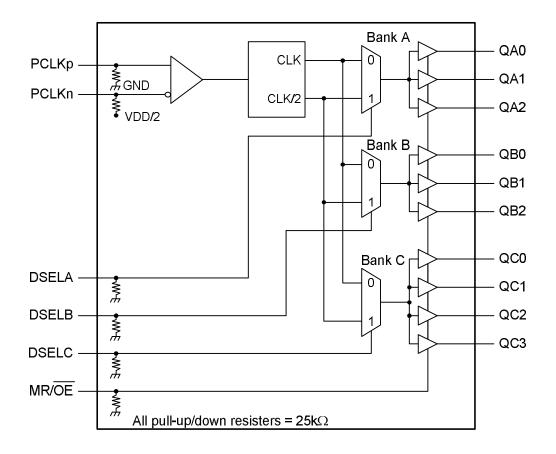
Oct-2011

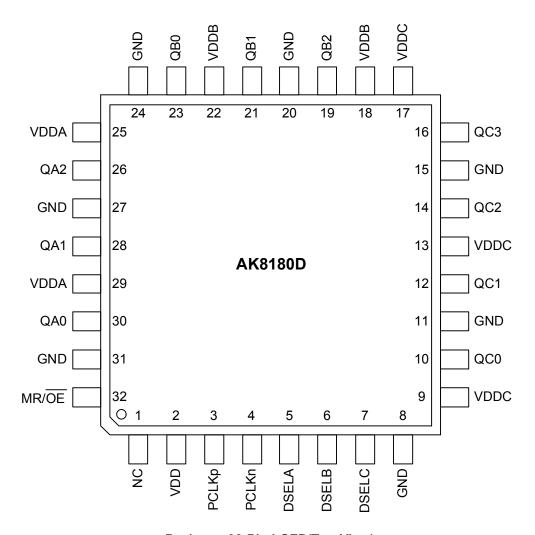
2.5V, 3.3V LVCMOS 1:10 Clock Fanout Buffer AK8180D

Features


- 3 3 4 configurable 10 LVCMOS outputs
- Translate LVPECL input to LVCMOS output
- Single, dual and mixed voltage supply available on 2.5V and 3.3V
- Clock output frequency up to 250MHz
- Output-to-output skew : 200ps max
- High-impedance output control
- Enable to drive up to 20 series terminated clock lines
- Operating Temperature Range: -40 to +85°C
- Package: 32-pin LQFP (Pb free)
- Pin compatible with MPC9456

Description

The AK8180D is a member of AKM's LVCMOS clock fanout buffer family designed for telecom, networking and computer applications, requiring a range of clocks with high performance and low skew. The AK8180D distributes 10 buffered clocks configured by pin-setting per bank. The 10 outputs can drive 10 terminated 50 Ω clock lines.


AK8180D are derived from AKM's long-term-experienced clock device technology, and enable clock output to perform low skew. The AK8180D is available in a 7mm x 7mm 32-pin LQFP package.

Block Diagram

Pin Descriptions

Package: 32-Pin LQFP(Top View)

Pin No.	Pin Name	Pin Type	Pullup /down	Description	
1	NC			No internal connection	
2	VDD			Power Supply	
3	PCLKp	IN	PD	LVDECL Differential Clock Innuts	
4	PCLKn	IN	PU/PD	LVPECL Differential Clock Inputs	
5	DSELA	IN	PD	Divide Select Input for Output Bank A	
6	DSELB	IN	PD	Divide Select Input for Output Bank B	
7	DSELC	IN	PD	Divide Select Input for Output Bank C	
8,	GND			Ground	
9	VDDC			Power Supply for Output bank C	
10	QC0	OUT		Clock output Bank C	
11	GND			Ground	
12	QC1	OUT		Clock output Bank C	

(continued on next page)

