. U.I. U.I.

Figure-52 E1 Jitter Tolerance Performance

Figure-53 E1 Jitter Transfer Performance

8.11 MICROPROCESSOR INTERFACE TIMING

8.11.1 SERIAL MICROPROCESSOR INTERFACE

A falling transition on $\overline{\mathrm{CS}}$ indicates the start of a read/write operation, and a rising transition indicates the end of the operation. After $\overline{\mathrm{CS}}$ is set to low, a 5-bit instruction on SDI is input to the device on the rising edge of SCLK. If the MSB is ' 1 ', it is a read operation. If the MSB is ' 0 ', it is a
write operation. Following the instruction, an 11-bit address is clocked in on SDI to specify the register. If the device is in a read operation, the data read from the specified register is output on SDO on the falling edge of SCLK (refer to Figure-54). If the device is in a write operation, the data written to the specified register is input on SDI following the address byte (refer to Figure-55).

Figure-54 Read Operation in Serial Microprocessor Interface

Figure-55 Write Operation in Serial Microprocessor Interface

Symbol	Description	Min.	Max.	Units
f_{OP}	SCLK Frequency		2.0	MHz
$\mathrm{t}_{\mathrm{CSH}}$	Minimum $\overline{\mathrm{CS}}$ High Time	100		ns
$\mathrm{t}_{\text {css }}$	$\overline{\mathrm{CS}}$ Setup Time	50		ns
$\mathrm{t}_{\text {CSD }}$	$\overline{\text { CS }}$ Hold Time	100		ns
$\mathrm{t}_{\text {cLD }}$	Clock Disable Time	50		ns
${ }_{\text {t CLH }}$	Clock High Time	205		ns
$\mathrm{t}_{\text {CLL }}$	Clock Low Time	205		ns
$\mathrm{t}_{\text {DIS }}$	Data Setup Time	50		ns
$t_{\text {DIH }}$	Data Hold Time	150		ns
$t_{\text {PD }}$	Output Delay		150	ns
$t_{\text {DF }}$	Output Disable Time		50	ns

Figure-56 Timing Diagram

8.11.2 PARALLEL MOTOROLA NON-MULTIPLEXED MICROPROCESSOR INTERFACE

8.11.2.1 Read Cycle Specification

Symbol	Parameter	Min	MAX	Units
$\mathrm{t}_{\text {SAR }}$	Address to valid read setup time	5	ns	
$\mathrm{t}_{\text {RSW }}$	Valid read signal width	38 or wait until $\overline{\text { ACK }}$ activated		ns
$\mathrm{t}_{\text {HAR }}$	Address to valid read hold time	0	ns	
$\mathrm{t}_{\text {RWV }}$	R / \bar{W} available time after valid $\overline{\mathrm{CS}}+\overline{\overline{\mathrm{S}} \text { signal falling edge }}$	0	ns	
$\mathrm{t}_{\text {RWH }}$	R / \bar{W} hold time after valid $\overline{\mathrm{CS}}+\overline{\mathrm{DS}}$ signal falling edge	33	ns	
$\mathrm{t}_{\text {PRD }}$	Data propagation delay after valid $\overline{\mathrm{CS}}+\overline{\mathrm{DS}}$ signal falling edge		33	ns
$\mathrm{t}_{\text {ZRD }}$	Valid read negated to output High-Z	5	20	ns

Figure-57 Parallel Motorola Non-Multiplexed Microprocessor Interface Read Cycle

8.11.2.2Write Cycle Specification

Symbol	Parameter	Min	MAX	Units
$\mathrm{t}_{\text {SAW }}$	Address to valid write setup time	0		ns
$\mathrm{t}_{\text {WSW }}$	Valid write signal width	5 or wait until $\overline{\text { ACK }}$ activated		ns
$\mathrm{t}_{\text {HAW }}$	Address to valid write hold time	35	ns	
$\mathrm{t}_{\text {RWV }}$	R / \bar{W} available time after valid write signal falling edge	0	ns	
$\mathrm{t}_{\text {RWH }}$	R / \bar{W} hold time after valid write signal falling edge	5 or wait until $\overline{\text { ACK }}$ activated		ns
t_{DV}	Data available time before valid write signal rising edge	5	ns	
$\mathrm{t}_{\text {DH }}$	Valid data hold time after valid write signal rising edge	5	ns	
$\mathrm{t}_{\text {REC }}$	Recovery time from write cycle	5	ns	

Figure-58 Parallel Motorola Non-Multiplexed Microprocessor Interface Write Cycle

8.11.3 PARALLEL INTEL NON-MULTIPLEXED MICROPROCESSOR INTERFACE

8.11.3.1 Read Cycle Specification

Symbol	Parameter	Min	MAX	Units
$\mathrm{t}_{\text {SAR }}$	Address to valid read setup time	5		
$\mathrm{t}_{\text {RSW }}$	Valid read signal width	33 or wait until RDY activated		
$\mathrm{t}_{\text {HAR }}$	Address to valid read hold time	0	ns	
$\mathrm{t}_{\text {PRD }}$	Data propagation delay after valid read signal falling edge		ns	
$\mathrm{t}_{\text {ZRD }}$	Valid read negated to output High-Z	5	28	ns

Note: $\overline{\mathrm{WR}}$ shall be tied to high.
Figure-59 Parallel Intel Non-Multiplexed Microprocessor Interface Read Cycle

8.11.3.2Write Cycle Specification

Symbol	Parameter	Min	MAX	Units
$\mathrm{t}_{\text {SAW }}$	Address to valid write setup time	0	ns	
$\mathrm{t}_{\text {WSW }}$	Valid write signal width	5 or wait until $R D Y$ activated		ns
$\mathrm{t}_{\text {HAW }}$	Address to valid write hold time	35	ns	
$\mathrm{t}_{\text {DV }}$	Data available time before valid write signal rising edge	5	ns	
$\mathrm{t}_{\text {DH }}$	Valid data hold time after valid write signal rising edge	5	ns	
$\mathrm{t}_{\text {REC }}$	Recovery time from write cycle	5	ns	

Note: $\overline{\mathrm{RD}}$ shall be tied to high.
Figure-60 Parallel Intel Non-Multiplexed Microprocessor Interface Write Cycle

8.11.4 PARALLEL MOTOROLA MULTIPLEXED MICROPROCESSOR INTERFACE

8.11.4.1 Read Cycle Specification

Symbol	Parameter	Min	MAX	Units
$t_{\text {ASW }}$	Valid AS signal width	5		ns
$t_{\text {RSW }}$	Valid read signal width	38 or wait until $\overline{\text { ACK }}$ activated		ns
$\mathrm{t}_{\text {CSD }}$	Valid $\overline{\mathrm{DS}}+\overline{\mathrm{CS}}$ falling edge delay after AS	0		ns
$\mathrm{t}_{\text {RWV }}$	$\mathrm{R} / \overline{\mathrm{W}}$ available time after valid $\overline{\mathrm{DS}}+\overline{\mathrm{CS}}$ signal falling edge	0		ns
$\mathrm{t}_{\text {RWH }}$	R / \bar{W} hold time after valid $\overline{\mathrm{DS}}+\overline{\mathrm{CS}}$ signal falling edge	33		ns
$t_{\text {VAS }}$	Valid address to AS setup time	5		ns
$\mathrm{t}_{\text {VAH }}$	Valid address to AS hold time	5		ns
$t_{\text {PRD }}$	Data propagation delay after valid $\overline{\mathrm{DS}}+\overline{\mathrm{CS}}$ signal falling edge		33	ns
$\mathrm{t}_{\text {ZRD }}$	Valid read negated to output High-Z before valid AS rising edge	5	20	ns

