New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005

FAX: (973) 376-8960

2N4203

Silicon Controlled Rectifier Reverse Blocking Triode Thyristor

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Reverse Blocking Voltage (1) (T _J = 105°C)	VRRM	50	Voits
*Peak Forward Blocking Voltage (1) (T _C = 105°C)	:	700	
Repetitive Peak On-State Current (PW = 3 µs, Duty Cycle = 0.6°. 35°C)	TRM	100	Amps
Continuous On-State Current (T _C = 25°C)	١ _٢	5	Amps
Current Application Rate (2)	di/ dt	5000	Aμs
Peak Forward Gate Power	PGFM	20	Watts
Average Forward Gate Power	PGF(AV)	1	Watt
Peak Forward Gate Current	^I GFM	5	Amps
Peak Gate Voltage — Forward Reverse (3)	VGFM VGRM	10 10	Voits
Operating Junction Temperature Range Blocking State Conducting State	ТЈ	-65 to +105 -65 to +200	C
Storage Temperature Range	T _{stg}	-65 to +200	.C
Stud Torque		15	in. Ib.

*JEDEC Registered Data.

- (1) Characterized for unilateral applications where reverse blocking capability is not important. Higher voltage units available upon request, VDRM and VRRM may be applied as a continuous do voltage for zero or negative gate voltage but positive gate voltage must not be applied concurrently with a negative potential on the anode. When checking blocking capability, do not permit the applied voltage to exceed the rated voltage.
- (2) Minimum Gate Trigger Pulse: $i_G = 200$ mA, PW = 1 μ s, $t_r = 20$ ns.
- (3) Do not reverse bias gate during torward conduction if anode current exceeds 10 amperes.

Designers Data for "Worst Case" Conditions — The Designers Data Sheets permit the design or most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate worst circuit session.

NOTE: 1. ALL RULES & NOTES ASSOCIATED WITH REFERENCED TO:64 OUTLINE SHALL APPLY

STYLE 1. PIN 1 CATHODE 2. GATE STUD – ANODE

	MILLIMETERS		YEHES		
DIM	MIN	MAX	MIN	MAX	
	10.77	111.10	0.424	0.437	
C	7.62	10.16	0.300	0.400	
E	1.52	4.45	0.060	0.175	
F	2.03	3.45	0.080	0.136	
G	0.33	-	0.013	-	
н	-	1.98	-	0.078	
1	10.16	11.51	0.400	0.453	
K	17.78	21.72	0.700	0.855	
N	-	10.77	-	0.424	
•	4.14	4 80	0.163	0.189	
Q	1.02	191	0.040	0 075	
A	10.16	-	0 400	-	
S	4.212	4 310	0 1658	C :697	
T	1.52	- 1	0.060	-	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Fig. No.	Symbol	Min	Max	Unit
*Peak Forward or Reverse Blocking Current (Rated V _{DRM} or V _{RRM} , gate open) T _J = 25°C T _J = 105°C	17	DRM, IRRM	=	10 2	μA mA
Gate Trigger Current (Continuous dc) (Anode Voltage = 7 Vdc, R_L = 100 ohms, T_C = 25°C) *(Anode Voltage = 7 Vdc, R_L = 100 ohms, T_C = -65°C)	14	^I GT	=	50 100	mA
Gate Trigger Voltage (Continuous dc) *(Anode Voltage = rated V_{DRM} , R_L = 100 ohms, T_C = 105°C) (Anode Voltage = 7 Vdc, R_L = 100 ohms, T_C = 25°C) *(Anode Voltage = 7 Vdc, R_L = 100 ohms, T_C = -65°C)	12	[∨] GT _	0. 2 —	 1.5 2	Volts
*Holding Current (Anode Voltage = 7 Vdc, gate open, T _C = 105°C)		Ή	3	_	mA
*Forward "On" Voltage (I _{TM} = 5 Adc, PW = 1 ms max, Duty cycle ≤ 1%)		∨тм	2.6	-	Voits
*Dynamic Forward "On" Voltage (0.5 μ s after 50% decay point on dynamic forward voltage waveform) Forward Current: 30 A pulse Gate Pulse: at 200 mA, PW = 1 μ s, t_r = 20 ns	7	VTM	-	25	Volts
*Turn-On Time (2) I _{TM} = 30 A Delay Time Rise Time All types 2N4203 and 2N4204	1, 9 1, 11	t _d t _r	_	200 100	ns
*Pulse Turn-Off Time Test Conditions: PFN discharge; Forward Current = 30 A pulse; Reverse Current = 5 A, T_C = 85°C, dv/dt = 250 $V/\mu s$ to Rated V_{DRM} ; Reverse anode voltage during turn-off interval = 0 V; Reverse gate bias during turn-off interval = 5 V	2, 13	ta		20	μS
*Forward Voltage Application Rate (Linear Rise - Stage) (TC = 105°C, gate open, VD = Rated VDRM	16	d v/dt	250	_	V/μs

[&]quot;YDRM for all types can be applied on a continuous dc basis without incurring damage. Ratings apply for zero or negative gate voltage. When checking torward or reverse blocking capability, these devices should not be tested with a constant current source in a manner that the voltage applied exceeds the rated blocking voltage. Other voltage units available upon request.