Pin No.	Pin Name	Pin Type	Pullup /down	Description
13	VDDC			Power Supply for Output bank C
14	QC2	OUT		Clock output Bank C
15	GND			Ground
16	QC3	OUT		Clock output Bank C
17	VDDC			Power Supply for Output bank C
18	VDDB			Power Supply for Output bank B
19	QB2	OUT		Clock output Bank B
20	GND			Ground
21	QB1	OUT		Clock output Bank B
22	VDDB			Power Supply for Output bank B
23	QB0	OUT		Clock output Bank B
24	GND			Ground
25	VDDA			Power Supply for Output bank A
26	QA2	OUT		Clock output Bank A
27	GND			Ground
28	QA1	OUT		Clock output Bank A
29	VDDA			Power Supply for Output bank A
30	QA0	OUT		Clock output Bank A
31	GND			Ground
32	MR/OE	IN	PD	Master Reset and Output Enable
3∠	WR/UE	IIN	PU	(Output disable = High impedance)

PU: Pull up PD: Pull down

Ordering Information

Part Number	Marking	Shipping Packaging	Package	Temperature Range
AK8180D	AK8180D	Tape and Reel	32-pin LQFP	-40 to 85 °C

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted (1)

Items	Symbol	Ratings	Unit
Supply voltage	VDD	-0.3 to 4.6	V
Input voltage	Vin	GND-0.3 to VDD+0.3	V
Input current (any pins except supplies)	I _{IN}	±10	mA
Storage temperature	Tstg	-55 to 130	°C

Note

(1) Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

ESD Sensitive Device

This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKM recommends that this device is handled with appropriate precautions.

Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating temperature	Та		-40		85	°C
Supply voltage (1)	VDD	VDD±5%	2.375	2.5	2.625	· V
Supply voltage **	טטי		3.135	3.3	3.465	

⁽¹⁾ Power of 2.5V or 3.3V requires to be supplied from a single source. A decoupling capacitor of $0.1\mu F$ for power supply line should be located close to each VDD pin.

Supported VDD Supply Voltage Configurations

Supply Voltage Configuration	VDD	VDDA	VDDB	VDDC	GND
3.3 V	3.3 V	3.3 V	3.3 V	3.3 V	0 V
3.3 V and 2.5 V	3.3 V	3.3 V or 2.5 V	3.3 V or 2.5 V	3.3 V or 2.5 V	0 V
2.5 V	2.5 V	2.5 V	2.5 V	2.5 V	0 V

General Specification

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Termination Voltage	VTT			VDD/2		V
ESD Protection 1	MM	Machine model	200			V
ESD Protection 2	HBM	Human Body Model	2000			V
Latch-Up Immunity	LU		200			mA
Power Dissipation Capacitance		per output		10		pF
Input Capacitance				4.0		pF

Power Supply Current <3.3V>

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Full operation (1)	IDD1	CCLK0=250MHz CLK_SEL=L		95	120	mA
Quiescent state (1)(2)	IDD2			1.6	2.6	mA

⁽¹⁾ The outputs have no loads. (2) All inputs are in default state by the internal pull up/down resisters.

DC Characteristics <3.3V>

All specifications at VDD=VDDA=VDDB=VDDC= 3.3V±5%, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
High Level Input Voltage	V _{IH}	LVCMOS	2.0		VDD+0.3	V
Low Level Input Voltage	V _{IL}	LVCMOS	-0.3		8.0	V
Peak-to-Peak Input Voltage	Vpp	LVPECL	250			mV
Common Mode Range (1)	Vcmr	LCPECL	1.1		VDD-0.6	٧
Input Current (2)	I _L 1	Vin=GND or VDD			200	μA
High Level Output Voltage	V _{OH}	I _{OH} = -24mA ⁽³⁾	2.4			V
Low level Output Voltage	V _{OL}	I _{OL} = +24mA ⁽³⁾ I _{OL} = +12mA			0.55 0.30	>
Output Impedance				14-17		Ω

⁽¹⁾ Vcmr(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the Vcmr range and the input swing lies within the Vpp(DC) specification.

AC Characteristics <3.3V> (1)

All specifications at VDD=VDDA=VDDB=VDDC= $3.3V\pm5\%$, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Input Frequency	f _{IN}	Pin: PCLKp/n	0		250	MHz
Input Pulse Width	t _{pwIN}	Pin: PCLKp/n	1.4			ns
Peak-to-Peak Input Voltage	Vpp	Pin: PCLKp/n	500		1000	mV
Common Mode Range (2)	Vcmr	Pin: PCLKp/n	1.3		VDD-0.8	
Input Rise/Fall time (3)	t_{rIN}, t_{fOUT}	Pin: PCLKp/n 0.8 to 2.0V			1.0	ns
Output Frequency	f _{OUT}	Pin: Q0-11	0		250	MHz
Propagation Delay	t _{PLH} t _{PHL}	PCLK to any Q	1.3	2.2	3.55	ns
Output Disable Time	t_{PLZ}, t_{PHZ}				10	ns
Output Enable Time	t_{PZL}, t_{PZH}				10	ns
Output-to-Output Skew	t _{skPP}	Within one bank Any output, same output divider Any output, Any output divider			150 200 350	ps
Device-to-Device Skew	t _{skD}				2.25	ns
Output Pulse Skew (4)	t _{skO}				200	ps

(continued on next page)

MS1306-E-01 Oct-2011

⁽²⁾ Input pull-up / pull down resistors influence input current.

⁽³⁾ The AK8180D is capable of driving 50 Ω transmission lines of the incident edge. Each output drives one 50 Ω parallel terminated transmission line to a termination voltage of VTT. Alternatively, the device drives up to two 50 Ω series terminated transmission lines.

⁽⁴⁾ I_{DDQ} is the DC current consumption of the device with all outputs open and the input in its default state or open.

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	
Output Duty Cycle	II)Cout	DC _{REF} = 50% x1 output	45	50	55	%	
		DC _{REF} = 25-75% x1/2 output	47	50	53	70	
Output Rise/Fall Time	t _r , t _f	0.55 to 2.4V	0.1		1.0	ns	

- (1) AC characteristics apply for parallel output termination of 50 Ω to VTT.
- (2) The AK8180D is functional up to an input and output clock frequency of 350MHz and is characterized up to 250MHz.
- (3) Vcmr(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the Vcmr range and the input swing lies within the Vpp(AC) specification. Violation of Vcmr or Vpp impacts tplhyphL and tskb.
- (4) Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, input pulse width, output duty cycle and maximum frequency specifications.
- (5) Output pulse skew t_{skO} is the absolute difference of the propagation delay times: $|t_{PLH} t_{PHL}|$. Output duty cycle is frequency dependent (= 0.5 \pm t_{skO} x fout). For example at fout = 125 MHz the output duty cycle limit is 50% \pm 2.5%.

Power Supply Current <2.5V>

VDD= 2.5V±5%, Ta: -40 to +85°C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Full operation ⁽¹⁾	IDD1	CCLK0=250MHz CLK_SEL=L		71	95	mA
Quiescent state (1)(2)	IDD2			1.6	2.5	mA

⁽¹⁾ The outputs have no loads. (2) All inputs are in default state by the internal pull up/down resisters.

DC Characteristics <2.5V>

All specifications at VDD=VDDA=VDDB=VDDC= 2.5V±5%, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
High Level Input Voltage	V _{IH}	LVCMOS	1.7		VDD+0.3	V
Low Level Input Voltage	V _{IL}	LVCMOS	-0.3		0.7	٧
Peak-to-Peak Input Voltage	Vpp	LVPECL	250			mV
Common Mode Range (1)	Vcmr	LVPECL	1.1		VDD-0.7	٧
Input Current (2)	I _L 1	Vin=GND or VDD			200	μΑ
High Level Output Voltage	V _{OH}	I _{OH} = -15mA ⁽³⁾	1.8			٧
Low level Output Voltage	V _{OL}	I _{OL} = +15mA ⁽³⁾			0.6	V
Output Impedance				17-20		Ω

- (1) Vcmr(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the Vcmr range and the input swing lies within the Vpp(DC) specification.
- (2) Input pull-up / pull down resistors influence input current.
- (3) The AK8180D is capable of driving 50 Ω transmission lines of the incident edge. Each output drives one 50 Ω parallel terminated transmission line to a termination voltage of VTT. Alternatively, the device drives up to two 50 Ω series terminated transmission lines.
- (4) IDDQ is the DC current consumption of the device with all outputs open and the input in its default state or open.

AC Characteristics <2.5V> (1)

All specifications at VDD=VDDA=VDDB=VDDC= 2.5V±5%, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Input Frequency (2)	f _{IN}	Pin: PCLKp/n			250	MHz
Input Pulse Width	t _{pwIN}	Pin: PCLKp/n	1.4			ns
Peak-to-Peak Input Voltage	Vpp	Pin: PCLKp/n	500		1000	mV
Common Mode Range (2)	Vcmr	Pin: PCLKp/n	1.1		VDD-0.7	
Input Rise/Fall time (3)	$t_{\text{rIN}}, t_{\text{fOUT}}$	Pin: PCLKp/n 0.8 to 2.0V			1.0	ns
Output Fragues ou (2)	f _{OUT}	DSELx = 0 x1 output			250	MHz
Output Frequency (2)		DSELx = 1 x1/2 output			125	
Propagation Delay	t _{PLH}	PCLKp/n to any Q	1.4	2.4	4.4	ns
	t _{PHL}					
Output Disable Time	t_{PLZ},t_{PHZ}				10	ns
Output Enable Time	t_{PZL},t_{PZH}				10	ns
		Within one bank			150	
Output-to-Output Skew	t _{skPP}	Any output, same output divider			200	ps
		Any output, Any output divider			350	
Device-to-Device Skew	t _{skD}				3.0	ns
Output Pulse Skew (4)	t _{skO}				200	ps
Output Duty Cycle	DC _{OUT}	DC _{REF} = 50% x1 or 1/2 output	45	50	55	%
Output Rise/Fall Time	t _r , t _f	0.6 to 1.8V	0.1		1.0	ns

- (1) AC characteristics apply for parallel output termination of 50 Ω to VTT.
- (2) The AK8180D is functional up to an input and output clock frequency of 350MHz and is characterized up to 250MHz.
- (3) Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, input pulse width, output duty cycle and maximum frequency specifications.
- (4) Output pulse skew t_{skO} is the absolute difference of the propagation delay times: $|t_{PLH} t_{PHL}|$. Output duty cycle is frequency dependent (= 0.5 \pm t_{skO} x fout). For example at fout = 125 MHz the output duty cycle limit is 50% \pm 2.5%.

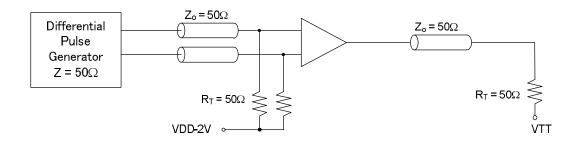
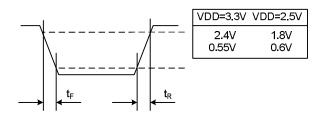
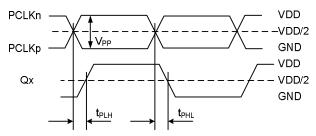
AC Characteristics <mixed with 3.3V and 2.5V> (1)(2)

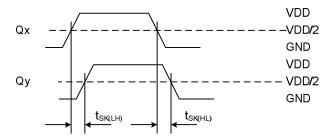
All specifications at VDD, VDDB= 3.3V±5%, VDDA, VDDC=2.5V±5%, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Propagation Delay	t _{PLH} t _{PHL}	PCLK to any Q	See 3.3V table		le	ns
		Within one bank			150	
Output-to-Output Skew	t_{skPP}	Any output, same output divider			250	ps
		Any output, Any output divider			350	
Device-to-Device Skew	t_{skD}				2.5	ns
Output Pulse Skew (3)	t _{skO}				250	ps
Output Duty Cycle	DC _{OUT}	DC _{REF} = 50% x1 or 1/2 output	45	50	55	%

- (1) AC characteristics apply for parallel output termination of 50 Ω to VTT.
- (2) For all other AC specifications, refer to 2.5V and 3.3V tables according to the supply voltage of the output bank.
- (3) Output pulse skew t_{skO} is the absolute difference of the propagation delay times: $|t_{PLH} t_{PHL}|$. Output duty cycle is frequency dependent (= 0.5 \pm t_{skO} x fout). For example at fout = 125 MHz the output duty cycle limit is 50% \pm 2.5%.

MS1306-E-01 Oct-2011


Figure 1 PCLK/PCLKn AC Test Reference

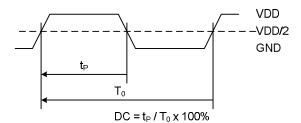

Figure 2 Output Translation Time Test Reference

Figure 3 Propagation Delay Test Reference

The pin-to-pin skew is defined as the worst case difference in propagation delay between any two similar delay paths within a single device.

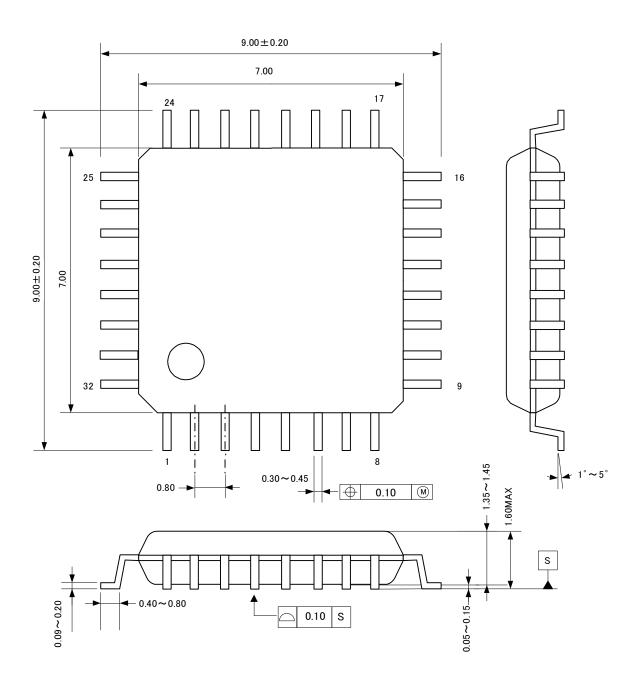
Figure 4 Output-to-Output Skew

The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage.

Figure 5 Output Duty Cycle (DC)

Function Table

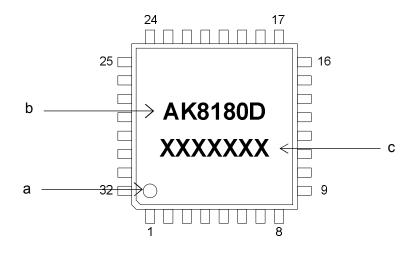
The following table shows the inputs/outputs clock state configured through the control pins.


Table 1: Control-Pin-Setting Function Table

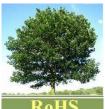
Control Pin	Default	0	1
DSELA	0	QA0-2 = REFCLK x 1	QA0-2 = REFCLK x 1/2
DSELB	0	QB0-2 = REFCLK x 1	QB0-2 = REFCLK x 1/2
DSELC	0	QC0-3 = REFCLK x 1	QC0-3 = REFCLK x 1/2
MR/OE	0	Output enabled	Internal reset. Outputs disabled. (High impedance)

Package Information

• Mechanical data: 32-lead LQFP



• Marking


a: #1 Pin Index b: Part number

c: Date code (7 digits)

AKM and the logo - are the brand of AKM's IC's and identify that AKM continues to offer the best choice for high performance mixed-signal solution under this brand.

RoHS Compliance

All integrated circuits form Asahi Kasei Microdevices Corporation (AKM) assembled in "lead-free" packages* are fully compliant with RoHS.

(*) RoHS compliant products from AKM are identified with "Pb free" letter indication on product label posted on the anti-shield bag and boxes.

MS1306-E-01 Oct-2011

IMPORTANT NOTICE

• These products and their specifications are subject to change without notice.

When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.

Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.

Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.

or strategic materials.

AKM products are neither intended nor authorized for use as critical components_{Note1}, in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

• It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.