

HMC629LP4 / 629LP4E

3 dB LSB GaAs MMIC 4-BIT DIGITAL ATTENUATOR, DC - 6 GHz

Typical Applications

The HMC629LP4(E) is ideal for:

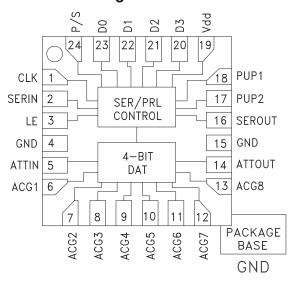
- Cellular/3G Infrastructure
- WiBro / WiMAX / 4G
- Microwave Radio & VSAT
- Test Equipment and Sensors
- IF & RF Applications

Features

3 dB LSB Steps to 45 dB

Power-Up State Selection

Low Insertion Loss: 2.5 dB


TTL/CMOS Compatible, Serial, Parallel or Latched Parallel Control

±0.25 dB Typical Step Error

Single +3V or +5V Supply

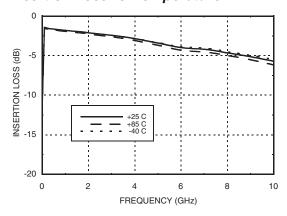
24 Lead 4x4mm SMT Package: 16mm²

Functional Diagram

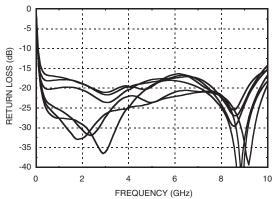
General Description

The HMC629LP4(E) is a broadband 4-bit GaAs IC Digital Attenuator in a low cost leadless SMT package. This versatile digital attenuator incorporates off-chip AC ground capacitors for near DC operation, making it suitable for a wide variety of RF and IF applications. The dual mode control interface is CMOS/TTL compatible, and accepts either a three wire serial input or a 4-bit parallel word. For applications which require only 33 dB of attenuation range, the HMC629LP4(E) provides excellent attenuation accuracy up to 10 GHz. The HMC629LP4(E) is housed in a RoHS compliant 4x4 mm QFN leadless package, and requires no external matching components.

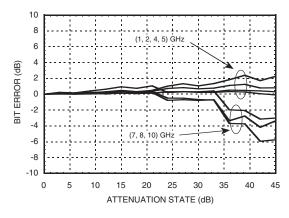
Electrical Specifications,


 $T_A = +25^{\circ} \text{ C}$, 50 Ohm System, with Vdd = +5V & Vctl = 0/+5V (Unless Otherwise Noted)

Parameter	Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss	DC - 6		2.5	5	dB dB
Attenuation Range	DC - 6		45		dB
Return Loss (ATTIN, ATTOUT, All Atten. States)	DC - 6		17		dB
Attenuation Accuracy: (Referenced to Insertion Loss) All Attenuation States		± (0.50 + 5% of Atten. Setting) Max.		dB dB	

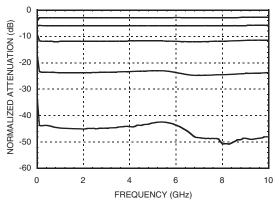


Insertion Loss vs. Temperature

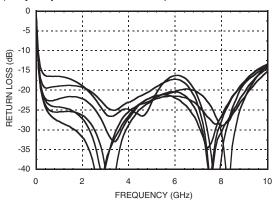


Input Return Loss

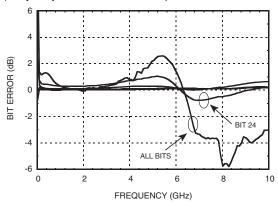
(Only Major States are Shown)


Bit Error vs. Attenuation State

3 dB LSB GaAs MMIC 4-BIT DIGITAL ATTENUATOR, DC - 6 GHz


Normalized Attenuation

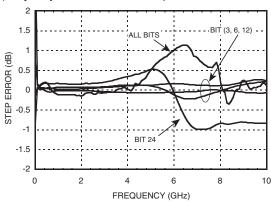
(Only Major States are Shown)