Figure-61 Parallel Motorola Multiplexed Microprocessor Interface Read Cycle

8.11.4.2Write Cycle Specification

Symbol	Parameter	Min	MAX	Units
$t_{\text {ASW }}$	Valid AS signal width	5		ns
${ }^{\text {twsw }}$	Valid write signal width	5 or wait until $\overline{\text { ACK }}$ activated		ns
$\mathrm{t}_{\mathrm{HCW}}$	$\overline{\overline{D S}}+\overline{\mathrm{CS}}$ to valid hold time	35		ns
$\mathrm{t}_{\text {RWV }}$	R / \bar{W} available time after valid write signal falling edge	0		ns
$t_{\text {RWH }}$	$R \bar{W}$ hold time after valid write signal falling edge	5		ns
$\mathrm{t}_{\text {CSD }}$	Valid $\overline{\mathrm{DS}}+\overline{\mathrm{CS}}$ falling edge delay after AS	0		ns
$t_{\text {VAS }}$	Valid address to AS setup time	5		ns
$\mathrm{t}_{\text {VAH }}$	Valid address to AS hold time	5		ns
$\mathrm{t}_{\text {ASD }}$	Valid AS rising edge delay after $\overline{\overline{D S}}+\overline{\mathrm{CS}}$ rising edge	5		ns
$t_{\text {DV }}$	Data available time before valid write signal rising edge	5		ns
t_{DH}	Valid data hold time after valid write signal rising edge before the next AS rising edge	5		ns

Figure-62 Parallel Motorola Multiplexed Microprocessor Interface Write Cycle

8.11.5 PARALLEL INTEL MULTIPLEXED MICROPROCESSOR INTERFACE

8.11.5.1 Read Cycle Specification

Symbol	Parameter	Min	MAX	Units
$\mathrm{t}_{\text {AEW }}$	Valid ALE signal width	5		
$\mathrm{t}_{\text {RSW }}$	Valid read signal width	33 or wait until RDY activated		
$\mathrm{t}_{\text {CSD }}$	Valid $\overline{\text { RD }}+\overline{\mathrm{CS}}$ falling edge delay after ALE falling edge	0	ns	
$\mathrm{t}_{\text {VAS }}$	Valid address to ALE setup time	5	ns	
$\mathrm{t}_{\text {VAH }}$	Valid address to ALE hold time	5	ns	
$\mathrm{t}_{\text {PRD }}$	Data propagation delay after valid read signal falling edge	5	ns	
$\mathrm{t}_{\text {ZRD }}$	Valid read negated to output High-Z before valid ALE rising edge		28	ns

Note: $\overline{W R}$ shall be tied to high.
Figure-63 Parallel Intel Multiplexed Microprocessor Interface Read Cycle

8.11.5.2Write Cycle Specification

Symbol	Parameter	Min	MAX	Units
$\mathrm{t}_{\text {AEW }}$	Valid ALE signal width	5	ns	
$\mathrm{t}_{\text {WSW }}$	Valid write signal width	5 or wait until RDY acti- vated		
$\mathrm{t}_{\text {HCW }}$	$\overline{\mathrm{WR}}+\overline{\mathrm{CS}}$ to valid hold time	35	ns	
$\mathrm{t}_{\text {CSD }}$	Valid $\overline{\mathrm{WR}}+\overline{\mathrm{CS}}$ falling edge delay after ALE falling edge	0	ns	
$\mathrm{t}_{\text {VAS }}$	Valid address to ALE setup time	5	ns	
$\mathrm{t}_{\text {VAH }}$	Valid address to ALE hold time	5	ns	
$\mathrm{t}_{\text {AED }}$	Valid ALE rising edge delay after $\overline{\mathrm{WR}}+\overline{\mathrm{CS}}$ rising edge	5	ns	
$\mathrm{t}_{\text {DV }}$	Data available time before valid write signal rising edge	5	ns	
$\mathrm{t}_{\text {DH }}$	Valid data hold time after valid write signal rising edge before the next AS rising edge	5	ns	

Note: $\overline{\mathrm{RD}}$ shall be tied to high.

Figure-64 Parallel Intel Multiplexed Microprocessor Interface Write Cycle

8.12 JTAG TIMING CHARACTERISTICS

Symbol	Parameter	Min	Typ.	Max	Unit
t 1	TCK Period	100		ns	
t2	TMS to TCK Setup Time; TDI to TCK Setup Time	25		ns	
t3	TCK to TMS Hold Time; TCK to TDI Hold Time	25		ns	
t4	TCK to TDO Delay Time			50	ns

