TECHNICAL MANUAL

LSIFC949X Dual Channel Fibre Channel I/O Processor

November 2005

Version 2.0

DB14-000284-02

This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or disclosed to third parties without the express written permission of an officer of LSI Logic Corporation.

LSI Logic products are not intended for use in life-support appliances, devices, or systems. Use of any LSI Logic product in such applications without written consent of the appropriate LSI Logic officer is prohibited.

DB14-000284-02, November 2005

This document describes the LSI Logic Corporation LSIFC949X Dual Channel Fibre Channel I/O Processor and will remain the official reference source for all revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase or use of a product from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or third parties.

Copyright © 2003, 2004, 2005 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

LSI Logic, the LSI Logic logo design, Fusion-MPT, GigaBlaze, MyStorage, and SmarthPath are trademarks or registered trademarks of LSI Logic Corporation. ARM is a registered trademark of ARM Ltd., used under license. All other brand and product names may be trademarks of their respective companies.

DB

To receive product literature, visit us at http://www.lsilogic.com.

For a current list of our distributors, sales offices, and design resource centers, view our web page located at

http://www.lsilogic.com/contacts/index.html

Preface

This book is the primary reference and technical manual for the LSIFC949X Dual Channel Fibre Channel I/O Processor. It contains a complete functional description for the LSIFC949X and includes complete physical and electrical specifications for the product.

Audience

This document was prepared for logic designers and applications engineers and is intended to provide an overview of the LSI Logic LSIFC949X and to explain how to use the LSIFC949X in the initial stages of system design.

This document assumes that you have some familiarity with microprocessors and related support devices. The people who benefit from this book are

- engineers and managers who are evaluating the LSIFC949X for possible use in a system
- engineers who are designing the LSIFC949X into a system

Organization

This document has the following chapters and appendixes:

- Chapter 1, Introduction, provides a general description of the LSIFC949X.
- Chapter 2, Fibre Channel Overview, briefly describes some key elements of Fibre Channel, including layers, topologies, and classes of service.

- Chapter 3, LSIFC949X Overview, provides an introduction to the basic features of the LSIFC949X, including the message interface, protocol assist engines, and support components.
- Chapter 4, **Signal Descriptions**, lists and describes the signals on the LSIFC949X.
- Chapter 5, PCI-X Functional Description, describes the PCI-X features contained in the LSIFC949X.
- Chapter 6, **Registers**, briefly describes the PCI-X address space, the Configuration registers, and the host interface registers.
- Chapter 7, Specifications, describes the electrical specifications of the LSIFC949X and provides pinout information and packaging dimensions.
- Appendix A, Register Summary, is a register summary.
- Appendix B, Reference Specifications, lists several specifications and applicable World Wide Web URLs that may benefit the reader.
- Appendix C, Glossary of Terms and Abbreviations, provides definitions for terms and abbreviations used in this manual.

Related Publications

Fusion-MPT[™] Message Passing Interface Specification, Version 1.5, Document No. DB14-000174-03

PCI Local Bus Specification, Revision 2.3

PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0

Conventions Used in This Manual

The word assert means to drive a signal true or active. The word *deassert* means to drive a signal false or inactive. Signals that are active LOW end in a slash ("/").

Hexadecimal numbers are indicated by the prefix "0x"—for example, 0x32CF. Binary numbers are indicated by the prefix "0b"—for example, 0b0011.0010.1100.1111.

Revision History

Document Number	Date/Version	Remarks
DB14-000284-02	November 2005 Version 2.0	Section 1.1.1 (page 1-8); modified firmware support for concurrent commands and concurrent logins. Throughout document; changed HOTSWAPEN/ signal name to CPCI_EN/. Table 4.1; added text to 64EN/ and CPCI_EN/ description. Table 4.3; rewrote description for MA[23:0] and added reference to SEN #S11066, "LSIFC949X Design Considerations." Table 4.4; modified description of GPI0[5:0], LED[4:0]/, and MODE[7:0]. Chapter 6; added Per-Vector Masking Capable bit to MSI Message Control register, added MSI Mask Bits, MSI Pending Bits, MSI-X Capability ID, MSI-X Next Pointer, MSI-X Message Control, MSI-X Table Offset, and MSI-X PBA Offset register descriptions. Chapter 6; changed values in Designed Maximum Cumulative Read Size and Designed Maximum Split Transactions bit fields of the PCI-X Status register. Table 7.2; added maximum I _{DDC} and I _{DDIO} specifications. Modified Table 7.9, "PCI Bidirectional Signals" and Table 7.11, "SSRAM Read/Write/Read Timings." Replaced Figure 7.4 with one-page top view. Added alphanumeric pad listing tables (Tables 7.14 and 7.15). Various additional minor editorial changes throughout document.
DB14-000284-01	September 2004 Version 0.6	Updated to reflect LSIFC949X support of <i>PCI Local Bus Spec- ification,</i> Revision 2.3, and <i>PCI-X Addendum to the PCI Local Bus Specification,</i> Revision 2.0; added Section 1.2.5, "INCITS T10 Authorized DIF," page 1-6; deleted the Snooze Control feature, pad name ZZ (BGA pad number K3 becomes "NC"); changed BGA pad numbers V3, AA13, AB13, AC13, AF12, and AC25 to "NC"; corrected BGA pad number B19 to "AD[48]"; corrected BGA pad number P2 to "RXVSS0"; deleted Section 6.3, "Shared Memory"; updated "Device ID" designations on pages 6-4 and 6-5; made several changes to specifications on pages 7-2, 7-4, 7-5, and 7-6; changed MCLK cycle time on pages 4-14 and 7-10; updated Figure 7.5 to package code "7T," deleted Section 7.4, "Package Thermal Considerations"; and corrected several other minor typos throughout the document.
DB14-000284-00	June 2004 Version 0.5	Initial release.

Contents

Chapter 1				
Introduction				
	1.1	Overvi	ew	1-1
		1.1.1	Hardware Features	1-1
		1.1.2	FC Features	1-2
		1.1.3	Software Features	1-3
		1.1.4	OS Support	1-3
		1.1.5	Targeted Applications	1-3
	1.2	Genera	al Description	1-4
		1.2.1	Multifunction PCI-X	1-5
		1.2.2	Autospeed Negotiation	1-5
		1.2.3	Autotopology Negotiation	1-5
		1.2.4	Failover and Load Balancing	1-6
		1.2.5	INCITS T10 Authorized DIF	1-6
	1.3	Hardw	are Overview	1-6
		1.3.1	PCI/PCI-X Interface	1-7
		1.3.2	32-Bit Memory Controller	1-7
		1.3.3	I/O Processor	1-7
		1.3.4	System Interface	1-8
		1.3.5	Integrated 4 Gbit/s Transceivers	1-8
		1.3.6	Link Controllers	1-8
		1.3.7	Datapath	1-8
		1.3.8	Context Managers	1-8
	1.4	Initiato	r Operations	1-9
	1.5	Target	Operations	1-9
	1.6	Diagno	ostics	1-9

Chapter 2 Fibre Channel Overview

2.1	Introduc	tion	2-1
2.2	FC Laye	ers	2-2
2.3	Frames		2-3
2.4	Exchang	ges	2-4
2.5	FC Port	S	2-7
2.6	FC Topo	ologies	2-7
	2.6.1	Point-to-Point Topology	2-8
	2.6.2	Fabric Topology	2-8
	2.6.3	Arbitrated Loop Topology	2-8
2.7	Classes	of Service	2-9

Chapter 3 LSIFC949X Overview

3.1	Introdu	iction	3-1
3.2	Messa	ge Interface	3-3
	3.2.1	Messages	3-3
	3.2.2	Message Flow	3-4
3.3	SCSI N	Message	3-6
3.4	Target	Message	3-6
3.5	Suppor	rt Components	3-7
	3.5.1	SSRAM Memory	3-7
	3.5.2	Flash ROM	3-8
	3.5.3	Serial EEPROM	3-8

Chapter 4 Signal Descriptions

4.1	PCI/PCI-X Interface	4-3
4.2	Fibre Channel Interface	4-6
4.3	Memory Interface	4-9
4.4	Configuration and Miscellaneous	4-11
4.5	Test and I/O Processor Debug	4-13
4.6	Power and Ground	4-15

Chapter 5 PCI-X Function

nal Desc	ription		
5.1	Overvie	W	5-1
5.2	PCI-X	Addressing	5-2
	5.2.1	PCI Configuration Space	5-2
	5.2.2	PCI I/O Space	5-2
	5.2.3	PCI Memory Space	5-3
5.3	PCI/PC	I-X Bus Commands and Implementation	5-3
	5.3.1	Interrupt Acknowledge Command	5-4
	5.3.2	Special Cycle Command	5-4
	5.3.3	I/O Read Command	5-4
	5.3.4	I/O Write Command	5-5
	5.3.5	Memory Read Command	5-5
	5.3.6	Memory Read Dword Command	5-5
	5.3.7	Memory Write Command	5-5
	5.3.8	Alias to Memory Read Block Command	5-5
	5.3.9	Alias to Memory Write Block Command	5-6
	5.3.10	Configuration Read Command	5-6
	5.3.11	Configuration Write Command	5-6
	5.3.12	Memory Read Multiple Command	5-6
	5.3.13	Split Completion Command	5-7
	5.3.14	Dual Address Cycles (DAC) Command	5-7
	5.3.15	Memory Read Line Command	5-7
	5.3.16	Memory Read Block Command	5-8
	5.3.17	Memory Write and Invalidate Command	5-8
	5.3.18	Memory Write Block Command	5-9
5.4	PCI Arl	bitration	5-9
5.5	PCI Ca	ache Mode	5-9

Chapter 6 Registers

6.1	PCI-X Configuration Space Register Description	6-1
6.2	PCI I/O Space and Memory Space Register Description	6-32

Chapter 7 Specifications 7.1 **Electrical Requirements** 7-1 7.2 AC Timing 7-4 PCI/PCI-X Interface Timings 7.2.1 7-5 7.2.2 Fibre Channel Interface Timings 7-5 7.2.3 Memory Interface Timings 7-5 7.3 Packaging 7-9

Appendix A Register Summary

Appendix B Reference Specifications

Appendix C Glossary of Terms and Abbreviations

Index

Customer Feedback

Figures

1.1	LSIFC949X Typical Implementation	1-5
1.2	LSIFC949X Functional Block Diagram	1-7
2.1	FC Layers	2-2
2.2	Link Control Frame	2-3
2.3	Data Frame	2-3
2.4	Exchange to Character	2-5
2.5	FCP Exchange	2-6
2.6	Write Event Trellis	2-7
2.7	Point-to-Point Topology	2-8
2.8	Fabric Topology	2-8
2.9	Arbitrated Loop Topology	2-9
3.1	LSIFC949X Block Diagram	3-2
3.2	LSIFC949X Message Flow	3-5
3.3	LSIFC949X Typical Implementation	3-7
4.1	LSIFC949X Functional Signal Grouping	4-2
7.1	SSRAM Read/Write/Read Timing Waveforms	7-6
7.2	Flash ROM Read Timing Waveforms	7-7
7.3	Flash ROM Write Timing Waveforms	7-8
7.4	LSIFC949X 544-Pin FPBGA Top View	7-9
7.5	LSIFC949X 544-Pad FPBGA Mechanical Drawing	7-14

Tables

4.1	PCI/PCI-X Interface	4-3
4.2	Fibre Channel Interface	4-6
4.3	Memory Interface	4-9
4.4	Configuration and Miscellaneous	4-12
4.5	Test and I/O Processor Debug	4-14
4.6	Power and Ground	4-15
5.1	PCI/PCI-X Bus Commands and Encodings	5-3
6.1	LSIFC949X PCI-X Configuration Space Address Map	6-2
6.2	Device ID Values	6-3
6.3	Multiple Message Enable Field Bit Encoding	6-23
6.4	BIR Field Definitions	6-27
6.5	Maximum Outstanding Split Transactions	6-29
6.6	Maximum Memory Read Count	6-30
6.7	PCI I/O Space Address Map	6-33
6.8	PCI Memory [0] Address Map	6-34
6.9	PCI Memory [1] Address Map	6-34
6.10	Interrupt Signal Routing	6-41
7.1	Absolute Maximum Stress Ratings	7-1
7.2	Operating Conditions	7-2
7.3	Capacitance	7-2
7.4	Input Signals (FAULT1/, FAULT0/, MODE[7:0], SWITCH,	
	CPCI_EN/)	7-2
7.5	Schmitt Input Signals (REFCLK, TCK, TDI, TRST/, TMS_	
	TMS_ICE)	7-3
7.6	4 mA Bidirectional Signals (LIPRESET/, ODIS1, ODIS0,	
	BYPASS1/, BYPASS0/, MD[31:0], MA[23:0], MWE[1:0]/,	
	FLASHCS/, BWE[3:0]/, RAMCS/, MP[3:0], SCL, SDA, RX	
	RXLOSO, ADSC/, ADV/, TDO)	7-3
7.7	8 mA Bidirectional Signals (MODDEF1[2:0], MODDEF0[2 GPIO[5:0], MOE[1:0]/, LED[4:0]/, MCLK)	:0], 7-3
7.8	PCI Input Signals (PCICLK, GNT/, IDSEL, RST/)	7-4
7.9	PCI Bidirectional Signals (AD[63:0], C_BE[7:0]/, FRAME/,	IRDY/,
	TRDY/, STOP/, PERR/, PAR, ACK64/, ENUM/, 64EN/)	7-4
7.10	PCI Output Signals (PAR64, REQ/, REQ64/, DEVSEL/, S	ERR/,
	INTA/, INTB/)	7-4
7.11	SSRAM Read/Write/Read Timings	7-6

7.12	FLASH ROM Read Timings	7-7
7.13	Flash ROM Write Timings	7-8
7.14	Alphanumeric Pad Listing by PBGA Position	7-10
7.15	Alphanumeric Pad Listing by Signal Name	7-12
A.1	LSIFC949X Multifunction PCI Registers	A-1
A.2	LSIFC949X Host Interface Registers	A-3
B.1	Reference Specifications	B-1

Chapter 1 Introduction

This chapter provides an overview of the LSIFC949X Dual Channel Fibre Channel I/O Processor. The chapter contains the following sections:

- Section 1.1, "Overview"
- Section 1.2, "General Description"
- Section 1.3, "Hardware Overview"
- Section 1.4, "Initiator Operations"
- Section 1.5, "Target Operations"
- Section 1.6, "Diagnostics"

1.1 Overview

The LSIFC949X is a high-performance, cost-effective, Dual Channel Fibre Channel (FC) I/O processor. It represents the latest system level integration technology in intelligent I/O processors from LSI Logic. The Storage Area Network (SAN) environment is fully supported with Fibre Channel Protocol (FCP) for SCSI.

1.1.1 Hardware Features

The LSIFC949X supports the following list of hardware features:

- Highly integrated, full duplex, Dual Channel FC I/O processor
- Integrated 4 Gbit/s Dual Channel FC serial link
- 64-bit/66 MHz host PCI bus and 133 MHz PCI-X bus (both are backward compatible with 32-bit/33 MHz)
- 32-bit ARM[®] RISC processor
- Intelligent, high-performance context management

- Integrated bit error rate (BER) testing (with special test utilities)
- Synchronous SRAM (SSRAM) external memory interface
- Full simultaneous target and initiator operations
- Implementation of common Message Passing Interface (MPI)
- Firmware support for concurrent host commands
 - 128 concurrent commands with internal SRAM only
 - 1000 concurrent commands with 1 Mbyte SRAM
 - 4000 concurrent commands with 4 Mbytes SRAM
- Firmware support for concurrent logins
 - 32 concurrent logins with internal SRAM only
 - 256 concurrent logins with 1 Mbyte SRAM
 - 2048 concurrent logins with 4 Mbytes SRAM
- PC2001 compliant
- Peripheral Component Interface (PCI), Revision 2.3 compliant
- JTAG debug interface
- 544-pin Flip Chip Plastic Ball Grid array (FPBGA)

1.1.2 FC Features

The LSIFC949X supports the following list of FC features:

- BB credit of 16, alternate login of 1 (each channel)
- Up to 126 alias addresses (ALPAs)
- Class 3 connectionless service
- FC-PH compliance
- FC-AL 7.0 compliance
- FC-FCP, FC-PLDA compliance
- FC-FLA compliance
- FCA-IP, IETF-IPFC compliance
- NL_Port (Arbitrated Loop)
- N_Port (point-to-point)

- FL_Port (public loop attach)
- F_Port (Fabric attach)
- AutoNegotiation between link speeds under firmware control; provides automatic interoperability between 1 Gbit/s, 2 Gbit/s and 4 Gbit/s links (independent for each channel)
- Autotopology Negotiation enables automatic interoperability of each LSIFC949X port to the current port type

1.1.3 Software Features

The LSIFC949X supports the following list of software features:

- Fusion-MPT[™] drivers
- Optimum server I/O profile with low CPU utilization
- Optimum workstation I/O profile with maximum I/O performance
- Diagnostic capability
- Host driver support for failover and load balancing
- SAN Storage Management
- MyStorage[®] and SmartPath[™] support

1.1.4 OS Support

The LSIFC949X supports the following list of operating systems:

- Windows 2000, Windows Server 2003
- Windows XP
- Solaris X86
- Solaris SPARC
- SuSE and Red Hat Linux

1.1.5 Targeted Applications

The LSIFC949X targets the following list of key applications:

- SANs
- Storage virtualization

- Server clustering environments
- Embedded RAID
- Host main boards
- Routers and bridges

1.2 General Description

The LSIFC949X Dual Channel FC I/O processor is a high-performance, Intelligent I/O processor (IOP) that simultaneously supports mass storage and IP protocols on a full duplex 1 Gbit/s, 2 Gbit/s, or 4 Gbit/s FC link. The sophisticated design and local memory architecture work together to reduce the host CPU and PCI bandwidth required to support FC I/O operations.

From the host CPU perspective, the LSIFC949X manages the FC link at the exchange level for mass storage (FCP) protocols. The LSIFC949X supports multiple I/O requests per host interrupt in most applications.