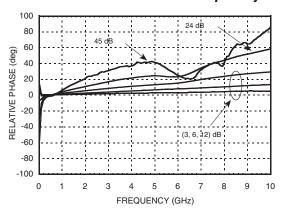

Output Return Loss

(Only Major States are Shown)

Bit Error vs. Frequency

(Only Major States are Shown)

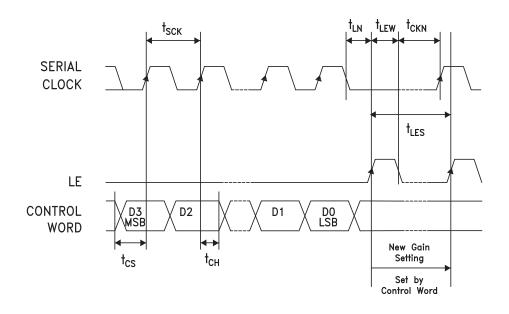




Step Error vs. Frequency

(Only Major States are Shown)

Normal Relative Phase vs. Frequency

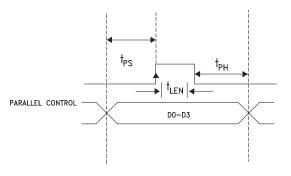


Serial Control Interface

The HMC629LP4E contains a 3-wire SPI compatible digital interface (SERIN, CLK, LE). The serial control interface is activated when P/S is kept high. The 6-bit serial word must be loaded MSB first. The positive-edge sensitive CLK and LE requires clean transitions. If mechanical switches are used, sufficient debouncing should be provided. When LE is high, 4-bit data in the serial input register is transferred to the attenuator. When LE is high CLK is masked to prevent data transition during output loading.

When P/S is low, 3-wire SPI interface inputs (SERIN, CLK, LE) are disabled and the input register is loaded with parallel digital inputs (D0-D5). When LE is high, 4-bit parallel data changes the state of the part per truth table.

For all modes of operations, the state will stay constant while LE is kept low.



Parameter Тур. Min. serial period, t_{sc} 100 ns Control set-up time, tos 20 ns Control hold-time, t_{CH} 20 ns LE setup-time, t_{LN} 10 ns Min. LE pulse width, t, , 10 ns Min LE pulse spacing, t_{LES} 630 ns Serial clock hold-time from LE, town 10 ns 0 ns Hold Time, t_{DL} Latch Enable Minimum Width, t. EN Setup Time, tps 2 ns

Timing Diagram (Latched Parallel Mode)

Parallel Mode (Direct Parallel Mode & Latched Parallel Mode)

Note: The parallel mode is enabled when P/S is set to low.

Direct Parallel Mode - The attenuation state is changed by the Control Voltage Inputs directly. The LE (Latch Enable) must be at a logic high to control the attenuator in this manner.

Latched Parallel Mode - The attenuation state is selected using the Control Voltage Inputs and set while the LE is in the Low state. The attenuator will not change state while LE is Low. Once all Control Voltage Inputs are at the desired states the LE is pulsed. See timing diagram below for reference.

Power-Up States

If LE is set to logic LOW at power-up, the logic state of PUP1 and PUP2 determines the power-up state of the part per PUP truth table. If the LE is set to logic HIGH at power-up, the logic state of D3-D0 determines the power-up state of the part per truth table. The attenuator latches in the desired power-up state approximately 200 ms after power-up.

Power-On Sequence

The ideal power-up sequence is: GND, Vdd, digital inputs, RF inputs. The relative order of the digital inputs are not important as long as they are powered after Vdd / GND

Bias Voltage

Vdd (Vdc)	Idd (Typ.) (mA)
5	2.0

Control Voltage Table

State	Vdd = +3V	Vdd = +5V
Low	0 to 0.5V @ <1 μA	0 to 0.8V @ <1 μA
High	2 to 3V @ <1 μA	2 to 5V @ <1 μA