Figure-65 JTAG Timing

AIS	-	Alarm Indication Signal
AMI	-	Alternate Mark Inversion
ARB	-	Arbitrary Pattern
BPV	-	Bipolar Violation
CF	-	Corner Frequency
CV	-	Code Violation
DPLL	-	Digital Phase Locked Loop
EXZ	-	Excessive Zeroes
FIFO	-	First In First Out
HDB3	-	High Density Bipolar 3
HPS	-	Hitless Protection Switching
IB	-	Inband Loopback
LAIS	-	Line Alarm Indication Signal
LBPV	-	Line Bipolar Violation
LEXZ	-	Line Excessive Zeroes
LLOS	-	Line Loss of Signal
LOS	-	Loss Of Signal
NRZ	-	Non-Return to Zero
PBX	-	Private Branch Exchange
PRBS	-	Pseudo Random Bit Sequence
QRSS	-	Quasi-Random Signal Source
RJA	-	Receive Jitter Attenuator
RZ	-	Return to Zero
SAIS	-	System Alarm Indication Signal
SBPV	-	System Bipolar Violation
SDH	-	Synchronous Digital Hierarchy
SEXZ	-	System Excessive Zeroes

SLOS	-	System LOS
SONET	-	Synchronous Optical Network
TEPBGA	-	Thermally Enhanced Plastic Ball Grid Array
TJA	-	Transmit Jitter Attenuator
TLOS	-	Transmit Loss of Signal
TOC	-	Transmit Over Current

() IDT

A
Alarm Indication Signal (AIS) 46
B
Bipolar Violation (BPV) 42
Ccable
coaxial cable 29, 31, 38, 39
twisted pair cable 29, 38
clock input
MCLK 65
XCLK 65
clock output
CLKE1 60
REFA/REFB 61
CLKA/CLKB 61
MCLK 61
recovery clock 61
Code Violation (CV) 42
common control 23
Corner Frequency (CF) 41
D
decoder 33
E
encoder 35
error counter 49
Excessive Zeroes (EXZ) 42
F
free running 60, 61
G
G. 772 Monitoring 58
H
heatsink 119
high impedance 18, 29, 34, 38, 40
Hitless Protection Switch (HPS) 29
hitless switch 29
hot-swap 29
hot-switchover 29
Iimpedance matchingreceive
External Impedance Matching 29, 31
Fully Internal Impedance Matching 29
Partially Internal Impedance Matching 29
transmit
External Impedance Matching 38
Internal Impedance Matching 38, 39
Interrupt 66
J
JA-Limit 41
Jitter Measurement (JM) 59
JTAG 26, 117
L
line interface 18, 29, 38
receive
Differential 29
Single Ended 31
transmit
Differential 38
Single Ended 39
line monitor 32
loopback
Analog Loopback 53
Digital Loopback 55
Dual Loopback
Manual Remote Loopback + Automatic Digital Loopback 56
Manual Remote Loopback + Manual Digital Loopback 56
Remote Loopback 54
Loss of Signal (LOS) 43
Line LOS (LLOS) 43
System LOS (SLOS) 44
Transmit LOS (TLOS) 45
M
microprocessor interface 24, 69
G. 772 monitoring 58
line monitor 32
P
pattern
ARB 47, 48
Inband Loopback (IB) 47, 49
PRBS 47, 48
power down 34, 40
receiver 34
transmitter 40
Protected Non-Intrusive Monitoring 32
R
receive sensitivity 32
reset
global software reset 69
hardware reset 69
power-on reset 69
Rx clock \& data recovery 33
S
slicer 33
system interface 19, 33, 34
receive
Dual Rail NRZ Format 33
Dual Rail RZ Format 33
Dual Rail Sliced 33
Single Rail NRZ Format 33
transmit
Dual Rail NRZ Format 34
Dual Rail RZ Format 34
Single Rail NRZ Format 34
T
Transmit Over Current (TOC) 38, 52
W
waveform template 35

ORDERING INFORMATION

Data Sheet Document History

12/07/2005

for SALES:
1-800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
408-360-1552
email:TELECOMhelp@idt.com

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.

[^0]: 1. XCLK is derived from MCLK. It is 2.048 MHz .
[^1]: 1. XCLK is derived from MCLK. It is 2.048 MHz .
[^2]: 1. XCLK is derived from MCLK. It is 2.048 MHz .
[^3]: 1. Jitter is no more than 0.001 Ul .
[^4]: 1. Jitter is no more than 0.001 Ul .