From the FC link perspective, the LSIFC949X is a highly efficient NL_Port supporting point-to-point topologies, public and private loop topologies, and the FC switch/attach topology defined under the ANSI X3T11 FC-FS standard. The LSIFC949X uniquely supports FC environments where independent, full duplex transmission is required for maximum FC link efficiency. Special attention has been given to the design to accelerate context switching and link utilization.

The LSIFC949X includes a 64-bit, 66 MHz host PCI interface and a 133 MHz PCI-X interface to the host environment. The host interface minimizes the amount of time spent on the PCI bus for nondata moving activities such as initialization, command, and error recovery. In addition, the host interface has inherent flexibility to support the OEM implementation tradeoffs between CPU, PCI-X, and I/O bandwidth.

The high level of integration in the LSIFC949X controller enables low cost FC implementations. Figure 1.1 shows a typical implementation incorporating the LSIFC949X controller.

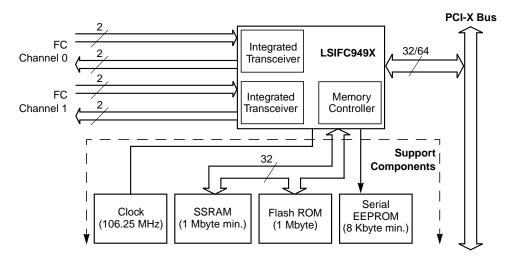


Figure 1.1 LSIFC949X Typical Implementation

1.2.1 Multifunction PCI-X

Coupled with the dual channel operation, the LSIFC949X adds multifunction capability on the PCI-X bus. This capability allows the host to see two distinct "channels" or host adapters. Each channel provides full, concurrent support for FCP Initiator and Target protocols.

1.2.2 Autospeed Negotiation

Backward compatibility with 1 Gbit/s and 2 Gbit/s FC devices is maintained through Autospeed Negotiation. After a power-on, loss of signal, or loss of word synchronization for longer than the R_T_TOV time-out, the LSIFC949X performs this operation to determine whether a point-to-point device or all of the devices on a link are either 1, 2, or 4 Gbit/s devices, and it automatically configures itself to be compatible with the devices on the link.

1.2.3 Autotopology Negotiation

The LSIFC949X maintains compatibility with private loop, public loop, and point-to-point topologies through Autotopology Negotiation. The LSIFC949X performs this operation to determine the type of attached link, and automatically configures each LSIFC949X port to the current port type.

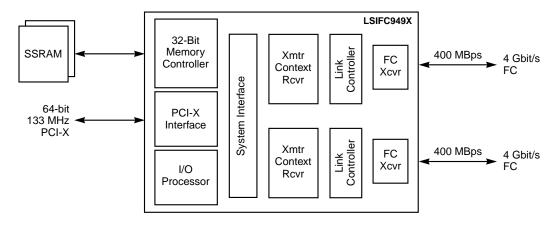
1.2.4 Failover and Load Balancing

The LSIFC949X supports two PCI-X functions and two FC ports, which improves performance and provides a redundant path in high-availability systems that require failover capabilities. In case of a Link Failure, the LSIFC949X architecture allows the OS driver to support automatic failover without the need for LSIFC949X intervention. Load Balancing also can be provided in the host driver to partition the I/O workload across each channel of the LSIFC949X.

1.2.5 INCITS T10 Authorized DIF

The LSIFC949X uses the new International Committee for Information Technology Standards (INCITS) T10 authorized Data Integrity Field (DIF) for additional end-to-end data protection. The LSIFC949X provides extended data protection by appending the DIF to block level data, allowing integrity checks at each node of a system for enhanced data integrity and debug capability.

1.3 Hardware Overview


In today's fast growing SAN, storage virtualization, server/workstation, and RAID storage systems marketplaces, higher levels of performance, scalability, and reliability are required to stay competitive.

The LSIFC949X provides the performance and flexibility to meet future FC connectivity requirements.

The LSIFC949X and LSI Logic software drivers provide superior performance and lower host CPU overhead than other competitive solutions. Because of its high level of integration and streamlined architecture, the LSIFC949X provides the highest level of performance in a more cost effective FC solution.

Figure 1.2 shows the functional block diagram for the LSIFC949X. The architecture maximizes performance and flexibility by deploying fixed gates in critical performance areas and utilizing multiple ARM RISC processors (two for context management and one for the I/O processor). Each of the major blocks is described briefly.

Figure 1.2 LSIFC949X Functional Block Diagram

1.3.1 PCI/PCI-X Interface

The LSIFC949X uses a 64-bit (33 MHz, 66 MHz, or 133 MHz) PCI/PCI-X interface or a 32-bit (33 MHz, 66 MHz, or 133 MHz) PCI/PCI-X interface. In addition, support is provided for Dual Address Cycle (DAC), PCI-X power management, Subsystem Vendor ID, Vendor Product Data (VPD), and Message Signaled Interrupt (MSI and MSI-X) and Data Integrity Field (DIF).

1.3.2 32-Bit Memory Controller

The memory controller provides access to Flash ROM and 32-bit Synchronous SRAM. It supports both interleaved and noninterleaved configurations up to a maximum of 4 Mbytes of synchronous SRAM. A general purpose memory expansion bus supports up to 1 Mbyte of Flash ROM.

1.3.3 I/O Processor

The LSIFC949X uses a 32-bit ARM RISC processor to control all system interface and message transport functionality. This frees the host CPU for other processing activity and improves overall I/O performance. The RISC processor and associated firmware can manage an I/O from start to finish without host intervention. The RISC processor also manages the message passing interface.

1.3.4 System Interface

The system interface efficiently passes messages between the LSIFC949X and other I/O agents. It consists of five hardware FIFOs for the message queuing lists: Request Free, Request Post, Reply Free, Reply Post, and High Priority Request. Control logic for the FIFOs is provided within the LSIFC949X system interface with messages stored in external memory.

1.3.5 Integrated 4 Gbit/s Transceivers

The LSIFC949X implements GigaBlaze[®] 4 Gbit/s transceivers. GigaBlaze is backward-compatible with 2 Gbit/s and 1 Gbit/s systems, using a firmware-implemented "Autospeed Negotiation" for automatic compatibility between 1 Gbit/s, 2 Gbit/s, and 4 Gbit/s links. The integrated 4 Gbit/s transceivers provide a FC-compliant physical interface for cost conscious and real estate limited applications.

1.3.6 Link Controllers

The integrated link controller is FC-AL-2 (Rev. 7.0) compatible and performs all link operations. The controller monitors the Link State and strictly adheres to the Loop Port State Machine, ensuring maximum system interoperability. The link controller interfaces to the integrated transceiver.

1.3.7 Datapath

The transmitter builds sequences based on context information and transmits resulting frames to the FC link using the Link Controller. Each transmitter includes three 2 Kbyte buffers to support frame payloads.

The receivers accept frame data from the Link Controller and DMAs the encapsulated information to local or system memory. Each receiver contains sixteen 2112-byte buffers that support a BB Credit of up to sixteen or an Alternate Login BB Credit of 1 on each channel.

1.3.8 Context Managers

The LSIFC949X uses an ARM RISC processor in each channel to support I/O context swap to external memory and FCP management for both Initiator and Target applications. Context operations include support

for transmit and resource queue management, as well as scatter/gather list management.

1.4 Initiator Operations

The LSIFC949X autonomously handles FCP exchanges upon request from the host. The LSIFC949X generates appropriate sequences and frames necessary to complete the request and provides feedback to the host on the status of the request.

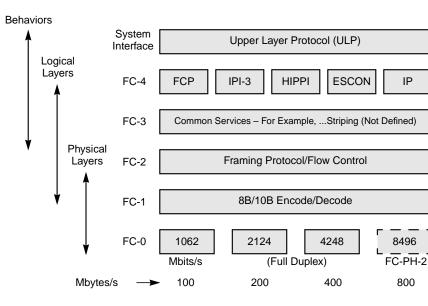
1.5 Target Operations

The LSIFC949X provides for general purpose target functions such as those required for front-end RAID applications.

1.6 Diagnostics

The LSIFC949X provides the capabilities to do a simplified "Link Check" BER test on the link for diagnostic purposes. In a special test mode the controller can transmit and verify a programmed data pattern for link evaluation.

Chapter 2 Fibre Channel Overview


This chapter provides general overview information on Fibre Channel (FC). The chapter contains the following sections:

- Section 2.1, "Introduction"
- Section 2.2, "FC Layers"
- Section 2.3, "Frames"
- Section 2.4, "Exchanges"
- Section 2.5, "FC Ports"
- Section 2.6, "FC Topologies"
- Section 2.7, "Classes of Service"

2.1 Introduction

FC is a high-performance, hybrid interface. It is both a channel and a network interface that contains network features to provide the required connectivity, distance, protocol multiplexing, as well as traditional channel features to retain the required simplicity, repeatable performance, and guaranteed delivery. Popular industry standard networking protocols such as Internet Protocol (IP) and channel protocols such as Small Computer System Interface (SCSI) have been mapped to the FC standard.

The FC structure is defined by five functional layers. These layers, shown in Figure 2.1, define the physical media and transmission rates, encoding scheme, framing protocol and flow control, common services, and the Upper Level Protocol (ULP) interfaces.

Figure 2.1 FC Layers

2.2 FC Layers

The lowest layer, FC-0, is the media interface layer. It defines the physical characteristics of the interface. It includes transceivers, copper-to-optical transducers, connectors, and any other associated circuitry necessary to transmit or receive at 1062 or greater Mbit/s rates over copper or optical cable.

The FC-1 layer defines the 8B/10B encoding/decoding scheme, the transmission protocol necessary to integrate the data and transmit clock, and the receive clock recovery. Implementation of this layer is usually divided between the hardware implementing the FC-0 layer in a transceiver, and the protocol device that implements the FC-2 layer. Specifically, the FC-0 transceivers can include the clock recovery circuitry while the 8B/10B encoding/decoding is provided in the protocol device.

The FC-2 layer defines the rules for the signaling protocol and describes transfer of the frames, sequences, and exchanges. The meaning of the data being transmitted or received is transparent to the FC-2 layer. However, the context between any given set of frames is maintained at the FC-2 layer through the Sequence and Exchange constructs. The

framing protocol creates the constructs necessary to form frames with the data being packetized within the payload of each frame.

The FC-3 layer provides common services that span multiple N_Ports. Some of these services include Striping, Hunt Groups, and Multicasting. All of these services allow a single port or fabric to communicate to several N_Ports at one time (refer to Section 2.6, "FC Topologies," on page 2-7 for details).

The FC-4 layer is the top layer defined in the FC. The FC-4 layer provides a seamless integration of existing standards. It specifies the mapping of ULPs to the layers below. Some of these ULPs include SCSI and IP. Each of these ULPs is defined in its own ANSI document.

2.3 Frames

There are two types of frames used in FC: Link Control frames and Data frames. Link Control frames, which contain no payload, are flow control responses to Data frames. An example of a Link Control frame is the ACK frame (Figure 2.2).

Figure 2.2 Link Control Frame

Start of Frame	Frame Header	CRC	End of Frame
(4 Bytes)	(24 Bytes)	(4 Bytes)	(4 Bytes)

A Data frame is any frame that contains data in the payload field. An example of a Data frame is the LOGIN frame (Figure 2.3).

Figure 2.3 Data Frame

			1	
Start of Frame	Frame Header	Data Field (Optional Headers and Payload)	CRC	End of Frame
(4 Bytes)	(24 Bytes)	(0 to 2112 Bytes)	(4 Bytes)	(4 Bytes)

In FC, an Ordered Set is a group of four 10-bit characters that provide low level link functions, such as frame demarcation and signaling between two ends of a link. All frames start with a Start-of-Frame (SOF) and end with an End-of-Frame (EOF) Ordered Set. Each frame contains at least a 24-byte header defining such things as Destination and Source ID, Class of Service and type of frame (for example, FCP or FC-LE). The biggest field within a frame can be the payload field. If the frame is a Link Control frame, then there is no payload. If it is a Data frame, then the frame contains a payload field of up to 2112 bytes. Finally, the frame includes a CRC field used for detection of transmission errors, followed by the EOF Ordered Set.

2.4 Exchanges

Figure 2.4 outlines the FC hierarchical data structures. At the most elemental level, four 8B/10B encoded characters make up an FC word. An FC frame is a collection of FC words. An FC Sequence is made up of one or more frames, and a FC Exchange is made up of one or more sequences.

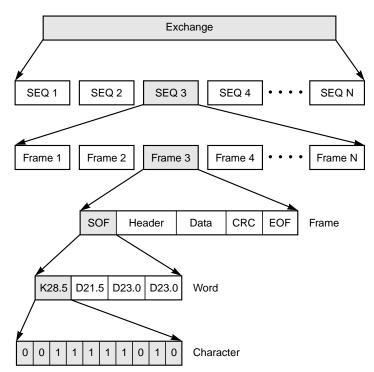


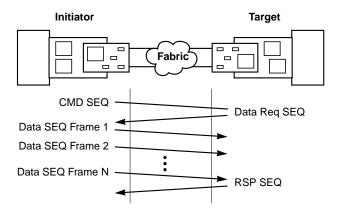
Figure 2.4 Exchange to Character

The following discussion illustrates an Exchange by considering a typical parallel SCSI I/O. In parallel SCSI, several phases make up the I/O. These phases include Command, Data, Message, and Status.

Using the FCP for the SCSI ULP, these phases can be mapped into the other lower FC layers. Figure 2.5 shows the components that make up the FCP exchange.

 FCP Exchange

 CMDSEQ
 DataReqSEQ
 DataSEQ
 ResponseSEQ


 Frame 1
 Frame 1
 Frame 1

 Frame 1
 Frame 2
 Frame n

Figure 2.5 FCP Exchange

Figure 2.6 shows how the Exchange flows between the Initiator and Target. The Initiator starts the FCP Exchange by sending a Command sequence containing one frame to the Target. The frame payload contains the Command Descriptor Block (CDB). The Target then responds with a Data Delivery Request sequence containing one frame. The payload of this frame contains a XFER_RDY response. When the Initiator receives the Target's response, it begins to send the Data sequence(s), which may contain one or more frames. This is analogous to parallel SCSI DATA_OUT phase. When the Target has received the last frame of the data sequence(s), it sends a Response sequence containing one frame to the Initiator, thus concluding the FCP Exchange.

Figure 2.6 Write Event Trellis

2.5 FC Ports

FC devices are called nodes. Each node has at least one port to provide access to other ports in other nodes. The "port" is the hardware entity within a node that performs data communications over the FC link.

Various types of ports are defined within the FC standard, based on the location of the port and the topology associated with it. The most commonly used ports are N_Ports, NL_Ports, F_Ports, and FL_Ports. These types of ports appear in Figure 2.7, Figure 2.8, and Figure 2.9.

2.6 FC Topologies

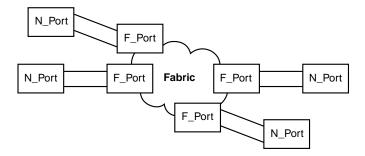
Topologies are defined, based on the capability and the presence or absence of Fabric between the N_Ports:

- Point-to-point topology
- Fabric topology
- Arbitrated Loop topology

FC-PH protocols are topology-independent. Attributes of a Fabric may restrict operation to certain communication models.

2.6.1 Point-to-Point Topology

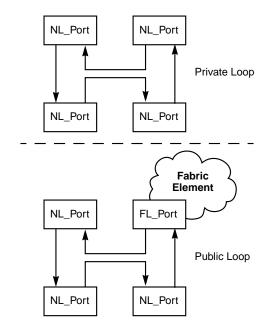
The topology shown in Figure 2.7, in which communication between N_Ports occurs without the use of Fabric, is defined as point-to-point.


Figure 2.7 Point-to-Point Topology

2.6.2 Fabric Topology

Figure 2.8 illustrates multiple N_Ports interconnected by a Fabric. This topology uses the Destination_Identifier (D_ID) embedded in the frame header to route the frame through a Fabric to the desired Destination N_Port.

Figure 2.8 Fabric Topology



2.6.3 Arbitrated Loop Topology

The Arbitrated Loop topology permits between 2 and 127 L_Ports to communicate without the use of a Fabric, as in Fabric topology. The Arbitrated Loop supports a maximum of one point-to-point circuit at a time. When two L_Ports are communicating, the Arbitrated Loop topology supports simultaneous, symmetrical bidirectional flow.

Figure 2.9 illustrates two independent Arbitrated Loop configurations, each with multiple L_Ports attached. Each line in the figure between L_Ports represents a single fibre. The lower configuration shows an Arbitrated Loop composed of three NL_Ports and one FL_Port (a public loop).

Figure 2.9 Arbitrated Loop Topology

2.7 Classes of Service

There are several classes of service in FC. The different classes are distinguished from each other in three ways: by the level of guarantee for data being delivered, the order in which data is delivered, and how data flow control is maintained.

Class 1 is a dedicated connection between two N_Ports. The data delivered is guaranteed with a required acknowledgement frame (ACK), which a Class 1 device uses for flow control. All frames are received in order.

Class 2 is a connectionless class. The data delivered is guaranteed with an ACK frame. The frames can be received out of order. Class 2 uses both ACK frames and the R_RDY Ordered Set for flow control.

Class 3 is also a connectionless class (the data being delivered is not guaranteed). The frames can be received out of order. Class 3 uses only the R_RDY Ordered Set for flow control.

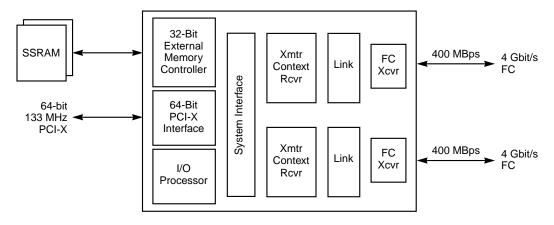
Intermix is an enhancement of Class 1 service. A dedicated Class 1 connection may waste fabric bandwidth while frames are not being transmitted or received between two N_Ports. To recover some of this bandwidth, Intermix allows Class 2 and Class 3 frames to be transmitted/received between Class 1 frames. N_Ports advertising Intermix capability must be capable of receiving Class 2 and Class 3 frames from other N_Ports while maintaining the original Class 1 link.

