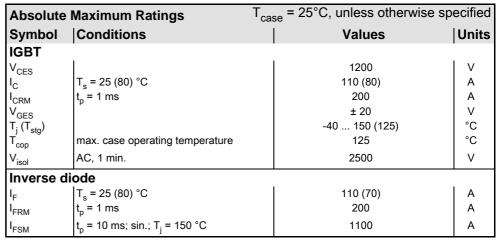
## SKIM 150GD128D



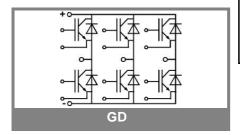
SKiM 4

### **SPT IGBT Module**

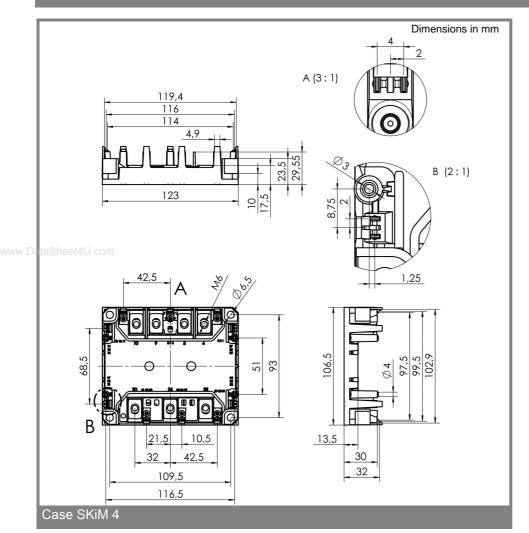
#### **SKIM 150GD128D**

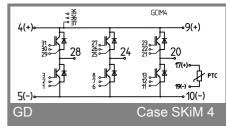

**Target Data** 

#### **Features**


- N channel, homogeneous planar IGBT Silicon structure with n+ buffer layer in SPT (soft punch through) technology
- · Low inductance case
- Fast & soft inverse CAL diodes
- Isolated by Al2O3 DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- Spring contyact system to attach driver PCB to the control
- Integrated temperature sensor

## **Typical Applications**


- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Switching (not for linear use)




