

PN5115 P-CHANNEL JFET

Linear Systems replaces discontinued Siliconix PN5115

This analog switch is designed for inverting switching into inverting input of an Operational Amplifier.

The TO-92 provides a low cost option and ease of manufacturing.

(See Packaging Information).

PN5115 Benefits:

- Low On Resistance
- $I_{D(off)} \le 500 \text{ pA}$
- Switches directly from TTL logic

PN5115 Applications:

- **Analog Switches**
- Commutators
- Choppers

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX PN5115					
LOW ON RESISTANCE	r _{DS(on)} ≤ 100Ω				
LOW CAPACITANCE	6pF				
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-55°C to +200°C				
Operating Junction Temperature	-55°C to +200°C				
Maximum Power Dissipation					
Continuous Power Dissipation	500mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	I _G = -50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage	V _{GDS} = 30V				
Gate to Source Voltage	V _{GSS} = 30V				

PN5115 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

	PNSTIS ELECTRICAL CHARACTERISTICS @ 25 C (unless otherwise noted)						
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS	
BV_GSS	Gate to Source Breakdown Voltage	30				$I_{G} = 1\mu A$, $V_{DS} = 0V$	
$V_{GS(off)}$	Gate to Source Cutoff Voltage	3		6		$V_{DS} = -15V, I_{D} = -1nA$	
$V_{GS(F)}$	Gate to Source Forward Voltage		-0.7	-1	V	$I_G = -1 \text{mA}, V_{DS} = 0 \text{V}$	
			-1.0			$V_{GS} = 0V, I_D = -15mA$	
$V_{DS(on)}$	Drain to Source On Voltage		-0.7	-0.8		$V_{GS} = 0V$, $I_D = -7mA$	
			-0.5			$V_{GS} = 0V$, $I_D = -3mA$	
I _{DSS}	Drain to Source Saturation Current (Note 2)	-15		-60	mA	$V_{DS} = -15V, V_{GS} = 0V$	
I _{GSS}	Gate Reverse Current		5	500		$V_{GS} = 20V, \ V_{DS} = 0V$	
I _G	Gate Operating Current		-5			$V_{DS} = -15V, I_{D} = -1mA$	
	Drain_Cutoff Current		-10		pΑ	$V_{DS} = -15V, V_{GS} = 12V$	
I _{D(off)}			-10	-500		V _{DS} = -15V, V _{GS} = 7V	
			-10	-		$V_{DS} = -15V, V_{GS} = 5V$	
r _{DS(on)}	Drain to Source On Resistance			100	Ω	$I_{D} = -1 \text{mA}, V_{GS} = 0 \text{V}$	

PN5115 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance		4.5		mS	$V_{DS} = -15V, I_{D} = 1mA, f = 1kHz$
g os	Output Conductance		20		μS	
r _{DS(on)}	Drain to Source On Resistance			100	Ω	$I_D = 0A$, $V_{GS} = 0V$, $f = 1kHz$
C _{iss}	Input Capacitance		20	25		$V_{DS} = -15V$, $V_{GS} = 0V$, $f = 1MHz$
			5		pF	$V_{DS} = 0V$, $V_{GS} = 12V$, $f = 1MHz$
C_{rss}	Reverse Transfer Capacitance		6	7		$V_{DS} = 0V$, $V_{GS} = 7V$, $f = 1MHz$
			6			$V_{DS} = 0V$, $V_{GS} = 5V$, $f = 1MHz$
e _n	Equivalent Noise Voltage		20		nV/√Hz	$V_{DG} = 10V, I_D = 10mA, f = 1kHz$

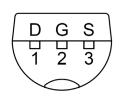
PN5115 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

	SYMBOL	CHARACTERISTIC		UNITS	CONDITIONS	
Ī	t _{d(on)}	Turn On Time	10		$V_{GS}(L) = -7V$	
Ī	t _r	Turn On Rise Time	20	ns	ns	$V_{GS}(H) = 0V$
ĺ	t _{d(off)}	Turn Off Time	8			See Switching Circuit
Î	t _f	Turn Off Fall Time	30		Ü	

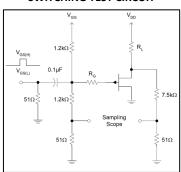
Note 1 - Absolute maximum ratings are limiting values above which PN5115 serviceability may be impaired. Note 2 - Pulse test: PW≤ 300 µs, Duty Cycle ≤ 3%

PN5115 SWITCHING CIRCUIT PARAMETERS

V _{DD}	-6V
V_{GG}	12V
R_L	910Ω
R_G	220Ω
I _{D(on)}	-7mA


Micross Components Europe

Available Packages:


PN5115 in TO-92 PN5115 in bare die.

Please contact Micross for full package and die dimensions

TO-92 (Bottom View)

SWITCHING TEST CIRCUIT

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution