

CPC-44-MR-LR-CLFA

Features

- Support 40GBASE-LR4 application
- Up to 10km transmission on SMF
- CWDM DFB laser and PIN receiver
- high speed I/O electrical interface
- MDIO interface with integrated Digital Diagnostic monitoring
- CFP MSA package with duplex LC connector
- Single +3.3V power supply
- Power consumption less than 7 W
- Operating case temperature: -5~+70°C
- RoHS compliant with lead free soldering

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40	-	+85	°C	
Supply Voltage	V _{cc}	-0.5	-	+4.0	V	
Operating Relative Humidity	RH	-	-	+85	%	

Recommended Operating Conditions

Table 2 – Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	T _C	-5	-	+70	°C	
Power Supply Voltage	V _{cc}	3.14	3.3	3.46	V	
Power Supply Current	I _{CC}	-	-	2	А	
Power Dissipation	PD	-	-	7.0	W	
Aggregate Bit Rate	BR _{AVE}	39.81	-	44.58	Gbps	
Lane Bit Rate	BR _{LANE}	9.95	-	11.16	Gbps	
Transmission Distance	TD	2	-	10,000	m	1

Note 1: Measured with SMF.

CPC-44-MR-LR-CLFA

Optical Characteristics

Table 3 – Optical Characteristics

Transmitter									
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes			
Center Wavelength Range Lane 0		λ_{C0}	1264.5	1271	1277.5	nm			
Center Wavelength Range Lane 1		λ_{C1}	1284.5	1291	1297.5	nm			
Center Wavelength Range Lane 2		λ_{C2}	1304.5	1311	1317.5	nm			
Center Wavelength Range Lane 3		λ_{C3}	1324.5	1331	1337.5	nm			
Total Launch Output Power		P _{TOT}	-	-	8.3	dBm	1		
Average Launch Power per Lane		PTX_AVE_LANE	-	-	2.3	dBm			
Optical Modulation Amplitude per Lane		OMA	-4	-	-	dBm	1		
Optical Modulation Amplitude-TDP per l	_ane	OMA_TDP	-4.8	-	-	dBm			
Average Output Power (Laser Off)		P _{0UT-OFF}	-	-	-30	dBm	1		
Side Mode Suppression Ratio		SMSR	30	-	-	dB			
Extinction Ratio		ER	3.5	-	-	dB	2		
Transmitter and Dispersion Penalty		TDP	-	-	2.3	dB			
Optical Return Loss Tolerance		ORLT	-	-	12	dB			
Optical Eye Mask		Compliant with IEEE 802.3ba-2010 2							
Receiver									
Center Wavelength Range Lane 0	λ_{C0}		1264.5	1271	1277.5	nm			
Center Wavelength Range Lane 1		λ_{C1}	1284.5	1291	1297.5	nm			
Center Wavelength Range Lane 2		λ_{C2}	1304.5	1311	1317.5	nm			
Center Wavelength Range Lane 3		λ_{C3}	1324.5	1331	1337.5	nm			
Average Rx Power per Lane	PF	RX_AVE_LANE	-13.7		2.3	dBm			
Rx Sensitivity in OMA per Lane	Pı	N-SENS_OMA_LANE	-	-	-11.5	dBm	3		
Stress Rx Sensitivity in OMA per Lane	P _{IN-SE}	NS_STRESS_OMA_LANE	-	-	-9.9	dBm	3		
Receiver Overload	P _{IN-OL}		2.3	-	-	dBm	3		
Optical Return Loss		Ref	-	-	-26	dB			
LOS Assert per lane		LOS _A	-25	-	-	dBm			
LOS Hysteresis	LOS _H		0.5	-	2.0	dB			

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER $\leq 10^{-12}$.

CPC-44-MR-LR-CLFA

Electrical Characteristics

Table 4 – Electrical Characteristics

Transmitter									
Pa	arameter	Symbol	Min.	Typical	Max.	Unit	Notes		
Differential Dat	a Input Amplitude	V _{IN,P-P}	400	-	1000	mVpp			
Input Differenti	al Impedance	Z _{IN}	80	100	120	Ω			
	Normal Operation	V _{OL}	-0.3	-	0.4	V			
TX_Fault	Transmitter Fault	V _{OH}	2.4	-	V _{CC}	V			
Tx_Disable	Normal Operation	V _{IL}	-0.3	-	0.8	V			
	Laser Disable	V _{IH}	2.0	-	V _{CC} +0.3	V			
	Receiver								
Differential Data Output Amplitude		V _{OUT,P-P}	200	-	1600	mVpp			
Output Differential Impedance		Zo	80	100	120	Ω			
Output Rise/Fall Time, 10%~90%		T _R	30	-	-	ps			
Rx_LOS	Normal Operation	V _{OL}	-0.3	-	0.4	V			
	Lose Signal	V _{OH}	2.4	-	V _{cc}	V			

Pin Definitions

Figure 1, Pin View

CPC-44-MR-LR-CLFA

Table 5–Pin Function Definitions

	Top Row (2nd Half)		Bottom Row (2nd Half)
148	GND	1	3.3V_GND
147	REFCLKn	2	3.3V_GND
146	REFCLKp	3	3.3V_GND
145	GND	4	3.3V_GND
144	(S1_REFCLKn)	5	3.3V_GND
143	(S1_REFCLKp)	6	3.3V
142	GND	7	3.3V
141	N.C.	8	3.3V
140	N.C.	9	3.3V
139	GND	10	3.3V
138	(S1_TX3n)	11	3.3V
137	(S1_TX3p)	12	3.3V
136	GND	13	3.3V
135	(S1_TX2n)	14	3.3V
134	(S1_TX2p)	15	3.3V
133	GND	16	3.3V_GND
132	(S1_TX1n)	17	3.3V_GND
131	(S1_TX1p)	18	3.3V_GND
130	GND	19	3.3V_GND
129	(S1_TX0n)	20	3.3V_GND
128	(S1_TX0p)	21	VND_IO_A
127	GND	22	VND_IO_B
126	N.C.	23	GND
125	N.C.	24	(TX_MCLKn)
124	GND	25	(TX_MCLKp)
123	TX3n	26	GND
122	ТХ3р	27	VND_IO_C
121	GND	28	VND_IO_D
120	TX2n	29	VND_IO_E
119	ТХ2р	30	PRG_CNTL1
118	GND	31	PRG_CNTL2
117	TX1n	32	PRG_CNTL3
116	TX1p	33	PRG_ALRM1
115	GND	34	PRG_ALRM2
114	TX0n	35	PRG_ALRM3
113	TX0p	36	TX_DIS
112	GND	37	MOD_LOPWR

	Top Row (1st Half)		Bottom Row (1st Half)
111	GND	38	MOD_ABS
110	(S1_RX_MCLKn)	39	MOD_RSTn
109	(S1_RX_MCLKp)	40	RX_LOS
108	GND	41	GLB_ALRMn
107	N.C.	42	PRTADR4
106	N.C.	43	PRTADR3
105	GND	44	PRTADR2
104	(S1_RX3n)	45	PRTADR1
103	(S1_RX3p)	46	PRTADR0
102	GND	47	MDIO
101	(S1_RX2n)	48	MDC
100	(S1_RX2p)	49	GND
99	GND	50	VND_IO_F
98	(S1_RX1n)	51	VND_IO_G
97	(S1_RX1p)	52	GND
96	GND	53	VND_IO_H
95	(S1_RX0n)	54	VND_IO_J
94	(S1_RX0p)	55	3.3V_GND
93	GND	56	3.3V_GND
92	N.C.	57	3.3V_GND
91	N.C.	58	3.3V_GND
90	GND	59	3.3V_GND
89	RX3n	60	3.3∨
88	RX3p	61	3.3∨
87	GND	62	3.3∨
86	RX2n	63	3.3∨
85	RX2p	64	3.3∨
84	GND	65	3.3∨
83	RX1n	66	3.3∨
82	RX1p	67	3.3V
81	GND	68	3.3∨
80	RX0n	69	3.3V
79	RX0p	70	3.3V_GND
78	GND	71	3.3V_GND
77	(RX_MCLKn)	72	3.3V_GND
76	(RX_MCLKp)	73	3.3V_GND
75	GND	74	3.3V_GND

CPC-44-MR-LR-CLFA

Mechanical Diagram

Figure 2, Mechanical Diagram of CFP

Order Information

Table 6 – Order Information

Part No.	Application	Data Rate	Laser Source	Fiber Type
CPC-44-MR-LR-CLFA	40GBASE-LR4	44.58G	CWDM DFB	SMF

CPC-44-MR-LR-CLFA

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures. Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics's sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

Contact

U.S.A. Headquarters 20550 Nordhoff Street Chatsworth, CA 91311 USA Tel: +1-818-773-9044 Fax: +1-818-773-0261 © Copyright Source Photonics, Inc. 2007~2010 All rights reserved

China

Building #2&5, West Export Processing Zone No. 8 Kexin Road, Hi-Tech Zone Chengdu, 611731, China Tel: +86-28-8795-8788 Fax: +86-28-8795-8789

Taiwan

9F, No 81, Shui Lee Rd. Hsinchu, Taiwan, R.O.C. Tel: +886-3-5169222 Fax: +886-3-5169213