| Characteristics T                   |                                                                                           | case = 25 | ase = 25°C, unless otherwise specified |             |        |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|-----------|----------------------------------------|-------------|--------|--|
| Symbol                              | Conditions                                                                                | mir       | ı. typ.                                | max.        | Units  |  |
| IGBT                                |                                                                                           |           |                                        |             |        |  |
| $V_{GE(th)}$                        | $V_{GE} = V_{CE}$ ; $I_C = 8 \text{ mA}$                                                  | 4,5       | 5,5                                    | 6,5         | V      |  |
| I <sub>CES</sub>                    | V <sub>GE</sub> = 0; V <sub>CE</sub> = V <sub>CES</sub> ;<br>T <sub>j</sub> = 25 (125) °C |           | 0,1                                    | 0,3         | mA     |  |
| \ <u>/</u>                          | T <sub>j</sub> = 25 (125) °C<br> T <sub>i</sub> = 25 (125) °C                             |           | 1 (0,9)                                | 1,15 (1,05) | V      |  |
| V <sub>CEO</sub><br>r <sub>CE</sub> | T <sub>i</sub> = 25 (125) °C                                                              |           | 9 (12)                                 | 12 (15)     | mΩ     |  |
| V <sub>CEsat</sub>                  | I <sub>Cnom</sub> = 100 A; V <sub>GE</sub> = 15 V,                                        |           | 1,9 (2,1)                              | , ,         | V      |  |
| CEsat                               | $T_i = 25 (125)$ °C on chip level                                                         |           | .,0 (=,.)                              | 2,00 (2,00) |        |  |
| C <sub>ies</sub>                    | $V_{GF} = 0; V_{CF} = 25 \text{ V}; f = 1 \text{ MHz}$                                    |           | 9                                      |             | nF     |  |
| C <sub>oes</sub>                    | $V_{GE} = 0$ ; $V_{CE} = 25 \text{ V}$ ; $f = 1 \text{ MHz}$                              |           | 1                                      |             | nF     |  |
| C <sub>res</sub>                    | $V_{GE} = 0$ ; $V_{CE} = 25$ V; $f = 1$ MHz                                               |           | 1                                      |             | nF     |  |
| L <sub>CE</sub>                     | GE CE                                                                                     |           |                                        | 15          | nΗ     |  |
| R <sub>CC'+EE'</sub>                | resistance, terminal-chip T <sub>c</sub> = 25 (125) °                                     | С         | 1,35 (1,75)                            |             | mΩ     |  |
| t <sub>d(on)</sub>                  | V <sub>CC</sub> = 600 V                                                                   |           |                                        |             | ns     |  |
| t <sub>r</sub> `´                   | I <sub>Cnom</sub> = 100 A                                                                 |           |                                        |             | ns     |  |
| t <sub>d(off)</sub>                 | $R_{Gon} = R_{Goff} = \Omega$                                                             |           |                                        |             | ns     |  |
| t <sub>f</sub>                      | T <sub>j</sub> = 125 °C                                                                   |           |                                        |             | ns     |  |
| E <sub>on</sub> (E <sub>off</sub> ) | V <sub>GE</sub> ± 15 V                                                                    |           | 11,5 (9,5)                             |             | mJ     |  |
| $E_{on} \left( E_{off} \right)$     | with SKHI 64; T <sub>j</sub> = 125 °C                                                     |           |                                        |             | mJ     |  |
|                                     | $V_{CC} = 600 \text{ V}; I_{C} = 100 \text{ A}$                                           |           |                                        |             |        |  |
| Inverse diode                       |                                                                                           |           |                                        |             |        |  |
| $V_F = V_{EC}$                      | I <sub>Fnom</sub> = 100 A; V <sub>GE</sub> = 0 V;<br>T <sub>i</sub> = 25 (125) °C         |           | 2 (1,8)                                | 2,5 (2,3)   | V      |  |
| $V_{TO}$                            | T <sub>j</sub> = 25 (125) °C                                                              |           | 1,1                                    | 1,45 (1,25) | V      |  |
| r <sub>T</sub>                      | T <sub>j</sub> = 25 (125) °C                                                              |           | 9                                      | 13 (11)     | mΩ     |  |
| I <sub>RRM</sub>                    | $I_F = 100 \text{ A}; T_j = 125 ^{\circ}\text{C}$                                         |           |                                        |             | A      |  |
| Q <sub>rr</sub>                     | $V_{GE} = 0 \text{ V di/dt} = A/\mu s$                                                    |           |                                        |             | μC     |  |
| E <sub>rr</sub>                     | $R_{Gon} = R_{Goff} = \Omega$                                                             |           |                                        |             | mJ     |  |
|                                     | haracteristics                                                                            | ı         |                                        | •           | 1.7047 |  |
| $R_{th(j-s)}$                       | per IGBT                                                                                  |           |                                        | 0,4         | K/W    |  |
| R <sub>th(j-s)</sub>                | per FWD                                                                                   |           |                                        | 0,5         | K/W    |  |
|                                     | ure Sensor                                                                                | 1         |                                        |             |        |  |
| R <sub>TS</sub>                     | T = 25 (100) °C                                                                           |           | 1 (6,7)                                |             | kΩ     |  |
| tolerance                           | T = 25 (100) °C                                                                           |           | 3 (2)                                  |             | %      |  |
| Mechanic                            | al data                                                                                   |           |                                        |             | .      |  |
| M <sub>1</sub>                      | to heatsink (M5)                                                                          | 2         |                                        | 3           | Nm     |  |
| $M_2$                               | for terminals (M6)                                                                        | 4         |                                        | 5           | Nm     |  |
| W                                   |                                                                                           |           |                                        | 310         | g      |  |



# **SKiM 150GD128D**





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.