Chapter 3 LSIFC949X Overview

This chapter provides a general description of the LSIFC949X Dual Channel Fibre Channel I/O processor firmware. The chapter contains the following sections:

- Section 3.1, "Introduction"
- Section 3.2, "Message Interface"
- Section 3.3, "SCSI Message"
- Section 3.4, "Target Message"
- Section 3.5, "Support Components"

3.1 Introduction


The LSI Logic LSIFC949X connects a host to a high-speed FC link. The FCP ANSI standard, FC Private Loop Direct Attach, and Fabric Loop Attach profiles are supported with a sophisticated firmware implementation. All profiles, specifications, and interoperability maintained by the LSIFC949X are listed in Appendix B, "Reference Specifications."

Although optimized for a 64-bit PCI-X interface to communicate with the system CPU(s) and memory, the LSIFC949X also supports a 32-bit Peripheral Component Interface (PCI) environment. The system interface to the LSIFC949X minimizes the amount of PCI-X bandwidth required to support I/O requests. A packetized message passing interface reduces the number of single cycle PCI bus cycles. All FC Data traffic on the PCI-X bus occurs with zero wait state bursts across the PCI-X bus.

The intelligent LSIFC949X architecture allows the system to specify I/Os at the command level. The LSIFC949X manages I/Os at the Frame, Sequence and Exchange level. Error detection and I/O retries are also handled by the LSIFC949X, allowing the system to offload part of the exception handling work from the system driver.

Data Flows – The LSIFC949X uses a 64-bit (33 MHz, 66 MHz, or 133 MHz) PCI-X interface to pass control and data information between the system and the protocol controller. This interface is managed by the PCI-X Interface block, as shown in Figure 3.1. It is backward compatible with 32-bit/33 or 66 MHz buses.

Figure 3.1 LSIFC949X Block Diagram

For incoming serial data, the physical link transfers the data to Link Control using the GigaBlaze Integrated Transceiver. The Link Controller analyzes the received frame, and if appropriate, it passes the frame to the Receiver. The Receiver strips off the frame header and places it in a separate header buffer while the data in the frame payload is placed in a data buffer. The Frame Receiver uses the Receive Context Manager to manage the order and priority of the received frame. The data contained in the Receiver buffers is associated with a specific scatter/gather entry and passed on to the PCI-X Interface. The data also requests the PCI-X bus and bursts the data into system memory.

The I/O processor (IOP), with its firmware, provides the translation from FC specific protocols to the high level Block Storage and SCSI message interface. This translation allows the LSIFC949X to be integrated into the system as if it were a native Parallel SCSI device, hiding all FC-unique

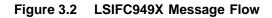
characteristics. Internal communication between the IOP and the Context manager occurs over an internal bus, which also is connected to an External Memory Controller. The IOP uses the External Memory Controller to access local memory. This memory contains the firmware, as well as the dynamic data structures used by the firmware.

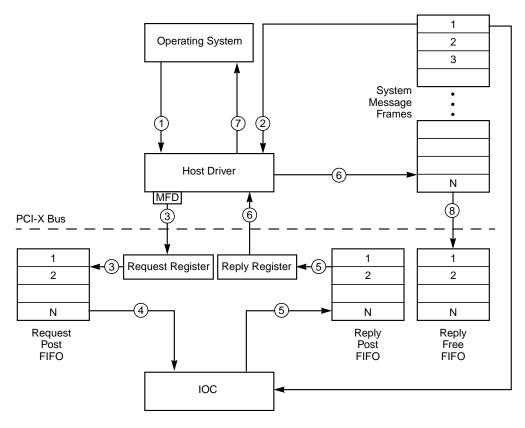
3.2 Message Interface

The LSIFC949X system interface is a high-performance, packetized, mailbox architecture that leverages the intelligence in the LSIFC949X to minimize traffic on the PCI-X bus.

The Fusion-MPT architecture also provides a High Priority Request FIFO to provide high priority request free messages to the host on reads, and to accept high priority request post messages from the host on writes. The High Priority Request Post FIFO is similar to the Request Post FIFO, except that the LSIFC949X processes requests from the High Priority Request Post FIFO before processing requests from the Request Post FIFO. This high-priority queue has dedicated resources which do not become depleted when the request queue gets full.

There are two basic constructs in the Message Interface. The first construct, the Message, communicates between the system and the LSIFC949X. Messages are moved between the system(s) and the LSIFC949X using the second construct, a Transport mechanism.


3.2.1 Messages


The LSIFC949X uses two types of messages to communicate with the system. Request messages are created by the system to "request" an action by the LSIFC949X. Reply messages are used by the LSIFC949X to send status information back to the system. Request message data structures are up to 128 bytes in length. The message includes a message header and a payload. The header includes information to uniquely identify the message. The payload is specific to the Request itself, and is unique for SCSI and Target messages. For more information regarding the details of the message format, refer to the *Fusion-MPT*TM *Message Passing Interface Specification*, Version 1.5.

3.2.2 Message Flow

Before Requests can be posted to the LSIFC949X, the system must allocate and initialize a pool of message frames, and provide a mechanism to assign individual message frames on a per-request basis. The host also must provide one message frame per target LUN, and prime the Reply Free FIFOs for each function with the physical address of these message frames. When allocation has been completed, requests flow from the host to the LSIFC949X, as represented below and in Figure 3.2.

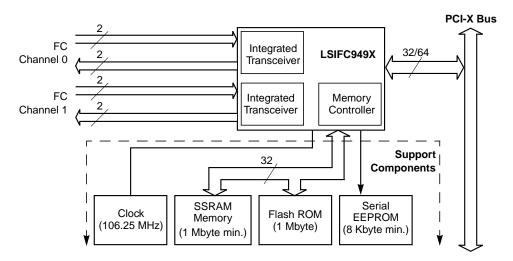
- 1. The host driver receives an I/O request from the operating system.
- 2. The host driver allocates a system message frame (SMF) and builds an I/O request message within the SMF. The allocation method is the responsibility of the host driver.
- 3. The host driver creates the Message Frame Descriptor (MFD) and writes the MFD to the Request Post FIFO.
- 4. The I/O Controller (IOC) reads the MFD from the Request Post FIFO and DMAs the request to a local message frame.
- 5. The IOC sends the appropriate Fibre Channel request and subsequently receives the reply from the target.
 - If the I/O status is successful, the IOC writes the MessageContext value, plus turbo reply bits, to the Reply Post FIFO, which automatically generates a system interrupt.
 - If the I/O status is not successful, the IOC pops a reply message frame from the Reply Free FIFO and generates a reply message in the reply message frame. The IOC then writes the system physical address of the reply message frame to the Reply Post FIFO, which generates a system interrupt.
- 6. The host driver receives a system interrupt and reads the Reply register. If there are no posted messages, the system reads the value 0xFFFFFFF.
- 7. The host driver responds to the operating system appropriately.
- 8. If the I/O status is not successful, the host driver returns it to the Reply Free FIFO.

3.3 SCSI Message

The SCSI message interface provides the most direct interface for block-oriented storage media. This includes disk drives and tape devices.

The SCSI I/O path translates a SCSI Command Descriptor Block (CDB) into a Fibre Channel Protocol (FCP) exchange. All FC device and target discovery operations are managed completely within the LSIFC949X. FC target devices are assigned a logical (bus, target ID) identifier, and are accessed by the system as if they were parallel SCSI devices. The system is responsible for scanning the target devices and identifying LUNs on the target devices.

In general, the system is responsible for retrying operations at an I/O request level. The LSIFC949X is responsible for responding to bus protocol-specific errors and exceptions and retrying bus sequences within the scope of an I/O operation. The system is also responsible for maintaining a timer for SCSI I/O operations if this is required by the host system. The host driver may use the provided SCSI Task Management functions to terminate one or more I/O operations when a timeout occurs. For details regarding the SCSI Message Class, refer to the *Fusion-MPTTM Message Passing Interface Specification*, Version 1.5.


3.4 Target Message

The Target Interface allows the LSIFC949X to be used as the system interface for FC bridge controllers. The LSIFC949X provides an FCP exchange level message interface that routes commands to the system. The system identifies the appropriate data, and passes a Scatter Gather List (SGL) to the LSIFC949X describing the data to transfer. A single Target message directs the LSIFC949X to send a Xfer_Rdy, as needed, and to transfer data and an FCP response. Target specific Process Login/Logout is managed by the system. Refer to the *Fusion-MPT*TM *Message Passing Interface Specification*, Version 1.5, for details on the Target Message Class.

3.5 Support Components

The memory controller block within the LSIFC949X provides access to external local memory resources required to manage FCP.

The following sections provide guidance in choosing the support components necessary for a fully functional implementation using the LSIFC949X. Figure 3.3 shows an LSIFC949X typical implementation diagram.

Figure 3.3 LSIFC949X Typical Implementation

3.5.1 SSRAM Memory

The primary function of this memory is to store data structures used by the LSIFC949X to manage exchanges and transmit and receive queues. The SSRAM memory also stores part of the run time image of the LSIFC949X firmware, such as initialization and error recovery code. The mainline code is stored within the internal LRAM for performance reasons.

The LSIFC949X uses a 32-bit, nonmultiplexed memory bus to access the SSRAM. This memory bus has the capability to address up to 4 Mbytes of SSRAM.

The LSIFC949X firmware also supports optional byte wide parity error detection. This configurable option is specified as a serial EEPROM parameter.

The amount of SSRAM (1 Mbyte) determines the maximum number of outstanding Request Messages (1024). This roughly equates to the maximum number of outstanding I/O requests pending in the LSIFC949X.

The LSIFC949X also provides an internal SRAM, which allows the chip to function without an external SRAM attached. The number of concurrent commands and concurrent logins is reduced in this mode of operation (128 concurrent commands and 32 concurrent logins).

3.5.2 Flash ROM

The memory controller in the LSIFC949X also manages an optional Flash ROM. If present, the Flash ROM stores the firmware for the LSIFC949X, and if desired, the Intel BIOS and/or Solaris Open Boot BIOS software.

If the Flash ROM is not used, then the host platform is responsible for downloading the IOP firmware to the LSIFC949X through the PCI-X interface. The LSIFC949X supports a simple register handshake interface for firmware download. Firmware may be directly written to the LSIFC949X internal memory and external SSRAM through this interface. Details of this implementation are available in the *Fusion-MPTTM Message Passing Interface Specification,* Version 1.5. Flash ROM is optional for the LSIFC949X, but it is required for applications that require Intel or Solaris BIOS software.

The Flash ROM is accessed using the upper 8 bits of the Memory Interface. If a Flash ROM is to be used, then it should have a capacity of 1 Mbyte with a maximum access time of 150 ns. Refer to the *Fusion-MPTTM* Message Passing Interface Specification, Version 1.5, for details on the programming of the Flash ROM.

3.5.3 Serial EEPROM

The serial EEPROM stores nonvolatile data for the LSIFC949X, such as the World Wide Name, VPD, and other vendor-specific information. The SEEPROM data is programmed by the firmware, so the firmware must be downloaded and running before the SEEPROM is programmed. The required size of the SEEPROM is 64 Kbits / 8 Kbytes.

Chapter 4 Signal Descriptions

This chapter contains signal descriptions for the LSIFC949X. A slash (/) indicates an active LOW signal, I/O = bidirectional signal, I = input signal, O = output signal, T/S = 3-state, and S/T/S = sustained 3-state. The chapter contains the following sections:

- Section 4.1, "PCI/PCI-X Interface"
- Section 4.2, "Fibre Channel Interface"
- Section 4.3, "Memory Interface"
- Section 4.4, "Configuration and Miscellaneous"
- Section 4.5, "Test and I/O Processor Debug"
- Section 4.6, "Power and Ground"

Figure 4.1 on page 4-2 is a functional signal grouping for the chip.

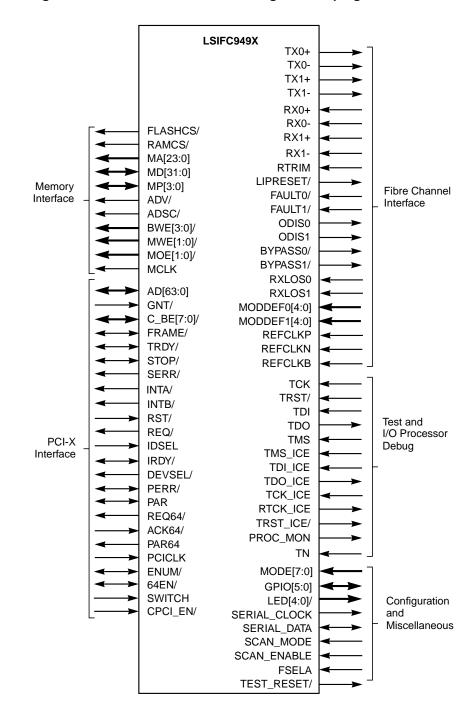


Figure 4.1 LSIFC949X Functional Signal Grouping

4.1 PCI/PCI-X Interface

Table 4.1 lists the PCI/PCI-X Interface signals.

Table 4.1 PCI/PCI-X Interface

Signal	I/O	BGA Pad No.	Pad Type	Description
PCICLK	I	AF22	PCI In	Clock . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI</i> <i>Local Bus Specification, Revision 2.0,</i> for this signal description.
RST/	I	AA26	PCI In	Reset . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0,</i> for this signal description.
GNT/	I/O	AA21	BiDir PCI	Grant . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0,</i> for this signal description.
REQ/	I/O	Y25	BiDir PCI	Request . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0,</i> for this signal description.
REQ64/	I/O	J21	BiDir PCI	Request64 . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
ACK64/	S/T/S	J24	BiDir PCI	Acknowledge64. Refer to the PCI Local Bus Specification, Revision 2.3, and the PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0, for this signal description.
AD[63:0]	T/S	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	BiDir PCI	Address and Data. Refer to the PCI Local Bus Specification, Revision 2.3, and the PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0, for this signal description.
C_BE[7:0]/	T/S	K20, J23, J22, J20, AC17, Y19, U26, P22	BiDir PCI	Command and Byte Enables . Refer to the <i>PCI</i> <i>Local Bus Specification, Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI Local Bus</i> <i>Specification, Revision 2.0,</i> for this signal description.
(Sheet 1 of 4	4)	1		1

Signal	I/O	BGA Pad No.	Pad Type	Description
IDSEL	I/O	Y26	BiDir PCI	Initialization Device Select . Refer to the <i>PCI</i> Local Bus Specification, Revision 2.3, and the <i>PCI</i> - X Addendum to the <i>PCI</i> Local Bus Specification, Revision 2.0, for this signal description.
FRAME/	S/T/S	AA22	BiDir PCI	Cycle Frame . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
IRDY/	S/T/S	AB23	BiDir PCI	Initiator Ready . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
TRDY/	S/T/S	V23	BiDir PCI	Target Ready . Refer to the <i>PCI Local Bus</i> <i>Specification, Revision 2.3, and the PCI-X</i> <i>Addendum to the PCI Local Bus Specification,</i> <i>Revision 2.0,</i> for this signal description.
DEVSEL/	I/O	U21	BiDir PCI	Device Select . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
STOP/	S/T/S	W20	BiDir PCI	Stop . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0,</i> for this signal description.
PERR/	S/T/S	U23	BiDir PCI	Parity Error . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
SERR/	0	V24	BiDir PCI	System Error . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
PAR	T/S	U25	BiDir PCI	Parity . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI</i> <i>Local Bus Specification, Revision 2.0,</i> for this signal description.
(Sheet 2 of 4	l)			

Table 4.1 PCI/PCI-X Interface (Cont.)

Signal	I/O	BGA Pad No.	Pad Type	Description
PAR64	I/O	H26	BiDir PCI	Parity64 . Refer to the <i>PCI Local Bus Specification,</i> <i>Revision 2.3,</i> and the <i>PCI-X Addendum to the PCI</i> <i>Local Bus Specification, Revision 2.0,</i> for this signal description.
INTA/	0	AB24	BiDir PCI	Interrupt A . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
INTB/	0	AA24	BiDir PCI	Interrupt B . Refer to the <i>PCI Local Bus</i> Specification, Revision 2.3, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Revision 2.0, for this signal description.
ENUM/	0	AA23	BiDir PCI	Enumeration Interrupt . This signal must be asserted by a hot swap capable card immediately after insertion and during removal. This signal notifies the system host either that a board has been freshly inserted or that one is about to be extracted, and informs the system host that the configuration of the system has changed. The system host then can perform any necessary maintenance such as installing a device driver upon board insertion, or quiescing a device driver and the board, prior to extracting the board.
64EN/	I/O	AC26	BiDir PCI	PCI Bus Width Enable . This signal indicates the width of the bus when hot swap capability is enabled. Use an external pull-up on this signal when CompactPCI is enabled. Float this signal when CompactPCI is disabled.
SWITCH	I	AE13	PCI In (pull- down)	Insertion/Deassertion Indicator . This signal is an input to the LSIFC949X to signal the insertion or impending extraction of a board. This signal causes the assertion of ENUM/. The operator normally activates the switch (actuator), waits for the illumination of the LED, and then extracts the board.
(Sheet 3 of	4)	1	1	·

Table 4.1 PCI/PCI-X Interface (Cont.)

Signal	I/O	BGA Pad No.	Pad Type	Description
CPCI_EN/	1	Y13	PCI In (pull-up)	CompactPCI Enable . When this signal is LOW, the LSIFC949X is configured to conform to hot swap protocol. This includes changing the bus width detection method, the addition of configuration registers, and support for the ENUM/, BLUELED/, and SWITCH pins. When CPCI_EN/ is active (low), pull up MA[7] to force conventional PCI mode.
BLUELED/	0	AE10	3.3 V BiDir 8 mA with pull-up	BLUELED /. This signal drives a blue LED that is mounted on the front of hot swap capable host adapters. This signal indicates that the system software has been placed in a state for orderly extraction of the board.
(Sheet 4 of 4	.)			

Table 4.1 PCI/PCI-X Interface (Cont.)

4.2 Fibre Channel Interface

Table 4.2 lists the Fibre Channel Interface signals.

Signal	I/O	BGA Pad No.	Pad Type	Description
TX0+	0	N6	Diff Tx	Transmit differential data (Channel 0).
TX1+	0	P7	Diff Tx	Transmit differential data (Channel 1).
TX0-	0	N7	Diff Tx	Transmit differential data (Channel 0).
TX1-	0	P6	Diff Tx	Transmit differential data (Channel 1).
RX0+	I	N4	Diff Rx	Receive differential data (Channel 0).
RX1+	I	P4	Diff Rx	Receive differential data (Channel 1).
RX0-	I	N5	Diff Rx	Receive differential data (Channel 0).
RX1-	I	P5	Diff Rx	Receive differential data (Channel 1).
(Sheet 1 of 4)				

Table 4.2 Fibre Channel Interface

Signal	I/O	BGA Pad No.	Pad Type	Description
RTRIM	I	V2		Trim Resistor. This pin is the analog current reference for the integrated transceiver core. A 3.01 k $\Omega \pm$ 1% resistor should be tied from the RTRIM pad to either the RXVDD0 or the RXVDD1 pin.
LIPRESET/	0	AD9	3.3 V BiDir 4 mA	Loop Initialization Primitive Reset . This pin is asserted LOW when a selective reset is received that is targeted to an alias of this device. This pin is asserted for 1–2 ms after the last LIPr is received.
FAULT0/	I	Y8	3.3 V TTL Input with pull-up	Electrical Fault . This active-LOW pin indicates that an electrical fault has been detected by the channel 0 PHY device/module and, if the module has a laser, the laser has been turned off. This pin causes no interrupt or other reaction. It is assumed that a Link Failure occurs, and that the register bit reporting the value of this pin diagnoses the problem.
FAULT1/	I	AC10	3.3 V TTL Input with pull-up	Electrical Fault . This active-LOW pin indicates that an electrical fault has been detected by the channel 1 PHY device/module and, if the module has a laser, the laser has been turned off. This pin causes no interrupt or other reaction. It is assumed that a Link Failure occurs, and that the register bit reporting the value of this pin diagnoses the problem.
ODIS0	0	AC5	3.3 V BiDir 4 mA	Output Disable, channel 0. This output, when asserted, disables an external GBIC or MIA transmitter for channel 0. This output also clears a module fault.
ODIS1	0	AB9	3.3 V BiDir 4 mA	Output Disable, Channel 1. This output when asserted disables an external GBIC or MIA transmitter for channel 1. This output also clears a module fault.

Table 4.2 Fibre Channel Interface (Cont.)

Signal	I/O	BGA Pad No.	Pad Type	Description
BYPASS0/	0	AC9	3.3 V BiDir 4 mA	Bypass . This line is driven LOW when the LSIFC949X Link Controller block determines that channel 0 of the device is operating in a loop environment and that the device has entered a bypassed mode. This may be caused by an internal request or by a loop primitive generated at another node.
BYPASS1/	0	AA10	3.3 V BiDir 4 mA	Bypass . This line is driven LOW when the LSIFC949X Link Controller block determines that channel 1 of the device is operating in a loop environment and the device has entered a bypassed mode. This may be caused by an internal request or a loop primitive generated at another node.
RXLOS0	1	AB10	3.3 V 4 mA BiDir with pull-up	Received Signal Loss . This line is driven HIGH, disabling the on-chip receiver, when the GBIC for channel 0 of the LSIFC949X detects a loss of signal. If enabled through the Link Control register, this signal becomes an output test strobe.
RXLOS1	1	AA7	3.3 V 4 mA BiDir with pull-up	Received Signal Loss . This line is driven HIGH, disabling the on-chip receiver, when the GBIC for channel 1 of the LSIFC949X detects a loss of signal. If enabled through the Link Control register, this signal becomes an output test strobe.
MODDEF0[4:0]	I/O	AE6, AF5, AF6, AA6, Y7	3.3 V BiDir 8 mA with pull-up	Module Identifiers . GBIC and pluggable small form factor (SFP) optical module Identifiers (channel 0).
MODDEF1[4:0]	I/O	AE7, AF7, AE8, AF8, AB6	3.3 V BiDir 8 mA with pull-up	Module Identifiers . GBIC and pluggable small form factor (SFP) optical module Identifiers (channel 1).
REFCLKP	1	U7	3.3 V Schmitt Input	FC Reference Clock. (106.25 MHz ± 100 ppm). Refer to the oscillator requirements section of SEN #S11066, "LSIFC949X Design Considerations," for further information regarding the REFCLKP and REFCLKN inputs.
(Sheet 3 of 4)				

Table 4.2 Fibre Channel Interface (Cont.)

Signal	I/O	BGA Pad No.	Pad Type	Description
REFCLKN	I	V6	3.3 V Schmitt Input	FC Reference Clock. (106.25 MHz \pm 100 ppm). If using a single crystal for the FC reference clock, tie the crystal to REFCLKP, and tie REFCLKN to a resistor terminator.
REFCLKB	I	V4	3.3 V Schmitt Input	Internal Reference Clock. (use 106.25 MHz). This pin will typically be tied to the REFCLKP pin.
(Sheet 4 of 4)		·	·	

Table 4.2 Fibre Channel Interface (Cont.)

4.3 Memory Interface

Table 4.3 shows the Memory Interface signals.

Table 4.3 Memory Interface

Signal	I/O	BGA Pad No.	Pad Type	Description
MD[31:0] ¹	I/O	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	3.3 V BiDir 4 mA with pull-down	SSRAM Read/Write Data . See table note ¹ on page 4-11.
MP[3:0]	I/O	F6, G7, G2, G1	3.3 V 4 mA BiDir with pull-up	 Memory Parity. Byte lane parity is as follows: MP [0]: Parity for MD[7: 0] MP [1]: Parity for MD[15: 8] MP [2]: Parity for MD[23:16] MP [3]: Parity for MD[31:24] Memory Parity may be optionally even, odd, or none (not used) as defined in the LSIFC949X Programming Model.
(Sheet 1 of	3)			

I/O	BGA Pad No.	Pad Type	Description
I/O	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	3.3 V output with pull-down	SSRAM/FLASH ROM Address . The MA[19:0] pins are also used at power-on to provide configuration information to the LSIFC949X. The LSIFC949X uses MA[12:11] to determine the external Flash ROM configuration, MA[2] to determine whether to operate as a single-function or dual-function PCI device, and MA[0] to indicate the use of an external 8 KByte EEPROM. The definitions for these power-on sense options are shown below: ²
			MA[12:11] 01 = No Flash ROM present 10 = 1 MByte Flash ROM
			MA[2] 0 = Two PCI-X functions 1 = One PCI-X function
			MA[0] 0 = N/A 1 = 8 KByte EEPROM
			Refer to SEN #S11066, "LSIFC949X Design Considerations," for further information about the power-on sense definitions.
0	K4, H7	3.3 V BiDir 8 mA	Memory Output Enable . When asserted LOW, the selected SRAM or Flash (MOE[1]/) device may drive data. This signal is typically an asynchronous input to SRAM and/or Flash devices. The two output enables allow for interleaving configurations, with MOE[0]/ being the only output enable used for a noninterleaved implementation.
0	K5, G6	3.3 V BiDir 4 mA	Memory Write Enables . These active-LOW bank write enables are required for interleaving configurations. MWE[0]/ is the only write enable used for a noninterleaved implementation.
0	J3	3.3 V BiDir 4 mA	FLASH Chip Select . This active-LOW chip select allows connection of a single, 8-bit FLASH ROM device.
_	I/O I/O O	 I/O See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively. O K4, H7 O K5, G6 	I/OSee Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.3.3 V output with pull-downOK4, H73.3 V BiDir 8 mAOK5, G63.3 V BiDir 4 mAOJ33.3 V BiDir

Table 4.3 Memory Interface (Cont.)

I/O	BGA Pad No.	Pad Type	Description
0	F5	3.3 V 8 mA T/S Output	Memory Clock . All synchronous RAM control/data signals are referenced to the rising edge of this clock. The exception is MOE/, which is typically an asynchronous input to SRAM and/or FLASH devices.
0	H1	3.3 V 4 mA T/S Output	Address-Strobe-Controller . Initiates Read, Write, or chip deselect cycle. When this signal is asserted, it also latches the memory address signals.
0	H2	3.3 V 4 mA T/S Output	Advance. When asserted LOW, the ADV/ input causes a selected synchronous SRAM to increment its burst address counter.
0	E4, J5, J4, K6	3.3 V BiDir 4 mA	Memory Byte Write Enables . These active-LOW, byte lane write enables allow writing of partial words to memory.
0	J2	3.3 V BiDir 4 mA	RAM Chip Select . This pin is an active-LOW synchronous chip select for all SSRAMs (up to four SSRAMs for interleaved and depth expanded configuration without additional decode logic).
	0 0 0	O F5 O H1 O H2 O E4, J5, J4, K6	O F5 3.3 V 8 mA T/S Output O H1 3.3 V 4 mA T/S Output O H1 3.3 V 4 mA T/S Output O H2 3.3 V 4 mA T/S Output O H2 3.3 V 4 mA T/S Output O E4, J5, J4, K6 3.3 V BiDir 4 mA O J2 3.3 V BiDir

Table 4.3 Memory Interface (Cont.)

1. MD[31:24] are used for the FLASH ROM Read/Write data.

2. "1" means the pin is pulled up on reset.

"0" means the pin is pulled down on reset.

4.4 Configuration and Miscellaneous

Table 4.4 shows the Configuration and Miscellaneous signals.

I/O	BGA Pad No.	Pad Type	Description
I/O	AE12, AF11, AA9, Y10, AE11, AF10	3.3 V BiDir 8 mA with pull-up	General Purpose I/O Pins . These pins default to input mode on reset. These signals are controlled/observed by firmware. GPIO[1:0] are reserved for LSI Logic only. GPIO[5:2] are available as host-programmable outputs from IOC Unit Page 3.
0	AE9, AD10, Y9, AA8, AF9	3.3 V BiDir 8 mA	 LED Outputs. These output signals may be controlled by firmware or driven by chip activity. When configured as activity driven, the LED[n] outputs have the following meanings when asserted LOW: LED[4]: Channel 1 – Fault (ON = no sync) LED[3]: Channel 1 – Active (ON = frame traffic present) LED[2]: Channel 0 – Fault (ON = no sync) LED[1]: Channel 0 – Active (ON = frame traffic present) LED[1]: Channel 0 – Active (ON = frame traffic present) LED[1]: Channel 0 – Active (ON = frame traffic present) LED[0]: Processor heartbeat
0	AA4	3.3 V 4 mA BiDir with pull-up	Serial EEPROM clock.
I/O	AB3	3.3 V 4 mA BiDir with pull-up	Serial EEPROM data.
1	J7, H6, J1, K2, K1, L2, K7, J6	3.3 V TTL Input with pull-down	 Mode Select. This 8-bit bus defines operational and test modes for the chip. Valid mode encodings are as follows: Mode[7:0] = 001xxxxx — Interleaved BSRAM Mode[7:0] = 000xxxx — Noninterleaved BSRAM Mode[7:0] = 00xx01xx — Soft Reset Mode0 Mode[7:0] = 00xx11xx — Soft Reset Mode1¹ Mode[7:0] = 00xxx11 — Normal SEPROM Auto Load Mode[7:0] = 00xxx10 — Fast SEPROM Auto Load Mode[7:0] = 00xxx01 — Firmware PCI Configuration Mode² Mode[7:0] = 00xxx00 — PCI Configuration (use
	I/O O I/O	I/O AE12, AF11, AA9, Y10, AE11, AF10 O AE9, AD10, Y9, AA8, AF9 O AE9, AD10, Y9, AA8, AF9 I/O AB3 I J7, H6, J1, K2, K1, L2,	I/OAE12, AF11, AA9, Y10, AE11, AF103.3 V BiDir 8 mA with pull-upOAE9, AD10, Y9, AA8, AF93.3 V BiDir 8 mAOAE9, AD10, Y9, AA8, AF93.3 V BiDir 8 mAOAA43.3 V 4 mA BiDir with pull-upI/OAB33.3 V 4 mA BiDir with pull-upIJ7, H6, J1, K2, K1, L2,3.3 V TTL Input with

Table 4.4 Configuration and Miscellaneous

Signal	I/O	BGA Pad No.	Pad Type	Description
TEST_ RESET/	I	V7	3.3 V Schmitt with pull-up	Test Reset . Forces the LSIFC949X into Power-On Reset state or Soft-Reset state, depending on the state of the Mode pins.
SCAN_ MODE	I	V5	3.3 V TTL Input with pull-down	Scan Mode. Reserved for LSI Logic test purposes only.
SCAN_ ENABLE	I	W6	3.3 V TTL Input with pull-down	Scan Enable. Reserved for LSI Logic test purposes only.
TDIODEVSS	I	U5		Reserved for LSI Logic test purposes only.
TDIODEP	I	U6	3.3 V Input with pull- down	Reserved for LSI Logic test purposes only.
FSELA	I	AC2	3.3 V TTL Input with pull-down	ARM966/AHB Clock Select . Reserved for LSI Logic test purposes only.
BZRSET		AE21		Reference resistor node for the PCI-X impedance controller. A 49.9 $\Omega \pm 1\%$ resistor should be tied between the BZRSET pad and the BZVDD pad.
BZVDD		AE22		Reference resistor node for the PCI-X impedance controller. A 49.9 $\Omega \pm$ 1% resistor should be tied between the BZVDD pad and the BZRSET pad.
UARTRX	I	AB5	3.3 V In	Receive for on-chip UART
UARTTX	I/O	AC4	3.3 V BiDir	Transmit for on-chip UART

Table 4.4	Configuration	and	Miscellaneous	(Cont.)
-----------	---------------	-----	---------------	---------

(Sneet 2 of 2)

1. Soft Reset Mode1 also resets the Link Control logic in addition to the normal soft reset effects.

2. MA[17] must have a pull-up (for power-on sense purposes) to disable ARM booting.

Test and I/O Processor Debug 4.5

Table 4.5 shows the Test and I/O Processor Debug signals.

Signal	I/O	BGA Pad No.	Pad Type	Description
ТСК	I	AA1	3.3 V Schmitt with pull-up	JTAG/CtxMgr Debug Test Clock.
TRST/	I	AB1	3.3 V Schmitt with pull-up	JTAG/Debug Test Reset . Asynchronous active LOW.
TDI	I	AA3	3.3 V Schmitt with pull-up	JTAG/CtxMgr Debug Test Data In.
TDO	В	AB4	3.3 V 4 mA T/S Output with pull-up	JTAG/CtxMgr Debug Test Data Out.
TMS	I	AA2	3.3 V Schmitt with pull-up	JTAG Test Mode Select.
TMS_ICE	I	Y2	3.3 V Schmitt with pull-up	CtxMgr Debug Test Mode Select.
TDI_ICE	I	Y6	3.3 V Schmitt with pull-up	Multi-ICE Debug Test Data In.
TDO_ICE	В	W7	3.3 V 4 mA T/S Output with pull-up	Multi-ICE Debug Test Data Out.
TCK_ICE	I	W2	3.3 V Schmitt with pull-up	Multi-ICE Debug Clock.
RTCK_ICE	В	W1	3.3 V 4 mA T/S Output with pull-up	Multi-ICE Debug RCIk.
TRST_ICE/	I	Y1	3.3 V Schmitt with pull-up	Multi-ICE Debug Reset. Asynchronous active LOW. When ICE is not used, pull TRST_ICE/ low through a 220 Ω resistor.
PROC_MON	0	AA5		Process Monitor Test Output Driver. Reserved for LSI Logic test purposes only.
TN	I	AC1		3-State Output Enable Control. Reserved for LSI Logic test purposes only.
IDDTN	I	AB2	In	IDDTN Test Pad. Reserved for LSI Logic test purposes only.

Table 4.5 Test and I/O Processor Debug

4.6 Power and Ground

Table 4.6 shows the Power and Ground signals.

Table 4.6Power and Ground

Signal	BGA Pad No.	Description	Voltage
VDD12 ¹	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	Core power.	1.2 V
VSS	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	Ground.	0 V
VDDIO33	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	I/O power.	3.3 V
VDDIO33_ PCIX	See Table 7.14 and Table 7.15 on pages 7-10 and 7-12, respectively.	PCIX power.	3.3 V
REFPLLVDD	AD2	Analog power for PCI FSN cell.	1.2 V
REFPLLVSS	AC3	Analog ground for PCI FSN cell.	0 V
PCIPLLVDD	AE24	Analog power for ARM clock generation.	1.2 V
PCIPLLVSS	AD23	Analog ground for ARM clock generation.	0 V
MXSVDD	L3, M3, R4, T4	Analog power for integrated transceiver core.	1.2 V
RXBVDD0	P1	Analog power for integrated transceiver core.	1.2 V
RXBVSS0	N1	Analog ground for integrated transceiver core.	0 V
RXBVDD1	U2	Analog power for integrated transceiver core.	1.2 V
RXBVSS1	U1	Analog ground for integrated transceiver core.	0 V
RXVDD0	R1	Analog power for integrated transceiver core.	1.2 V
RXVSS0	P2	Analog ground for integrated transceiver core.	0 V
RXVDD1	V1	Analog power for integrated transceiver core.	1.2 V
RXVSS1	U3	Analog ground for integrated transceiver core.	0 V
(Sheet 1 of 2)			

Signal	BGA Pad No.	Description	Voltage
TXBVDD0	N3	Analog power for integrated transceiver core.	1.2 V
TXBVSS0	M2	Analog ground for integrated transceiver core.	0 V
TXBVDD1	R2	Analog power for integrated transceiver core.	1.2 V
TXBVSS1	P3	Analog ground for integrated transceiver core.	0 V
TXVDD0	M1	Analog power for integrated transceiver core.	1.2 V
TXVSS0	N2	Analog ground for integrated transceiver core.	0 V
TXVDD1	T2	Analog power for integrated transceiver core.	1.2 V
TXVSS1	T1	Analog ground for integrated transceiver core.	0 V

Table 4.6 Power and Ground (Cont.)

(Sheet 2 of 2)

1. The required core voltage on the LSIFC949X is 1.2 V. The PCIX I/O voltage requires 3.3 V, and the GigaBlaze Fibre Channel transceiver interface requires 1.2 V. Configure the power supply to the chip so that the lower voltages power-up in advance of the higher voltages. The recommended power sequencing depends on the number of supplies used. For a PCIX system with PCIX buffers, the recommended power sequence is 1.2 V and then 3.3 V; or make certain that the following conditions are met during the power cycling:

(VDD1.2 > 1 V) before (VDD3.3 > 1 V)

Chapter 5 PCI-X Functional Description

This chapter provides a general description of the PCI-X features contained in the LSIFC949X Dual Channel Fibre Channel I/O processor chip. The chapter contains the following sections:

- Section 5.1, "Overview"
- Section 5.2, "PCI-X Addressing"
- Section 5.3, "PCI/PCI-X Bus Commands and Implementation"
- Section 5.4, "PCI Arbitration"
- Section 5.5, "PCI Cache Mode"

5.1 Overview

The host PCI-X interface complies with the *PCI Local Bus Specification*, Revision 2.3, and the *PCI-X Addendum to the PCI Local Bus Specification*, Revision 2.0. The LSIFC949X supports up to a 133 MHz, 64-bit PCI-X bus. The LSIFC949X supports 64-bit addressing with Dual Address Cycle (DAC).

The LSIFC949X is a true multifunction PCI-X device that presents a single electrical load to the PCI-X bus. The LSIFC949X uses a single REQ/-GNT/ pair to arbitrate for PCI-X bus mastership. Separate interrupt signals for PCI Function [0] and PCI Function [1] allow independent control of the two PCI functions.

5.2 PCI-X Addressing

The three physical address spaces the PCI specification defines are:

- PCI Configuration Space
- PCI I/O Space for operating registers
- PCI Memory Space for operating registers

The following sections describe the PCI address spaces.

5.2.1 PCI Configuration Space

The LSIFC949X defines an independent set of PCI Configuration Space registers for each PCI function. Each configuration space is a contiguous, 256-x-8-bit set of addresses. The system BIOS initializes the configuration registers using PCI-X configuration cycles. The LSIFC949X decodes the C_BE[3:0]/ field to determine whether a PCI-X cycle intends to access the configuration register space. The IDSEL signal behaves as a chip select signal that enables access to the configuration register space only. The LSIFC949X ignores configuration read/write cycles when IDSEL is not asserted.

Because the LSIFC949X is a multifunction PCI-X device, bits AD[10:8] decode either the PCI Function [0] Configuration Space (AD[10:8] = 0b000) or the PCI Function [1] Configuration Space (AD[10:8] = 0b001). The LSIFC949X does not respond to any other encodings of AD[10:8]. Bits AD[7:2] select one of the 64 Dword registers in the LSIFC949X PCI Configuration Space. Bits AD[1:0] determine whether the configuration command is a Type 0 Configuration Command (AD[1:0] = 0b00) or a Type 1 Configuration Command (AD[1:0] = 0b01). Because the LSIFC949X is not a PCI Bridge device, all PCI Configuration Commands designated for the LSIFC949X must be Type 0. Bits C_BE[3:0]/ address the individual bytes within each Dword and determine the type of access to perform.

5.2.2 PCI I/O Space

The PCI specification defines I/O space as a contiguous 32-bit, I/O address that all system resources share, including the LSIFC949X. The

I/O Base Address register determines the 256-byte PCI I/O area that the PCI device occupies.

5.2.3 PCI Memory Space

The LSIFC949X contains two PCI memory spaces: PCI Memory Space [0] and PCI Memory Space [1]. PCI Memory Space [0] supports normal memory accesses, while PCI Memory Space [1] supports diagnostic memory accesses. The LSIFC949X requires 64 Kbytes of memory space.

The PCI specification defines memory space as a contiguous, 64-bit memory address that all system resources share. The Memory [0] Base Address Low and Memory [0] Base Address High registers determine which 64 Kbyte memory area PCI Memory Space [0] occupies. The Memory [1] Base Address Low and Memory [1] Base Address High registers determine which 64 Kbyte memory area PCI Memory Space [1] occupies.

5.3 PCI/PCI-X Bus Commands and Implementation

Bus commands indicate to the target the type of transaction the master is requesting. The master encodes the bus commands on the C_BE[3:0]/ lines during the address phase. The PCI/PCI-X bus commands and their encodings appear in Table 5.1.

Table 5.1 PCI/PCI-X Bus Commands and Encodings¹

C_BE[3:0]/	PCI Bus Command	PCI-X Bus Command	Supports as Master	Supports as Slave	
0b0000	Interrupt Acknowledge	Interrupt Acknowledge	No	No	
0b0001	Special Cycle	Special Cycle	No	No	
0b0010	I/O Read	I/O Read	Yes	Yes	
0b0011	I/O Write	I/O Write	Yes	Yes	
0b0100	Reserved	Reserved	N/A	N/A	
0b0101	Reserved	Reserved	N/A	N/A	
0b0110	Memory Read	Memory Read Dword	Yes	Yes	
(Sheet 1 of 2)					

C_BE[3:0]/	PCI Bus Command	PCI-X Bus Command	Supports as Master	Supports as Slave
0b0111	Memory Write	Memory Write	Yes	Yes
0b1000	Reserved	Alias to Memory Read Block	PCI: N/A PCI-X: No	PCI: N/A PCI-X: Yes
0b1001	Reserved	Alias to Memory Write Block	PCI: N/A PCI-X: No	PCI: N/A PCI-X: Yes
0b1010	Configuration Read	Configuration Read	No	Yes
0b1011	Configuration Write	Configuration Write	No	Yes
0b1100	Memory Read Multiple	Split Completion	Yes	Yes ²
0b1101	Dual Address Cycles (DAC)	Dual Address Cycles (DAC)	Yes	Yes
0b1110	Memory Read Line	Memory Read Block	Yes	Yes ²
0b1111	Memory Write and Invalidate	Memory Write Block	Yes	Yes ³

Table 5.1 PCI/PCI-X Bus Commands and Encodings¹ (Cont.) (Cont.)

(Sheet 2 of 2)

1. The LSIFC949X ignores reserved commands as a slave and never generates them as a master.

- 2. When acting as a slave in the PCI mode, the LSIFC949X supports this command as the PCI Memory Read command.
- 3. When acting as a slave in the PCI mode, the LSIFC949X supports this command as the PCI Memory Write command.

The following sections describe how the LSIFC949X implements these commands.

5.3.1 Interrupt Acknowledge Command

The LSIFC949X ignores this command as a slave and never generates it as a master.

5.3.2 Special Cycle Command

The LSIFC949X ignores this command as a slave and never generates it as a master.

5.3.3 I/O Read Command

The I/O Read command reads data from an agent mapped in the I/O address space. When decoding I/O commands, the LSIFC949X decodes the lower 32 address bits and ignores the upper 32 address bits. The

LSIFC949X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.4 I/O Write Command

The I/O Write command writes data to an agent mapped in the I/O address space. When decoding I/O commands, the LSIFC949X decodes the lower 32 address bits and ignores the upper 32 address bits. The LSIFC949X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.5 Memory Read Command

The LSIFC949X uses the Memory Read command to read data from an agent mapped in the memory address space. The target can perform an anticipatory read if such a read produces no side effects. The LSIFC949X supports this command when operating in the PCI bus mode.

5.3.6 Memory Read Dword Command

The Memory Read Dword command reads up to a single Dword of data from an agent mapped in the memory address space and can only be initiated as a 32-bit transaction. The target can perform an anticipatory read if such a read produces no side effects. The LSIFC949X supports this command when operating in the PCI-X bus mode.

5.3.7 Memory Write Command

The Memory Write command writes data to an agent mapped in the memory address space. The target assumes responsibility for data coherency when it returns "ready". The LSIFC949X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.8 Alias to Memory Read Block Command

This command is reserved for future implementations of the PCI specification. The LSIFC949X never generates this command as a master. When a slave, the LSIFC949X supports this command using the Memory Read Block command.

5.3.9 Alias to Memory Write Block Command

This command is reserved for future implementations of the PCI specification. The LSIFC949X never generates this command as a master. When a slave, the LSIFC949X supports this command using the Memory Write Block command.

5.3.10 Configuration Read Command

The Configuration Read command reads the configuration space of a device. The LSIFC949X never generates this command as a master, but does respond to it as a slave. A device on the PCI bus selects the LSIFC949X by asserting its IDSEL signal when bits AD[1:0] = 0b00. During the address phase of a configuration cycle, bits AD[7:2] address one of the 64 Dword registers in the configuration space of each device. C_BE[3:0]/ address the individual bytes within each Dword register and determine the type of access to perform. Bits AD[10:8] address either the PCI Function [0] Configuration Space (AD[10:8] = 0b000) or the PCI Function [1] Configuration Space (AD[10:8] = 0b001). The LSIFC949X treats AD[63:11] as logical don't cares.

5.3.11 Configuration Write Command

The Configuration Write command writes the configuration space of a device. The LSIFC949X never generates this command as a master, but does respond to it as a slave. A device on the PCI bus selects the LSIFC949X by asserting its IDSEL signal when bits AD[1:0] = 0b00. During the address phase of a configuration cycle, bits AD[7:2] address one of the 64 Dword registers in the configuration space of each device. C_BE[3:0]/ address the individual bytes within each Dword register and determine the type of access to perform. Bits AD[10:8] decode either the PCI Function [0] Configuration Space (AD[10:8] = 0b000) or the PCI Function [1] Configuration Space (AD[10:8] = 0b001). The LSIFC949X treats AD[63:11] as logical don't cares.

5.3.12 Memory Read Multiple Command

The Memory Read Multiple command is identical to the Memory Read command, except it additionally indicates that the master intends to fetch multiple cache lines before disconnecting. The LSIFC949X supports PCI Memory Read Multiple functionality when operating in the PCI mode

and determines when to issue a Memory Read Multiple command instead of a Memory Read command.

Burst Size Selection – The Memory Read Multiple command reads multiple cache lines of data during a single bus ownership. The number of cache lines the LSIFC949X reads is a multiple of the cache line size, which the *PCI Local Bus Specification,* Revision 2.3, provides. The LSIFC949X selects the largest multiple of the cache line size based on the amount of data to transfer.

5.3.13 Split Completion Command

Split transactions in PCI-X replace the delayed transactions in conventional PCI. The LSIFC949X supports one outstanding split transaction when operating in the PCI-X mode. A split transaction consists of at least two separate bus transactions: a split request, which the requester initiates; and one or more split completion commands, which the completer initiates. The *PCI-X Addendum to the PCI Local Bus Specification,* Revision 2.0, permits split transaction completion for the Memory Read Block, Alias to Memory Read Block, Memory Read Dword, Interrupt Acknowledge, I/O Read, I/O Write, Configuration Read, and Configuration Write commands. When operating in the PCI-X mode, the LSIFC949X supports the Split Completion command for all of these commands except the Interrupt Acknowledge command, which the LSIFC949X neither responds to nor generates.

5.3.14 Dual Address Cycles (DAC) Command

The LSIFC949X performs Dual Address Cycles (DAC), according to the *PCI Local Bus Specification*, Revision 2.3. The LSIFC949X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.15 Memory Read Line Command

This command is identical to the Memory Read command except it additionally indicates that the master intends to fetch a complete cache line. The LSIFC949X supports this command when operating in the PCI mode.

5.3.16 Memory Read Block Command

The LSIFC949X uses this command to read from memory. The LSIFC949X supports this command when operating in the PCI-X mode.

5.3.17 Memory Write and Invalidate Command

The Memory Write and Invalidate command is identical to the Memory Write command, except it additionally guarantees a minimum transfer of one complete cache line. The master uses this command when it intends to write all bytes within the addressed cache line in a single PCI transaction unless interrupted by the target. This command requires implementation of the PCI Cache Line Size register. The LSIFC949X determines when to issue a Write and Invalidate command instead of a Memory Write command, and supports this command when operating in the PCI bus mode.

5.3.17.1 Alignment

The LSIFC949X uses the calculated line size value to determine whether the current address aligns to the cache line size. If the address does not align, the LSIFC949X bursts data using a noncache command. If the starting address aligns, the LSIFC949X issues a Memory Write and Invalidate command using the cache line size as the burst size.

5.3.17.2 Multiple Cache Line Transfers

The Memory Write and Invalidate command can write multiple cache lines of data in a single bus ownership. The LSIFC949X issues a burst transfer as soon as it reaches a cache line boundary. The PCI Local Bus specification states that the transfer size must be a multiple of the cache line size. The LSIFC949X selects the largest multiple of the cache line size based on the transfer size. When the DMA buffer contains less data than the value Cache Line Size register specifies, the LSIFC949X issues a Memory Write command on the next cache boundary to complete the data transfer.

5.3.18 Memory Write Block Command

The LSIFC949X uses this command to burst data to memory. The LSIFC949X supports this command when operating in the PCI-X bus mode.

5.4 PCI Arbitration

The LSIFC949X contains independent bus mastering functions for each of the SCSI functions and for the system interface. The system interface bus mastering function manages DMA operations as well as the request and reply message frames. The SCSI channel bus mastering functions manage data transfers across the SCSI channels.

The LSIFC949X uses a single REQ/-GNT/ signal pair to arbitrate for access to the PCI bus. To ensure fair access to the PCI bus, the internal arbiter uses a round robin arbitration scheme to decide which of the three internal bus mastering functions can arbitrate for access to the PCI bus.

5.5 PCI Cache Mode

The LSIFC949X supports an 8-bit, Cache Line Size register. This register provides the ability to sense and react to nonaligned addresses corresponding to cache line boundaries. The LSIFC949X determines when to issue a PCI cache command (Memory Read Line, Memory Read Multiple, and Memory Write and Invalidate) or PCI noncache command (Memory Read or Memory Write).

Chapter 6 Registers

This chapter describes the PCI host register space. The chapter consists of the following sections:

- Section 6.1, "PCI-X Configuration Space Register Description"
- Section 6.2, "PCI I/O Space and Memory Space Register Description"

The register map at the beginning of each register description provides the default bit settings for the register. Shading indicates a reserved bit or register. Do not access the reserved address areas.

There are two PCI functions on the LSIFC949X. Each PCI function has its own independent interrupt pin and its own PCI Address space. The PCI System Address space consists of three regions: PCI Configuration Space, PCI Memory Space, and PCI I/O Space. PCI Configuration Space supports the identification, configuration, initialization, and error management functions for the LSIFC949X PCI devices. PCI Memory Space [0] and PCI Memory Space [1] form PCI Memory Space. PCI Memory Space [1] provides diagnostic memory accesses. PCI I/O Space and PCI Memory Space [0] provide normal system access to memory.

6.1 PCI-X Configuration Space Register Description

This section provides bit-level descriptions of the PCI Configuration Space registers. Table 6.1 defines the PCI Configuration Space registers. A separate set of PCI Configuration Space registers exists for each PCI function.

The LSIFC949X enables, orders, and locates the PCI-extended capability register structures (Power Management, Messaged Signaled Interrupts, and PCI-X) to optimize device performance. The LSIFC949X does not hardcode the location and order of the PCI-extended capability

structures. The address and location of the PCI-extended capability structures are subject to change. To access a PCI-extended capability structure, follow the pointers held in the Capability Pointer registers and identify the extended capability structure with the Capability ID register for the given structure.

Shading in the following address map and register descriptions indicates reserved bits.

Table 6.1	LSIFC949X PCI-X	Configuration	Space	Address Map
-----------	-----------------	---------------	-------	-------------

31	16	15	C	Offset	Page
Device ID		Vendor ID		0x00	6-3
Status		Command		0x04	6-4
	Class Code		Revision ID	0x08	6-8
Reserved	Header Type	Latency Timer	Cache Line Size	0x0C	6-9
		se Address		0x10	6-10
		Base Address Low		0x14	6-11
Memory [0] Base Address High				0x18	6-11
		Base Address Low		0x1C	6-12
		ase Address High		0x20	6-12
	Re	eserved		0x24	1
				0x28	—
Subsys			Vendor ID	0x2C	6-13
		OM Base Address		0x30	6-14
	Reserved		Capabilities Pointer	0x34	6-15
				0x38	-
Maximum Latency	Minimum Grant	Interrupt Pin	Interrupt Line	0x3C	6-16
		eserved			-
Power Managem		PM Next Pointer	PM Capability ID		<u>6-19</u>
PM Data	PM BSE		ent Control/Status		6-20
		eserved		1 [—
MSI Messa		MSI Next Pointer	MSI Capability ID		6-22
		e Lower Address		0x40-	6-23
	MSI Messag	e Upper Address		0xFF	6-24
Rese	rved	MSI Mess	sage Data		6-24
	MSI	Mask Bits		1	6-25
	MSI P	ending Bits		1	6-25
	Re	eserved			_
MSI-X Mess		MSI-X Next Pointer	MSI-X Capability ID	1	6-25
	MSI-X Table Offset				6-27
	MSI-X PBA Offset				
		eserved			—
PCI-X C		PCI-X Next Pointer	PCI-X Capability ID		6-28
	PCI-	X Status			6-30
	Re	eserved			-

Register: 0x00–0x01 Vendor ID Read Only

15							8	7							0
							Vend	or ID							
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Vendor ID

[15:0]

This 16-bit register identifies the device manufacturer. The Vendor ID is 0x1000.

Register: 0x02–0x03 Device ID Read Only

15							8	7							0
							Devi	ce ID							
0	0	0	0	0	1	1	0	0	1	0	0	0	0	x	x

Device ID

[15:0]

This register identifies the particular device. The most significant 12 bits are hardcoded to a constant of 0x064. The LSB is dependent upon the power-on sense functions corresponding to the states of pins MA[4] and MA[3] as decoded in Table 6.2.

Table 6.2 Device ID Values

Single/Dual Channel	State of MA[4:3]	Device ID
Function 1		
Dual Channel	MA[4] = 0	0x0640
Dual Channel	MA[4] = 1	0x0641
Single Channel	MA[4] = 0	0x0642
Single Channel	MA[4] = 1	0x0643
(Sheet 1 of 2)		

Single/Dual Channel	State of MA[4:3]	Device ID
Function 0		
Dual Channel	MA[3] = 0	0x0640
Dual Channel	MA[3] = 1	0x0641
Single Channel	MA[3] = 0	0x0642
Single Channel	MA[3] = 1	0x0643
(Sheet 2 of 2)		

Table 6.2Device ID Values (Cont.)

Register: 0x04–0x05 Command Read/Write

15							8	7							0
	Command														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register provides coarse control over how the PCI function generates and responds to PCI cycles. Writing a zero to this register logically disconnects the LSIFC949X PCI function from the PCI bus for all accesses except configuration accesses.

Reserved This field is reserved.	[15:9]
SERR/ Enable Setting this bit enables the LSIFC949X to act SERR/ driver. Clearing this bit disables the SE	
Reserved This bit is reserved.	7
Enable Parity Error Response Setting this bit enables the LSIEC949X PCI fu	6 Inction to

Setting this bit enables the LSIFC949X PCI function to detect parity errors on the PCI bus and report these errors to the system. Clearing this bit causes the LSIFC949X PCI function to set the Detected Parity Error bit (bit 15 in the Status register (register 0x06–0x07)) but not assert the PERR/ signal when the PCI function

detects a parity error. This bit only affects parity checking. The PCI function always generates parity for the PCI bus.

Reserved

This bit is reserved.

Write and Invalidate Enable

Setting this bit enables the PCI function to generate write and invalidate commands on the PCI bus when operating in the conventional PCI mode.

Reserved

This bit is reserved.

Enable Bus Mastering

Setting this bit allows the PCI function to behave as a PCI bus master. Clearing this bit disables the PCI function from generating PCI bus master accesses.

Enable Memory Space

This bit controls the ability of the PCI function to respond to Memory Space accesses. Setting this bit allows the LSIFC949X to respond to Memory Space accesses at the address range specified by the Memory [0] Base Address Low, Memory [0] Base Address High, Memory [1] Base Address Low, Memory [1] Base Address High, and the Expansion ROM Base Address registers. Clearing this bit disables the PCI function response to memory space accesses.

Enable I/O Space

This bit controls the LSIFC949X PCI function response to I/O space accesses. Setting this bit enables the PCI function to respond to I/O Space accesses at the address range the PCI Configuration Space I/O Base Address register specifies. Clearing this bit disables the PCI function response to I/O space accesses.

2

3

5

4

1

0

Register: 0x06–0x07 Status Read/Write

15							8	7							0
							Sta	itus							
0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0

Reads to this register behave normally. To clear a bit location that is currently set, write the bit to one (1). For example, to clear bit 15 when it is set, and not affect any other bits, write 0x8000 to the register.

	to the PCI Local Bus Specifica- ne PCI-X Addendum to the PCI
Signaled System Error The LSIFC949X PCI func the SERR/ signal.	14 tion sets this bit when asserting
Received Master Abort A master device sets this command terminates its Special Cycle).	s bit when a Master Abort
Received Target Abort A master device sets this command terminates its	bit when a Target Abort
Reserved This bit is reserved.	11
DEVSEL/ signal and indi device asserts the DEVS	[10:9] encode the timing of the cate the slowest time that a EL/ signal for any bus command ad and Configuration Write. The

LSIFC949X only supports medium DEVSEL/ timing. The possible timing values are as follows:

0b00	Fast
0b01	Medium
0b10	Slow
0b11	Reserved

Data Parity Error Reported

This bit is set according to the *PCI Local Bus Specification,* Revision 2.3, and the *PCI-X Addendum to the PCI Local Bus Specification,* Revision 2.0. Refer to bit 0 of the PCI-X Command register for details.

Reserved

This field is reserved.

66 MHz Capable

The MA[10] Power-On Sense pin controls this bit. Allowing the internal pull-down to pull MA[10] LOW sets this bit and indicates to the host system that the LSIFC949X PCI function is capable of operating at 66 MHz. Pulling MA[10] HIGH clears this bit and indicates to the host system that the LSIFC949X PCI function is not capable of operating at 66 MHz. Refer to Table 4.3 on page 4-9 for details.

New Capabilities

The LSIFC949X PCI function sets this read-only bit to indicate a list of PCI extended capabilities such as PCI Power Management, Message Signaled Interrupt (MSI), and PCI-X support.

Reserved

This field is reserved.

[3:0]

4

[7:6]

8

5

Register: 0x08 Revision ID Read/Write

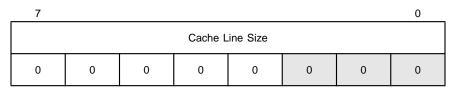
7							0
			Revis	ion ID			
х	х	х	х	х	х	х	х

Revision ID

[7:0]

This register indicates the current revision level of the device.

Register: 0x09–0x0B Class Code Read Only


16 15 Class Code

Class Code

[23:0]

This 24-bit register identifies the generic function of this device. The upper byte of this register is a base class code, the middle byte is a subclass code, and the lower byte identifies a specific register-level programming interface. The value of this register is 0x0C0400, and is written by the SEEPROM (provided the SEEPROM is present in the system). If no SEEPROM is present in the system, the default Class Code is 0x010000.

Register: 0x0C Cache Line Size Read/Write

Cache Line Size

[7:3]

This register specifies the system cache line size in units of 32-bit words. In the conventional PCI mode, the LSIFC949X PCI function uses this register to determine whether to use Write and Invalidate or Write commands for performing write cycles. Programming this register to a number other than a nonzero power of two disables the the use of the PCI performance commands to execute data transfers. The LSIFC949X PCI function ignores this register when operating in the PCI-X mode.

Reserved

[2:0]

This field is reserved.

Register: 0x0D Latency Timer Read/Write

7							0
			Latency	y Timer			
0	х	0	0	0	0	0	0

Latency Timer

[7:4]

This register specifies, in units of PCI bus clocks, the value of the Latency Timer for this PCI bus master.

Reserved

[3:0]

This field is reserved.

Register: 0x0E Header Type Read Only

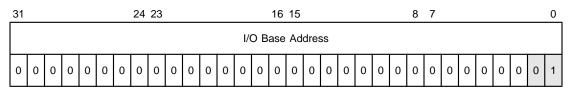
7							0
			Heade	er Type			
х	0	0	0	0	0	0	0

Header Type

[7:0]

[7:0]

This 8-bit register identifies the layout of bytes 0x10 through 0x3F in configuration space and also indicates whether this device is a single function or multifunction PCI device.


Register: 0x0F Reserved

7							0
			Rese	erved			
0	0	0	0	0	0	0	0

Reserved

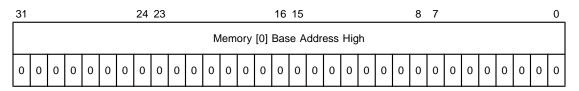
This register is reserved.

Register: 0x10–0x13 I/O Base Address Read/Write

This register maps the operating register set into I/O space. The LSIFC949X requires 256 bytes of I/O space for this register. Hardware sets bit 0 to 0b1. Bit 1 is reserved and returns 0b0 on all reads.

I/O Base Address	[31:2]
This field contains the I/O Base Address.	

Reserved[1:0]This field is reserved.


Register: 0x14–0x17 Memory [0] Base Address Low Read/Write

31							24	23							16	15							8	7							0
											Ν	/lem	nory	[0]	Bas	se A	ddr	ess	Lov	N											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

The Memory [0] Base Address Low register and the Memory [0] Base Address High register map SCSI operating registers into Memory Space [0]. The Memory [0] Base Address Low register contains the lower 32 bits of the Memory Space [0] base address. Hardware programs bits [9:0] to 0b000000100, which indicates that the Memory Space [0] base address is 64 bits wide and that the memory data is not prefetchable. The LSIFC949X requires 1024 bytes of memory space.

Memory [0] Base Address Low[31:0]This field contains the Memory [0] Base Address Lowaddress.

Register: 0x18–0x1B Memory [0] Base Address High Read/Write

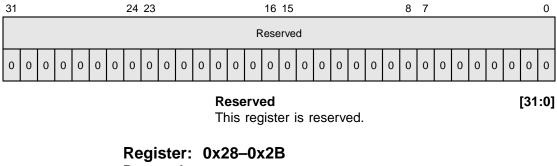
The Memory [0] Base Address High register and the Memory [0] Base Address Low register map SCSI operating registers into Memory Space [0]. The Memory [0] Base Address High register contains the upper 32 bits of the Memory Space [0] base address. The LSIFC949X requires 1024 bytes of memory space. Memory [0] Base Address High[31:0]This field contains the Memory [0] Base Address High
address.High

Register: 0x1C–0x1F Memory [1] Base Address Low Read/Write

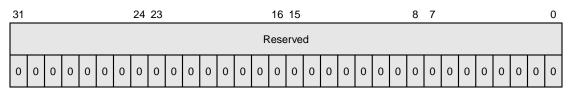
31							24	23							16	15							8	7							0
											N	/lem	ory	[1]	Bas	se A	٨ddr	ess	Lov	w											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

The Memory [1] Base Address Low register and the Memory [1] Base Address High register map the RAM into Memory Space [1]. The Memory [1] Base Address Low register contains the lower 32 bits of the Memory Space [1] base address. Hardware programs bits [12:0] to 0b000000000100, which indicates that the Memory Space [1] base address is 64 bits wide and that the memory data is not prefetchable. The LSIFC949X requires 64 Kbytes of memory for Memory Space [1].

> Memory [1] Base Address Low [31:0] This field contains the Memory [1] Base Address Low address.


Register: 0x20–0x23 Memory [1] Base Address High Read/Write

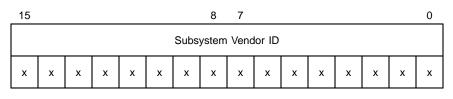
31							24	23							16	15							8	7							0
											N	lem	ory	[1]	Bas	e A	ddr	ess	Hig	h											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


The Memory [1] Base Address Low register and the Memory [1] Base Address High register map the RAM into Memory Space [1]. The Memory [1] Base Address Low register contains the upper 32 bits of the Memory Space [1] base address. The LSIFC949X requires 64 Kbytes of memory for Memory Space [1]. Memory [1] Base Address High[31:0]This field contains the Memory [1] Base Address High
address.High

Register: 0x24–0x27

Reserved

Reserved


Reserved

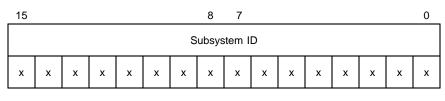
[31:0]

This register is reserved.

Register: 0x2C-0x2D

Subsystem Vendor ID Read Only

SVID

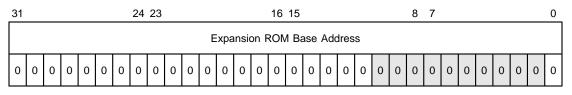

Subsystem Vendor ID

[15:0]

This 16-bit register uniquely identifies the vendor that manufactures the add-in board or subsystem where the LSIFC949X resides. This register provides a mechanism for an add-in card vendor to distinguish their cards from those of another vendor, even if the cards use the same PCI controller (and have the same Vendor ID and Device ID).

The external serial EEPROM can hold a vendor-specific, 16-bit value for this register, which the board designer must obtain from the PCI Special Interest Group (PCI-SIG).

Register: 0x2E–0x2F Subsystem ID Read Only


SID

Subsystem ID

[15:0]

This 16-bit register uniquely identifies the add-in board or subsystem where this PCI device resides. This register provides a mechanism for an add-in card vendor to distinguish their cards from one another even if the cards use the same PCI controller (and have the same Vendor ID and Device ID). The board designer can store a vendor-specific, 16-bit value in an external serial EEPROM.

Register: 0x30–0x33 Expansion ROM Base Address Read/Write

This 32-bit register contains the base address and size information for the expansion ROM.

PCI-X Configuration Space Register Description Copyright © 2003, 2004, 2005 by LSI Logic Corporation. All rights reserved.

Expansion ROM Base Address

These bits correspond to the upper 21 bits of the expansion ROM base address. The host system detects the size of the external memory by first writing 0xFFFFFFF to this register and then reading the register back. The LSIFC949X responds with zeros in all don't care locations. The least significant one (1) that remains represents the binary version of the external memory size. For example, to indicate an external memory size of 32 Kbytes, this register returns ones in the upper 17 bits when written with 0xFFFFFFF and read back.

Reserved

This field is reserved.

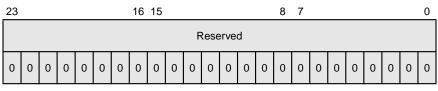
Expansion ROM Enable

This bit controls whether the device accepts accesses to its expansion ROM. Setting this bit enables address decoding. Depending on the system configuration, the device can optionally use an expansion ROM. Note that to access the expansion ROM, the user must also set bit 1 in the PCI Command register.

Register: 0x34 **Capabilities Pointer** Read Only

7							0
			Capabilitie	es Pointer			
х	х	х	х	х	х	х	х

Capabilities Pointer

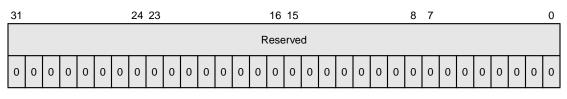

[7:0] This register indicates the location of the first extended capabilities register in PCI Configuration Space. The value of this register varies according to system configuration.

[10:1]

0

Register: 0x35–0x37

Reserved



Reserved

[23:0]

This register is reserved.

Register: 0x38–0x3B Reserved

Reserved

[31:0]

This register is reserved.

Register: 0x3C Interrupt Line Read/Write

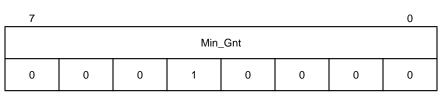
7							0
			Interru	pt Line			
0	0	0	0	0	0	0	0

Interrupt Line

[7:0]

This register communicates interrupt line routing information. Power-On-Self-Test (POST) software writes the routing information into this register as it configures the system. This register indicates the system interrupt controller input to which this PCI function interrupt pin connects. System architecture determines the values in this register.

Register: 0x3D Interrupt Pin Read Only


7							0				
		F	unction [0]	Interrupt Pi	n						
0	0 0 0 0 0 0										
		F	unction [1]	Interrupt Pi	'n						
0	0	0	0	0	0	1	0				

Interrupt Pin

[7:0]

The encoding of this read-only register is unique to each function on the LSIFC949X. It indicates which interrupt pin the function uses. The value for Function [0] is 0x01, which indicates that Function [0] presents interrupts on the INTA/ pin. The value for Function [1] is 0x02, which indicates that Function [1] presents interrupts on the INTB/ pin.

Register: 0x3E Minimum Grant Read Only

Min_Gnt

[7:0]

This register specifies the desired settings for latency timer values in units of 0.25 μ s. The Min_Gnt field specifies how long of a burst period the device needs. The LSIFC949X sets this register to 0x10, indicating a burst period of 4.0 μ s.

Register: 0x3F Maximum Latency Read Only

7							0
			Max	_Lat			
0	0	0	0	0	1	1	0

Max_Lat

[7:0]

This register specifies the desired settings for latency timer values in units of $0.25 \,\mu$ s. The Max_Lat field specifies how often the device needs to gain access to the PCI bus. The LSIFC949X sets this register to 0x06, indicating a burst period of 1.5 μ s.

Register: 0xXX

Power Management Capability ID Read Only

7							0
		Powe	r Managem	ent Capabil	lity ID		
0	0	0	0	0	0	0	1

Power Management Capability ID[7:0]This register indicates the type of the current data
structure. It is set to 0x01 to indicate the Power
Management data structure.

Register: 0xXX Power Management Next Pointer Read Only

7							0
		Powe	r Managem	nent Next P	ointer		
x	х	х	х	х	х	х	х

Power Management Next Pointer

[7:0]

This register contains the pointer to the next item in the PCI function extended capabilities list. The value of this register varies according to system configuration.

Register: 0xXX **Power Management Capabilities Read Only**

15							8	7							0
					Powe	er Ma	nager	nent (Capab	oilities					
0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0

PME_Support

These bits define the power management states in which the device asserts the Power Management Event (PME) pin. The LSIFC949X clears these bits since the LSIFC949X does not provide a PME signal.

D2_Support

The PCI function sets this bit since the LSIFC949X supports power management state D2.

D1 Support

The PCI function sets this bit since the LSIFC949X supports power management state D1.

Aux Current

The PCI function clears this field since the LSIFC949X does not support Aux_Current.

Device Specific Initialization

The PCI function clears this bit since no special initialization is required before a generic class device driver can use it.

Reserved

This bit is reserved.

PME Clock

PCI-X Configuration Space Register Description

Copyright © 2003, 2004, 2005 by LSI Logic Corporation. All rights reserved.

The LSIFC949X clears this bit since the chip does not provide a PME pin.

10

[15:11]

[8:6]

5

9

4

3

Version

[2:0] The PCI function programs these bits to 0b010 to indicate that the LSIFC949X complies with the PCI Bus Power Management Interface Specification, Revision 1.2.

Register: 0xXX Power Management Control/Status Read/Write

15							8	7							0
				I	Power	Mana	ageme	ent Co	ontrol/	Status	6				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PME_Status

The PCI function clears this bit since the LSIFC949X does not support PME signal generation from D3_{cold}.

Data Scale

The PCI function clears these bits since the LSIFC949X does not support the Power Management Data register.

Data Select

The PCI function clears these bits since the LSIFC949X does not support the Power Management Data register.

PME Enable

The PCI function clears this bit since the LSIFC949X does not provide a PME signal and disables PME assertion.

Reserved

This field is reserved.

Power State

[1:0]

[7:2]

These bits determine the current power state of the LSIFC949X. Power states are:

0b00	D0	
0b01	D1	
0b10	D2	
0b11	D3 _{hot}	

15

[14:13]

[12:9]

8

Register: 0xXX Power Management Bridge Support Extensions Read Only

7							0
	Р	ower Mana	gement Bri	dge Suppor	t Extension	S	
0	0	0	0	0	0	0	0

Power Management Bridge Support Extensions [7:0] This register indicates PCI Bridge specific functionality. The LSIFC949X always returns 0x00 in this register.

Register: 0xXX Power Management Data Read Only

7							0
		Р	ower Mana	gement Dat	a		
0	0	0	0	0	0	0	0

Power Management Data

[7:0]

This register provides an optional mechanism for the PCI function to report state-dependent operating data. The LSIFC949X always returns 0x00 in this register.

Register: 0xXX MSI Capability ID Read Only

7							0
			MSI Cap	ability ID			
0	0	0	0	0	1	0	1

MSI Capability ID

[7:0]

This register indicates the type of the current data structure. This register always returns 0x05, indicating Message Signaled Interrupts (MSI).

Register: 0xXX MSI Next Pointer Read Only

7							0
			MSI Nex	t Pointer			
x	x	x	x	x	x	x	x

MSI Next Pointer

[7:0]

This register points to the next item in the PCI function's extended capabilities list. The value of this register varies according to system configuration.

Register: 0xXX MSI Message Control Read/Write

15							8	7							0
						MSI I	Messa	age C	ontrol						
0	0	0	0	0	0	0	Х	1	0	0	0	0	0	0	0

Reserved

[15:9]

8

7

[6:4]

This field is reserved.

Per-Vector Masking Capable

If this bit is set, the device supports MSI per-vector masking. If this bit is cleared, the function does not support MSI per-vector masking. This bit is read only.

64-Bit Address Capable

The PCI function sets this read only bit to indicate support of a 64-bit message address.

Multiple Message Enable

These read/write bits indicate the number of messages that the host allocates to the LSIFC949X. The host system software allocates all or a subset of the requested messages by writing to this field. The number of allocated request messages must align to a power of two. Table 6.3 provides the bit encoding of this field.

Bits [6:4] Encoding	Number of Allocated Messages
0b000	1
0b001	2
0b010	4
0b011	8
0b100	16
0b101	32
0b110	Reserved
0b111	Reserved

Table 6.3 Multiple Message Enable Field Bit Encoding

Multiple Message Capable

[3:1]

0

These read only bits indicate the number of messages that the LSIFC949X requests from the host. The host system software reads this field to determine the number of requested messages. The number of requested messages must align to a power of two. The LSIFC949X sets this field to 0b000 to request one message. All other encodings of this field are reserved.

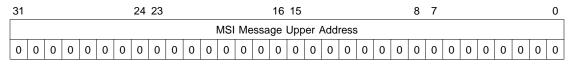
MSI Enable

System software sets this bit to enable MSI. To enable MSI, the MSI-X bit in the MSI-X Message Control register must also be cleared ("0"). Setting this bit enables the device to use MSI to interrupt the host and request service. Setting this bit prohibits the LSIFC949X from using the INTA/ pin to request service from the host. Setting this bit to mask interrupts on the INTA/ pin is a violation of the PCI specification.

Register: 0xXX MSI Message Lower Address Read/Write

31							24	23							16	15							8	7							0
												I	MSI	Me	ssa	ge /	Add	ress	5												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MSI Message Address


[31:2] This register contains message address bits [31:2] for the MSI memory write transaction. The host system specifies and Dword aligns the message address. During the address phase, the LSIFC949X drives Message Address[1:0] to 0b00.

Reserved

[1:0]

This field is reserved.

Register: 0xXX MSI Message Upper Address **Read/Write**

MSI Message Upper Address

[31:0]

The LSIFC949X supports 64-bit MSI message. This register contains the upper 32 bits of the 64-bit message address, which the system specifies. The host system software can program this register to 0x0000 to force the PCI function to generate 32-bit message addresses.

Register: 0xXX MSI Message Data Read/Write

15							8	7							0
						MSI	Mess	sage I	Data						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MSI Message Data

[15:0]

System software initializes this register by writing to it. The LSIFC949X sends an interrupt message by writing a Dword to the address held in the MSI Message Lower Address and MSI Message Upper Address registers. This register forms bits [15:0] of the Dword message that the PCI function passes to the host. The PCI function drives bits [31:16] of this message to 0x0000.

Register: 0xXX MSI Mask Bits Read/Write

31							24	23							16	15							8	7							0
														MSI	Ma	ask	Bits														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MSI Mask Bits

[31:0]

For each mask bit that is set, the device is prohibited from sending an associated message. Refer to the PCI specification for a complete description of this register.egister

Register: 0xXX MSI Pending Bits Read Only

31							24	23							16	15							8	7							0
													N	ISI	Pen	ding	g Bi	ts													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MSI Pending Bits

[31:0]

For each Pending bit that is set, the function has a pending associated message. Refer to the PCI specification for a complete description of this register.

Register: 0xXX MSI-X Capability ID Read Only

7							0						
	MSI-X Capability ID												
0	0	0	1	0	0	0	1						

MSI-X Capability ID

[7:0]

This register indicates the type of the current data structure. This register always returns 0x11, indicating MSI-X.

Register: 0xXX MSI-X Next Pointer Read Only

7							0						
	MSI-X Next Pointer												
x	x x x x x x x												

MSI-X Next Pointer

[7:0]

This register points to the next item in the extended capabilities list. The value of this register varies according to system configuration.

Register: 0xXX

MSI-X Message Control

Read/Write

15							8	7							0
					1	MSI-X	Mess	sage (Contro	ol					
0	0	0	0	0	х	x	x	x	x	х	х	х	х	х	х

MSI-X Enable

15

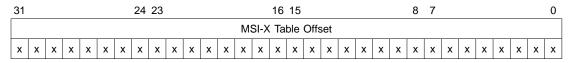
14

[13:11]

Setting this bit enables the device to use MSI-X to request service from the host. To enable MSI-X, the MSI Enable bit in the MSI Message Control register must be cleared ("0"). Setting this bit also prohibits the device from using the INTA/ pin to request service from the host. Setting this bit to mask interrupts on the INTA/ pin is a violation of the PCI specification.

Function Mask

Setting this bit masks all of the reset vectors that are associated with the function. This bit overrides the pervector mask bit settings. Clearing this bit enables the pervector mask bit to determine if a vector is masked.


Reserved

This field is reserved.

Table Size

[10:0] ield to determine the MSI-X

Register: 0xXX MSI-X Table Offset Read Only

MSI-X Table Offset

[31:3]

This field provides an offset from the address held in the base address registers of the device to the base of the MSI-X table.

Table BIR

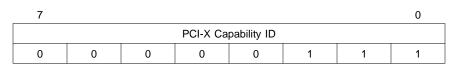
[2:0]

This field indicates which of the base address registers of the device, which are located at 0x10 in PCI Configuration Space, maps the MSI-X table into memory. Table 6.4 provides the BIR field definitions.

Table 6.4 BIR Field Definitions

BIR Value	Base Address Register
0	0x10
1	0x14
2	0x18
3	0x1C
4	0x20
5	0x24
6	Reserved
7	Reserved

Register: 0xXX MSI-X PBA Offset Read Only


MSI-X PBA Offset

This field contains an offset from one of the base address registers of the device that points to the MSI-X PBA. The lower 3 bits of this register are cleared ("0") for a 32-bit aligned offset.

PBA BIR

This field indicates which of the base address registers of the device, which are located at 0x10 in PCI Configuration Space, maps the MSI-X PBA into memory. Table 6.4 provides the BIR field definitions.

Register: 0xXX PCI-X Capability ID Read Only

PCI-X Capability ID

[7:0]

This register indicates the type of the current data structure. This register returns 0x07, indicating the PCI-X Data Structure.

Register: 0xXX PCI-X Next Pointer Read Only

7							0						
	PCI-X Next Pointer												
x	x	x	x	x	x	x	x						

PCI-X Next Capabilities Pointer

[7:0]

This register points to the next item in the device's capabilities list. The value of this register varies according to system configuration.

[31:3]

[2:0]

Register: 0xXX PCI-X Command Read/Write

15							8	7							0
	PCI-X Command														
0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0

Reserved

[15:7]

This field is reserved.

Maximum Outstanding Split Transactions[6:4]These bits indicate the maximum number of splittransactions the LSIFC949X can have outstanding at onetime. The LSIFC949X uses the most recent value of thisregister each time it prepares a new sequence. Note thatif the LSIFC949X prepares a sequence before the settingof this field changes, the PCI function initiates theprepared sequence with the previous setting. Table 6.5provides the bit encodings for this field.

Table 6.5 Maximum Outstanding Split Transactions

Bits [6:4] Encoding	Maximum Outstanding Split Transactions
0b000	1
0b001	2
0b010	3
0b011	4
0b100	8
0b101	12
0b110	16
0b111	Reserved

Maximum Memory Read Byte Count [3:2]

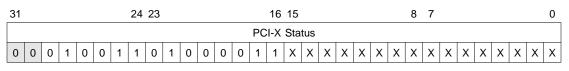
These bits indicate the maximum byte count the LSIFC949X uses when initiating a sequence with one of the burst memory read commands. Table 6.6 provides the bit encodings for this field.

Bits [3:2] Encoding	Maximum Memory Read Byte Count
0b00	512
0b01	1024
0b10	2048
0b11	Reserved

Table 6.6 Maximum Memory Read Count

Reserved

This bit is reserved.


1

0

Data Parity Error Recovery Enable

The host device driver sets this bit to allow the LSIFC949X to attempt to recover from data parity errors. If the user clears this bit and the LSIFC949X is operating in the PCI-X mode, the LSIFC949X asserts SERR/ whenever the Master Data Parity Error bit in the PCI Status register is set.

Register: 0xXX PCI-X Status Read/Write

Reserved

[31:30]

This field is reserved.

Received Split Completion Error Message 29

The LSIFC949X sets this bit upon receipt of a split completion message if the split completion error attribute bit is set. Write a one (1) to this bit to clear it.

Designed Maximum Cumulative Read Size [28:26] These read only bits indicate a number greater than or equal to the maximum cumulative size of all outstanding burst memory read transactions for the LSIFC949X PCI device. The PCI function must report the smallest value that correctly indicates its capability. The LSIFC949X reports 0b100 in this field to indicate a designed maximum cumulative read size of 16 Kbytes.

Designed Maximum Outstanding Split Transactions

[25:23]

[22:21]

These read only bits indicate a number greater than or equal to the maximum number of all outstanding split transactions for the LSIFC949X PCI device. The PCI function must report the smallest value that correctly indicates its capability. The LSIFC949X reports 0b110 in this field to indicate that the designed maximum number of outstanding split transactions is sixteen.

Designed Maximum Memory Read Byte Count

These read only bits indicate a number greater than or equal to the maximum byte count for the LSIFC949X device. The PCI function uses this count to initiate a sequence with one of the burst memory read commands. The PCI function must report the smallest value that correctly indicates its capability. The LSIFC949X reports 0b10 in this field to indicate that the designed maximum memory read bytes count is 2048.

Device Complexity

The PCI function clears this read only bit to indicate that the LSIFC949X is a simple device.

Unexpected Split Completion

The PCI function sets this read only bit when it receives an unexpected split completion. Once set, this bit remains set until software clears it. Write a one (1) to this bit to clear it.

Split Completion Discarded

The PCI function sets this read only bit when it discards a split completion. Once set, this bit remains set until software clears it. Write a one (1) to this bit to clear it.

133 MHz Capable

The MA[8] Power-On Sense pin controls this read only bit. Allowing the internal pull-downs to pull MA[8] LOW sets this bit and enables 133 MHz operation of the PCI bus. Pulling MA[8] HIGH clears this bit and disables 133 MHz operation of the PCI bus. Refer to SEN #S11066,

20

19

17

18

"LSIFC949X Design Considerations," for details on the Power-On Sense pins.

64-Bit Device

The MA[9] Power-On Sense pin controls this read only bit. Allowing the internal pull-downs to pull MA[9] LOW sets this bit and indicates a 64-bit PCI Address/Data bus. Pulling MA[9] HIGH clears this bit and indicates a 32-bit PCI Address/Data bus. If using the LSIFC949X on an add-in card, this bit must indicate the size of the card's PCI Address/Data bus. Refer to SEN #S11066, "LSIFC949X Design Considerations," for details on the Power-On Sense pins.

Bus Number

These read only bits indicate the number of the LSIFC949X bus segment. The PCI function uses this number as part of its Requester ID and Completer ID. This field is read for diagnostic purposes only.

Device Number

These read only bits indicate the device number of the LSIFC949X. The PCI function uses this number as part of its Requester ID and Completer ID. This field is read for diagnostic purposes only.

Function Number

These read only bits indicate the number in the Function Number field (AD[10:8]) of a Type 0 PCI configuration transaction. The PCI function uses this number as part of its Requester ID and Completer ID. This field is read for diagnostic purposes only.

6.2 PCI I/O Space and Memory Space Register Description

This section describes the host interface registers in the PCI I/O Space and in the PCI Memory Space. These address spaces contain the Fusion-MPT interface register set. PCI Memory Space [0] and PCI Memory Space [1] form the PCI Memory Space. PCI Memory Space [0] supports normal memory accesses while PCI Memory Space [1] supports diagnostic memory accesses. For all registers except the Diagnostic Read/Write Data and Diagnostic Read/Write Address registers, access the address offset through PCI I/O Space. Access to

[15:8]

16

[2:0]

[7:3]

the Diagnostic Read/Write Data and Diagnostic Read/Write Address registers is available only through PCI I/O Space.

When the LSIFC949X operates as a multifunction PCI device, the entire PCI Memory and PCI I/O Space register sets are visible to both PCI functions. When the LSIFC949X operates as a single function PCI device, only PCI Function [0] register sets are accessible.

Table 6.7 defines the PCI I/O Space address map.

31 16 15	0	Offset	Page
System Doorbell		0x00	6-34
Write Sequence		0x04	6-35
Host Diagnostic		0x08	6-36
Test Base Address		0x0C	6-38
Diagnostic Read/Write Data		0x10	6-38
Diagnostic Read/Write Address		0x14	6-39
Reserved		0x18–0x2F	-
Host Interrupt Status		0x30	6-39
Host Interrupt Mask		0x34	6-40
Reserved		0x38–0x3F	-
Request FIFO		0x40	6-42
Reply FIFO		0x44	6-42
High Priority Request FIFO		0x48	6-43
Reserved		0x4C	-
Host Index Register		0x50	6-43
Reserved		0x54–0x7F	-

Table 6.7 PCI I/O Space Address Map

Table 6.8 defines the PCI Memory Space [0] address map.

31	16 15	0	Offset	Page
	System Doorbell		0x00	6-34
	Write Sequence		0x04	6-35
	Host Diagnostic		0x08	6-36
	Test Base Address		0x0C	6-38
	Reserved		0x10-0x2F	-
	Host Interrupt Status		0x30	6-39
	Host Interrupt Mask		0x34	6-40
	Reserved		0x38–0x3F	-
	Request FIFO		0x40	6-42
	Reply FIFO		0x44	6-42
	High Priority Request FIFO		0x48	6-43
	Reserved		0x4C-0x7F	-

Table 6.8 PCI Memory [0] Address Map

Table 6.9 defines the PCI Memory Space [1] address map.

Table 6.9 PCI Memory [1] Address Map

31	16 15	0
	Diagnostic Memory	0x00- 0x(Sizeof(Mem1)-1)

A bit-level description of the PCI Memory and PCI I/O spaces follows.

Register: 0x00 System Doorbell Read/Write

31		24 23										16	15							8	7							0			
System Doorbell																															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register is a simple message passing mechanism that allows the system to pass single word messages to the embedded IOP processor and vice versa. There is a unique system doorbell for each PCI function.

When a host system PCI master writes to the Host Registers \rightarrow Doorbell register, the LSIFC949X generates a maskable interrupt to the IOP. The value written by the host system is available for the IOP to read in the System Interface Registers \rightarrow Doorbell register. The IOP clears the interrupt status after reading the value.

Conversely, when the IOP processor writes to the System Interface Registers \rightarrow Doorbell register, the LSIFC949X generates a maskable interrupt to the PCI system. The host system can read the value written by the IOP in the Host Registers \rightarrow Doorbell register. The host system clears the interrupt status bit and interrupt pin by writing any value to the Host Registers \rightarrow Interrupt Status register.

Host Doorbell Value

[31:0]

During a write, this register contains the doorbell value that the host system passes to the IOP. During a read, this register contains the doorbell value that the IOP passes to the host system.

Register: 0x04 Write Sequence

This register provides a protection mechanism against inadvertent writes to the Host Diagnostic register. There is one Write I/O register that is visible to both PCI functions. The two PCI functions physically share this register.

Reserved [31:4]

This field is reserved.

Write I/O Key

[3:0]

To enable write access to the Diagnostic Read/Write Data, Diagnostic Read/Write Address, and Host Diagnostic register, perform five data-specific writes to the Write I/O Key. Writing an incorrect value to the Write I/O Key invalidates the key sequence, and the host must rewrite the entire sequence. The write I/O key sequence is: 0x0004, 0x000B, 0x0002, 0x0007, and 0x000D. To disable write access to the Diagnostic Read/Write Data, Diagnostic Read/Write Address, and Host Diagnostic registers, write any value (except the Write I/O Key sequence) to the Write I/O register. The Diagnostic Write Enable bit (bit 7 in the Host Diagnostic register) indicates the write access status.

Register: 0x08 Host Diagnostic Read/Write

31		24 23							16 15								8 7							0							
	Host Diagnostic																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	х	0

This register contains diagnostic controls and status information. There is one Host Diagnostic register that is visible to both PCI functions. The two PCI functions physically share this register. However, the Reset History bit operates independently for each PCI function. This register can only be written when bit 7 of this register is set.