PUP Truth Table

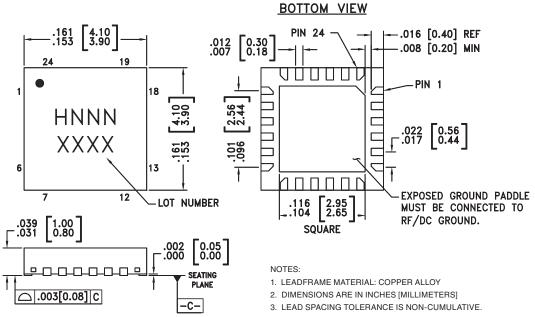
LE	PUP1	PUP2	Attenuation State
0	0	0	45 dB
0	1	0	45 dB
0	0	1	45 dB
0	1	1	Insertion Loss
1	Х	Х	0 to 45 dB

Note: Power-Up with LE= 1 provides direct parallel operation with D0 - D3.

Truth Table

Control Voltage Input			Attenuation State	
D3	D2	D1	D0	Attenuation State
High	High	High	High	Reference I.L.
High	High	High	Low	3 dB
High	High	Low	High	6 dB
High	Low	High	High	12 dB
Low	High	High	High	24 dB

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.



Absolute Maximum Ratings

RF Input Power (DC - 6 GHz)	28 dBm (T = +85 °C)
Digital Inputs (Data, Shift Clock, Latch Enable & Serial Input)	-0.5 to Vdd +0.5V
Bias Voltage (Vdd)	5.6V
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 10 mW/°C above 85 °C) [1]	0.66 W
Thermal Resistance	98.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

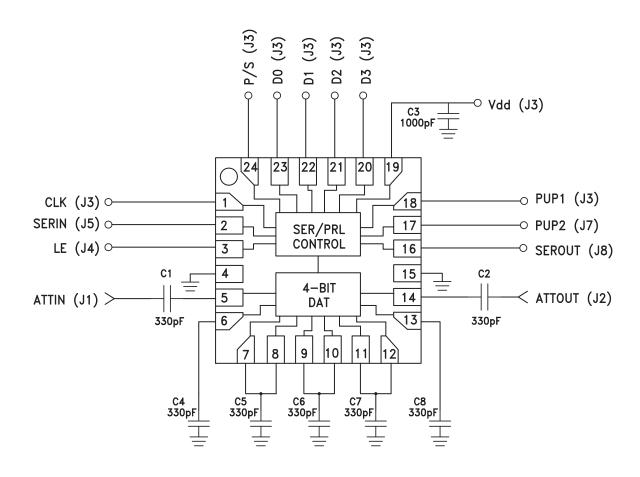
Outline Drawing

- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO PCB DESIGN AND ASSEMBLY FOR QFN PACKAGES APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC629LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H629 XXXX
HMC629LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H629</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX


Pin Descriptions

Pin Number	Function	Description	Interface Schematic
24	P/S CLK SERIN	See truth table, control voltage table and timing diagram.	P/S CLK SERIN LE
4, 15	GND	These pins and package bottom must be connected to RF/DC ground.	○ GND =
5, 14	ATTIN, ATTOUT	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required. Select value based on lowest frequency of operation.	ATTIN, O
6 - 13	ACG1 - ACG6	External capacitors to ground are required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible. See Application Circuit.	
16	SEROUT	Serial input data delayed by 6 clock cycles.	Vdd O SEROUT
17, 18	PUP2, PUP1	See truth table, control voltage	PUP2, PUP1
20 - 23	D3, D2, D1, D0	table and timing diagram.	D0-D3
19	Vdd	Supply voltage	


Application Circuit

Evaluation PCB

List of Materials for Evaluation PCB 118889 [1]

Item	Description	
J1, J2	PCB Mount SMA Connector	
J10, J12	DC Pin	
J11	18 Pin DC Connector	
C1 - C2	100 pF, capacitor 0402 pkg	
C3	1000 pF, capacitor 0402 pkg	
C4 - C8	330 pF, capacitor 0402 pkg	
R1 - R10	100 kOhm Resistor, 0402 Pkg.	
SW1	SPDT 4 Position DIP Switch	
U1	HMC629LP4(E) Digital Attenuator	
PCB [2]	118888 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR