

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{V}_{\mathrm{DSS}}$	Drain to Source Voltage	30	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate to Source Voltage	± 20	V
I_{D}	Drain Current Continuous $\left(\mathrm{T}_{\mathrm{C}}<167^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$	80	A
	Pulsed	See Figure 4	
E_{AS}	Single Pulse Avalanche Energy	1904	mJ
P_{D}	Power Dissipation	341	W
	Derate above $25^{\circ} \mathrm{C}$	(Note 1)	2.3
$\mathrm{~T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature	-55 to +175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JC}}$	Maximum Thermal Resistance Junction to Case	0.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Maximum Thermal Resistance Junction to Ambient TO-263,1in ${ }^{2}$ copper pad area	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8132	FDB8132_F085	TO-263AB	330 mm	24 mm	800 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

B ${ }_{\text {VDSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	30	-	-	V
Idss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	-	250	
IGss	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	2.8	4	V
$\mathrm{r}_{\mathrm{DS}(\text { on })}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	1.4	1.6	$\mathrm{~m} \Omega$
		$\mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$	-	2.3	2.7	$\mathrm{~m} \Omega$

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		-	14100	-	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			-	2135	-	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance				1400	-	pF
Rg	Gate Resistance	$\mathrm{f}=1 \mathrm{MHz}$		-	1.4	-	Ω
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 13V	$\mathrm{V}_{\text {GS }}=0$ to 13 V	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & I_{D}=80 \mathrm{~A} \end{aligned}$	-	269	350	nC
$\mathrm{Q}_{\mathrm{g}(10)}$	Gate Charge at 10V	$V_{G S}=0$ to 10 V		-	209	272	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0$ to 2 V		-	22	29	nC
Q_{gs}	Gate to Source Gate Charge			-	50	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau			-	28	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	46	-	nC

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Switching Characteristics

t_{on}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=2 \Omega \end{aligned}$	-	-	80	ns
$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time		-	20	-	ns
t_{r}	Turn-On Rise Time		-	29	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	79	-	ns
t_{f}	Turn-Off Fall Time		-	30	-	ns
$\mathrm{t}_{\text {fff }}$	Turn-Off Time		-	-	173	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=80 \mathrm{~A}$	-	0.9	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=40 \mathrm{~A}$	-	0.8	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=80 \mathrm{~A}, \mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	53	69	ns
		-	54	71	nC	

Notes:
1: Starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=0.93 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=64 \mathrm{~A}$

Typical Characteristics

Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Typical Characteristics

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability

Figure 8. Saturation Characteristics

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 14. Gate Charge vs Gate to Source Voltage

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$
Auto-SPM ${ }^{\text {™ }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	The Right Technology for Your Success ${ }^{\text {TM }}$
Build it Now $^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	me ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	p wer
CorePOWER ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	franchise ${ }^{\text {Tin }}$
CROSSVOLT ${ }^{\text {TM }}$	Gmax ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CTL ${ }^{\text {TM }}$	GTO $^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$ TinyCalctM
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	(${ }^{T M}$	TinyLogic ${ }^{\text {® }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	\bigcirc	TINYOPTOTM
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
EcoSPARK ${ }^{\circledR}$	MICROCOUPLER ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$ TinyPWM ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {TM }}$
ESBC ${ }^{\text {™ }}$	MicroPak ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$ TriFault Detect ${ }^{\text {TM }}$
$E^{\circledR 8}$	MicroPak2 ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	TRUECURRENTTM*
5	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {® }}$	μ SerDes ${ }^{\text {m }}$
Fairchild Semiconductor ${ }^{\circledR}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	Nos.
FACT Quiet Series ${ }^{\text {™ }}$	OptiHiT ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	SerDes ${ }^{\text {a }}$
$\mathrm{FACT}^{\text {® }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	UHC ${ }^{\circledR}$
FAST ${ }^{\circledR}$	OPTOPLANAR ${ }^{\circledR}$	SupreMOS ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		SyncFET ${ }^{\text {TM }}$	UniFET ${ }^{\text {dm }}$
FETBench ${ }^{\text {™ }}$		Sync-Lock ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {® * }}$	PDP SPM ${ }^{\text {™ }}$	- SYSTEM ${ }^{\circledR}{ }^{\text {* }}$	VisualMax ${ }^{\text {™ }}$ S ${ }^{\text {TM }}$
FPS ${ }^{\text {TM }}$	Power-SPM ${ }^{\text {™ }}$	5 GENERAL	XS ${ }^{\text {m }}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

