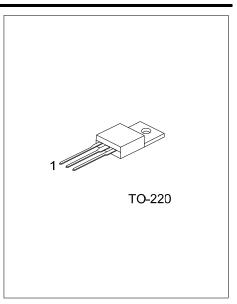
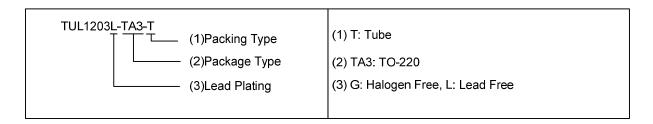
TUL1203 Preliminary NPN SILICON TRANSISTOR


# HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

#### **■** DESCRIPTION

The **TUL1203** is manufactured by using high voltage Planar technology for high voltage capability and high switching speeds.


### **■** FEATURES

- \* BV<sub>CES</sub> Up To 1400V.
- \* Better Distribution Of Dynamic Parameters And Lot To Lot Spread
- \* High Switching Speed



#### ■ ORDERING INFORMATION

| Ordering Number   |                | Dookogo | Pin Assignment |   |   | Dooking |  |
|-------------------|----------------|---------|----------------|---|---|---------|--|
| Lead Free Plating | Halogen-Free   | Package | 1              | 2 | 3 | Packing |  |
| TUL1203L-TA3-T    | TUL1203G-TA3-T | TO-220  | В              | С | Е | Tube    |  |



www.unisonic.com.tw 1 of 4

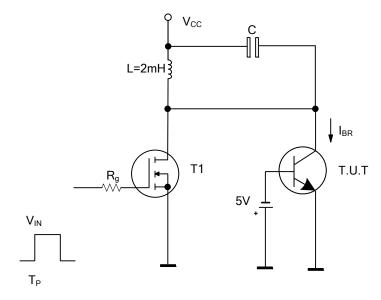
#### ■ ABSOLUTE MAXIMUM RATINGS

| PARAMETER                                       | SYMBOL          | RATINGS    | UNIT |
|-------------------------------------------------|-----------------|------------|------|
| Collector-Base Voltage (I <sub>E</sub> = 0)     | $V_{CBO}$       | 1400       | V    |
| Collector-Emitter Voltage (V <sub>BE</sub> = 0) | $V_{\sf CES}$   | 1400       | V    |
| Collector-Emitter Voltage (I <sub>B</sub> = 0)  | $V_{\sf CEO}$   | 550        | V    |
| Emitter-Base Voltage (I <sub>C</sub> = 0)       | $V_{EBO}$       | 12         | V    |
| Collector Current                               | lc              | 5          | Α    |
| Collector Peak Current (tp <5 ms)               | I <sub>CM</sub> | 8          | Α    |
| Base Current                                    | Ι <sub>Β</sub>  | 2          | Α    |
| Base Peak Current (t <sub>p</sub> <5 ms)        | I <sub>BM</sub> | 4          | Α    |
| Power Dissipation (T <sub>C</sub> = 25°C)       | $P_{D}$         | 100        | W    |
| Junction Temperature                            | $T_J$           | +150       | °C   |
| Storage Temperature                             | $T_{STG}$       | -65 ~ +150 | °C   |

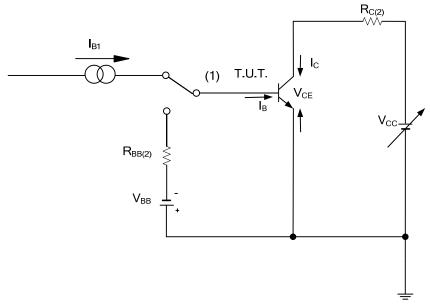
Note: Absolute maximum ratings are the values beyond which the device will be damaged permanently.

Absolute maximum ratings are only stress ratings and it is not implied for functional device operation.

#### **■ THERMAL DATA**


| PARAMETER        | SYMBOL        | RATINGS | UNIT  |
|------------------|---------------|---------|-------|
| Junction to Case | $\theta_{JC}$ | 1.25    | °C /W |

# ■ ELECTRICAL CHARACTERISTICS (T<sub>c</sub> = 25°C unless otherwise specified)


| PARAMETER                                                        |                                         | SYMBOL                | TEST CONDITIONS                                                                                    | MIN | TYP | MAX | UNIT |
|------------------------------------------------------------------|-----------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Collector Cut-off Current (V <sub>BE</sub> = 0)                  |                                         | I <sub>CES</sub>      | V <sub>CE</sub> = 1400 V                                                                           |     |     | 100 | μA   |
| Emitter Cut-off Current (I <sub>B</sub> =                        | er Cut-off Current (I <sub>B</sub> = 0) |                       | V <sub>EB</sub> = 12 V                                                                             |     |     | 100 | μA   |
| Collector-Emitter Sustaining Voltage (I <sub>B</sub> = 0) (Note) |                                         | V <sub>CEO(SUS)</sub> | I <sub>C</sub> = 100 mA                                                                            | 550 |     |     | ٧    |
| Collector-Emitter Saturation Voltage (Note)                      |                                         | V <sub>CE(SAT)</sub>  | $I_C = 1 \text{ A}, I_B = 200 \text{ mA}$                                                          |     |     | 0.5 | V    |
|                                                                  |                                         |                       | $I_C = 2 \text{ A}, I_B = 400 \text{ mA}$                                                          |     |     | 0.7 | V    |
|                                                                  |                                         |                       | $I_C = 3 A, I_B = 1 A$                                                                             |     |     | 1.5 | V    |
| Base-Emitter Saturation Voltage (Note)                           |                                         | W                     | $I_C = 2 A$ , $I_B = 400 mA$                                                                       |     |     | 1.5 | V    |
| base-Emiller Saturation vo                                       | ilage (Note)                            | $V_{BE(SAT)}$         | $I_C = 3 A, I_B = 1 A$                                                                             |     |     | 1.5 | V    |
| DC Current Gain (Note)                                           |                                         | h <sub>FE</sub>       | $I_C = 1 \text{ mA}, V_{CE} = 5 \text{ V}$                                                         | 10  |     |     |      |
|                                                                  |                                         |                       | $I_C = 10 \text{ mA}, V_{CE} = 5 \text{ V}$                                                        | 10  |     |     |      |
|                                                                  |                                         |                       | $I_C = 0.8 \text{ mA}, V_{CE} = 3 \text{ V}$                                                       | 14  |     | 32  |      |
|                                                                  |                                         |                       | $I_C = 2 A, V_{CE} = 5 V$                                                                          | 9   |     | 28  |      |
| Resistive Load                                                   | Storage Time                            | ts                    | I <sub>C</sub> = 2 A, V <sub>CC</sub> = 150 V<br>I <sub>B1</sub> = 0.4 A, I <sub>B2</sub> = -0.8 A |     | 2.5 | 3.0 | μs   |
|                                                                  | Fall Time                               | $t_{F}$               | $T_P = 30 \ \mu s$                                                                                 |     | 0.2 | 0.3 | μs   |
| Avalanche Energy                                                 |                                         | E <sub>AR</sub>       | L = 2 mH, C = 1.8 nF<br>$I_{BR} \le 2.5A$ , 25°C < $T_{C} < 125$ °C                                | 6   |     |     | mJ   |

Note: Pulse Test: Pulse width = 300µs, Duty cycle≤1.5%

## **TEST CIRCUITS**



**Energy Rating Test Circuit** 



Resistive Load Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.