Reserved This field is reserved.	[31:12]
BIST Read Enable Setting this bit enables reading the two BIST registers (0x18 and 0x1C) from the host.	11 esults
Clear Flash Bad Signature Write this bit to clear the Bad Signature bit (bit register).	10 t 6 of this
Prevent IOP Boot Set this bit to keep the IOP in a reset state.	9
BIST All Done When this bit is set, all internal built-in self-test operations are complete.	8 t (BIST)
Diagnostic Write Enable The LSIFC949X sets this read-only bit when the writes the correct Write I/O Key to the Write Se register. The LSIFC949X clears this bit when the writes a value other than the Write I/O Key to the Write Sequence register.	<mark>equence</mark> he host

Flash Bad Signature

The LSIFC949X sets this bit if the IOP ARM966E-S processor encounters a bad Flash signature when booting from Flash ROM. The LSIFC949X also sets the DisARM bit (bit 1 in this register) to hold the IOP ARM processor in a reset state. The LSIFC949X maintains this state until the PCI host clears both the Flash Bad Signature and DisARM bits.

Reset History

The LSIFC949X sets this bit if it experiences a Power-On Reset (POR), PCI Reset, or TestReset/. A host driver can clear this bit to help coordinate recovery between multiple driver instances in a multifunction PCI implementation.

Diagnostic Read/Write Enable

Setting this bit enables access to the Diagnostic Read/Write Data and Diagnostic Read/Write Address registers.

TTL Interrupt

Setting this bit configures PCI INTA/ as a TTL output. Clearing this bit configures PCI INTA/ as an open-drain output. Use this bit for test purposes only.

Reset Adapter

Setting this write-only bit causes a hard reset within the LSIFC949X. The bit self-clears after eight PCI clock periods. After deasserting this bit, the IOP ARM processor executes from its default reset vector.

DisARM

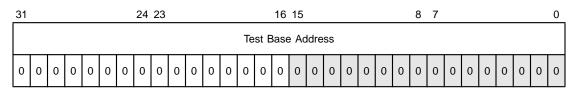
Setting this bit disables the IOP ARM processor.

Diagnostic Memory Enable

Setting this bit enables diagnostic memory accesses through PCI Memory Space [1]. Clearing this bit disables diagnostic memory accesses to PCI Memory Space [1] and returns 0xFFFF on reads.

3

5

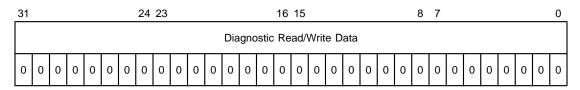

2 Э

1

0

6

Register: 0x0C Test Base Address Read/Write


This register specifies the base address for Memory Space [1] accesses. There is one Test Base Address register that is visible to both PCI functions. The two PCI functions physically share this register. Because Diagnostic Memory is visible only to PCI Function [0], PCI Function [1] cannot write to this register.

Test Base Address [31:16] The number of significant bits is determined by the size

The number of significant bits is determined by the size of PCI Memory Space [1] in the serial EEPROM.

Reserved[15:0]This field is reserved.

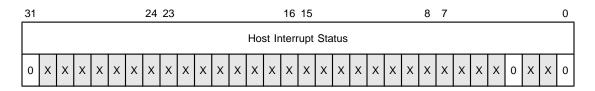
Register: Offset 0x10 Diagnostic Read/Write Data Read/Write

This register reads or writes Dword locations on the LSIFC949X internal bus. This register is only accessible through PCI I/O space and returns 0xFFFFFFF if read through PCI Memory Space. The host can enable write access to this register by writing the correct Write I/O Key to the Write Sequence register and setting bit 4, the Diagnostic Write Enable bit, of the Host Diagnostic register. A write of any value other than the correct Write I/O Key to the Write Sequence register. There is one Diagnostic Read/Write Data register that is visible to both PCI functions. The two PCI functions physically share this register.

Diagnostic Read/Write Data

[31:0]

Using this register, the LSIFC949X reads/writes data at the address that the Diagnostic Read/Write Address register specifies.


Register: 0x14 Diagnostic Read/Write Address Read/Write

3′	1							24	23							16	15							8	7							0
												D	Diag	nos	tic F	Read	d/W	rite	Ado	dres	s											
0	c)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register specifies a Dword location on the internal bus. The address increments by a Dword whenever the host system accesses the Diagnostic Read/Write Address register. This register is only accessible through PCI I/O space and returns 0xFFFFFFF if read through PCI Memory Space. The host can enable write access to this register by writing the correct Write I/O Key to the Write Sequence register and setting bit 4, the Diagnostic Write Enable bit, of the Host Diagnostic register. A write of any value other than the correct Write I/O Key to the Write Sequence register. There is one Diagnostic Read/Write Address register that is visible to both PCI functions. The two PCI functions physically share this register.

Diagnostic Read/Write Address[31:0]This register holds the address that theDiagnostic Read/Write Data register writes data to or
reads data from.

Register: 0x30 Host Interrupt Status Read Only

This register provides read-only interrupt status information to the PCI Host. A write to this register of any value clears the associated System Doorbell interrupt. There is a unique Host Interrupt Status register for each PCI function.

IOP Doorbell Status

The LSIFC949X sets this bit when the IOP receives a message from the system doorbell but has yet to process it. The IOP processes the System Doorbell message by clearing the corresponding system request interrupt.

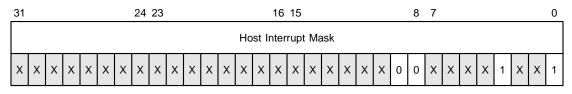
Reserved

This field is reserved.

Reply Interrupt

The LSIFC949X sets this bit when the Reply Post FIFO is not empty. The LSIFC949X generates a PCI interrupt when this bit is set and the corresponding mask bit in the Host Interrupt Mask register is cleared.

Reserved


This field is reserved.

System Doorbell Interrupt

The LSIFC949X sets this bit when the IOP writes a value to the System Doorbell. The host can clear this bit by writing any value to this register. The LSIFC949X generates a PCI interrupt when this bit is set and the corresponding mask bit in the Host Interrupt Mask register is cleared.

Register: 0x34

Host Interrupt Mask Read/Write

This register masks and/or routes the interrupt conditions that the Host Interrupt Status register reports. There is a unique Host Interrupt Mask register for each PCI function.

[30:4]

3

31

[2:1]

0

Reserved

This field is reserved.

Interrupt Request Routing Mode [9:8] This field routes PCI interrupts to the INTx/ pins according to the bit encodings in Table 6.10. If the host system enables MSI, the LSIFC949X does not signal PCI interrupts on the INTx/ pins.

Table 6.10 Interrupt Signal Routing

Bit [9:8] Encodings	Interrupt Signal Routing					
0b00	INTx/ and ALT_INTx/					
0b01	INTx/ Only					
0b10 ¹	ALT_INTx/ Only					
0b11	INTx/ and ALT_INTx/					

 The LSIFC949X does not support alternate interrupt signals (no device pins are provided). Programming this field to 0b10 effectively disables PCI interrupts for the given PCI function.

Reserved

This field is reserved.

Reply Interrupt Mask

Setting this bit masks reply interrupts and prevents the assertion of a PCI interrupt for all reply interrupt conditions.

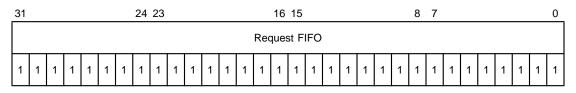
Reserved

This field is reserved.

Doorbell Interrupt Mask

Setting this bit masks System Doorbell interrupts and prevents the assertion of a PCI interrupt for all System Doorbell interrupt conditions.

[31:10]

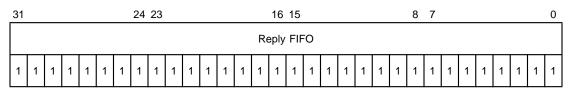

[7:4]

3

[2:1]

0

Register: 0x40 Request FIFO Read/Write

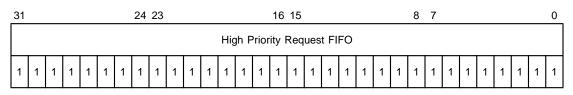

This register provides Request Free Message Frame Addresses (MFAs) to the host system on reads and accepts Request Post MFAs from the host system on writes. There is one Request FIFO register that is visible to both PCI functions. The two PCI functions physically share this register.

Request FIFO

[31:0]

For reads, the Request Free MFA is empty and this register contains 0xFFFFFFF. For writes, the register contains the Request Post MFA.

Register: 0x44 Reply FIFO Read/Write

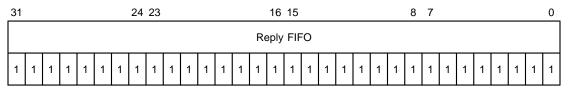

This register provides Reply Post MFAs to the host system on reads and accepts Reply Free MFAs from the host system on writes. There is one unique Reply FIFO register for each PCI function.

Reply FIFO

[31:0]

For reads, the Request Free MFA is empty and this register contains 0xFFFFFFF. For writes, the register contains the Reply Free MFA.

Register: 0x48 High Priority Request FIFO Read/Write


The High Priority Request FIFO is used to provide High Priority Request Free MFAs to the host on reads, and to accept High Priority Request Post MFAs from the host on writes. These MFAs will not be automatically pulled even if the EnHWPull bit is set. This is a hardware FIFO with a maximum depth of 256 32-bit entries. There is one High Priority Request FIFO register which is visible to both, but physically shared between the two PCI Functions. PCI Function information is saved with the MFA in the singular High Priority Request FIFO.

High Priority Request FIFO

[31:0]

For reads, the High Priority Request FIFO is empty and this register contains 0xFFFFFFF. For writes, the register contains the High Priority Request Post MFA.

Register: 0x50 Host Index Register Read/Write

These registers are used with the Outbound Reply Option (AltReplyPost method) to enable host-resident reply post queues.

Reserved

[31:14]

This field is reserved.

Host Index Value

[13:0]

The Host Index provides an indication of which Reply Post MFAs the host system has processed, and generates Reply Interrupts when the AltReplyPost option is enabled. There is a unique Host Index register associated with each PCI Function.

Chapter 7 Specifications

This chapter provides a description of the DC and AC electrical characteristics of the LSIFC949X Dual Channel Fibre Channel I/O processor chip, and the available packaging. The chapter contains the following sections:

- Section 7.1, "Electrical Requirements"
- Section 7.2, "AC Timing"
- Section 7.3, "Packaging"

7.1 Electrical Requirements

Table 7.1 provides absolute maximum stress ratings for the LSIFC949X, while Table 7.2 specifies the normal operating conditions. Table 7.3 through Table 7.10 specify the input and output electrical characteristics.

Table 7.1 Absolute Maximum Stress Ratings¹

Symbol	Parameter	Min	Max	Unit	Test Conditions
T _{STG}	Storage temperature	- 55	150	°C	-
V _{DD}	Supply voltage	- 0.5	4.5	V	_
V _{IN}	Input voltage	V _{SS} - 0.3	V _{DD} + 0.3	V	-
Ι _{LP} ²	Latch-up current	±150	-	mA	EIA/JESD78
ESD _{HBM}	Electrostatic discharge – Human Body Model (HBM)	-	1.5	kV	JESD-A114-B

1. Stresses beyond those listed in this table may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated in the Operating Conditions section of the manual is not implied.

2. See EIA/JESD78 for further information on latch-up testing.

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{DDC} ²	Core supply voltage	1.14	1.26	V	-
V _{DDIO}	I/O supply voltage	3.0	3.6	V	-
I _{DDC} ³	Core supply current	-	1100	mA	-
I _{DDIO}	I/O supply current	-	950	mA	-
T _A ⁴	Operating free air	0	70	°C	-
θ_{JMA}	Thermal resistance (junction to moving air)	-	11.2	°C/W	-

Operating Conditions¹ Table 7.2

1. Conditions that exceed the operating limits may cause the device to function incorrectly.

2. Refer to Note 1 at the end of Table 4.6 (page 4-17) for instructions on power sequencing for the LSIFC949X.

 The maximum current specification for I_{DDC} includes any current drawn by the analog PLL.
 The LSIFC949X does not require a heatsink when operating within the temperature range specified in this table.

Capacitance Table 7.3

Symbol	Parameter	Min	Max	Unit	Test Conditions
CI	Input capacitance of input pads	-	7	pF	-
C _{IO}	Input capacitance of I/O pads	_	10	pF	_

Table 7.4 Input Signals (FAULT1/, FAULT0/, MODE[7:0], SWITCH, CPCI_EN/)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	0.7 V _{DD}	V _{DD} + 0.3	V	_
V _{IL}	Input low voltage	V _{SS} - 0.3	0.2 V _{DD}	V	_
I _{IN}	Input leakage	10	10	μA	_

Symbol	Parameter	Min	Мах	Unit	Test Conditions
V _{IH}	Input high voltage	2.0	V _{DD} + 0.3	V	-
V _{IL}	Input low voltage	V _{SS} – 0.3	0.8	V	_
I _{IN}	Input leakage	10	10	μA	_

 Table 7.5
 Schmitt Input Signals (REFCLK, TCK, TDI, TRST/, TMS_CHIP, TMS_ICE)

Table 7.64 mA Bidirectional Signals (LIPRESET/, ODIS1, ODIS0, BYPASS1/,
BYPASS0/, MD[31:0], MA[23:0], MWE[1:0]/, FLASHCS/, BWE[3:0]/,
RAMCS/, MP[3:0], SCL, SDA, RXLOS1, RXLOS0, ADSC/, ADV/, TDO)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	0.7 V _{DD}	V _{DD} + 0.3	V	-
V _{IL}	Input low voltage	V _{SS} - 0.3	0.2 V _{DD}	V	_
V _{OH}	Output high voltage	2.4	V _{DD}	V	–4 mA
V _{OL}	Output low voltage	V _{SS}	0.4	V	4 mA
I _{OZ}	3-state leakage	-10	10	μA	_

Table 7.78 mA Bidirectional Signals (MODDEF1[2:0], MODDEF0[2:0], GPIO[5:0],
MOE[1:0]/, LED[4:0]/, MCLK)

Symbol	Parameter	Min	Мах	Unit	Test Conditions
V _{IH}	Input high voltage	0.7 V _{DD}	V _{DD} + 0.3	V	-
V _{IL}	Input low voltage	V _{SS} – 0.3	0.2 V _{DD}	V	-
V _{OH}	Output high voltage	2.4	V _{DD}	V	–8 mA
V _{OL}	Output low voltage	V _{SS}	0.4	V	8 mA
I _{OZ}	3-state leakage	-10	10	μA	_

Symbol	Parameter	Min	Мах	Unit	Test Conditions
V _{IH}	Input high voltage	0.5 V _{DD}	5.5	V	3.3 V PCI System
V _{IL}	Input low voltage	-0.5	0.3 V _{DD}	V	3.3 V PCI System

Table 7.8 PCI Input Signals (PCICLK, GNT/, IDSEL, RST/)

Table 7.9PCI Bidirectional Signals (AD[63:0], C_BE[7:0]/, FRAME/, IRDY/, TRDY/,
STOP/, PERR/, PAR, ACK64/, ENUM/, 64EN/)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	0.5 V _{DD}	5.5	V	3.3 V PCI System
V _{IL}	Input low voltage	-0.5	0.3 V _{DD}	V	3.3 V PCI System
V _{OH}	Output high voltage	0.9 V _{DD}	V _{DD}	V	–0.5 mA
V _{OL}	Output low voltage	V _{SS}	0.1 V _{DD}	V	1.5 mA
I _{OZ}	3-state leakage	-10	10	μA	_

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{OH}	Output high voltage	0.9 V _{DD}	V _{DD}	V	–0.5 mA
V _{OL}	Output low voltage	V _{SS}	0.1 V _{DD}	V	1.5 mA
I _{OZ}	3-state leakage	-10	10	μA	-

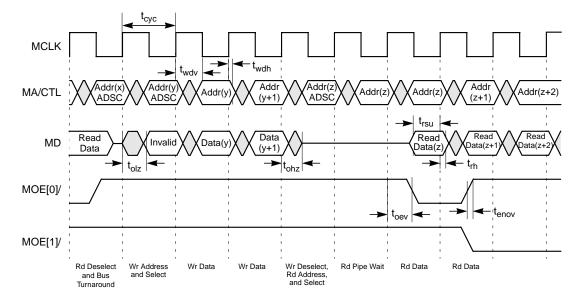
7.2 AC Timing

The AC Timing characteristics described in this section apply over the entire range of operating conditions. Chip timings are based on simulation at worst-case voltage, temperature, and processing. Timings have been developed with a load capacitance of 50 pF.

7.2.1 PCI/PCI-X Interface Timings

The LSIFC949X PCI/PCI-X signals conform to the electrical and timing standards as shown in the *PCI Local Bus Specification*, Revision 2.3, and the *PCI-X Addendum to the PCI Local Bus Specification*, Revision 2.0. All hardware validation testing performed by LSI Logic guarantees that the LSIFC949X meets or exceeds the specifications contained in those documents.

7.2.2 Fibre Channel Interface Timings


The LSIFC949X receiver and transmitter serial differential signal pairs conform to the electrical and timing standards as shown in the Fibre Channel Physical Interface specification (FC-PI, Rev. 11). All hardware validation testing performed by LSI Logic guarantees that the LSIFC949X meets or exceeds the specifications contained in that document.

7.2.3 Memory Interface Timings

See the following sections for memory interface timings descriptions:

- Section 7.2.3.1, "SSRAM Timings," on page 7-6
- Section 7.2.3.2, "Flash ROM Read Timings," on page 7-7
- Section 7.2.3.3, "Flash ROM Write Timings," on page 7-8

7.2.3.1 SSRAM Timings

Figure 7.1 SSRAM Read/Write/Read Timing Waveforms

Table 7.11 SSRAM Read/Write/Read Timings

Symbol	Parameter		Min	Max	Unit
t _{cyc}	MCLK cycle time	;	9.411	9.413	ns
t _{rsu}	Read setup time		4.1	_	ns
t _{rh}	Read hold time		0	-	ns
		-	5.0	ns	
t _{wdv} ¹	Write valid time	MA[21:0]	-	6.4	ns
		Control Signals ²	-	6.6	ns
		MD[31:0], MP[3:0]	0.1	-	ns
t _{wdh} 1	Write hold time	MA[21:0]	0.3	_	ns
		Control Signals ²	0.6	-	ns
t _{oev}	Output enable va	alid	-	0.75	ns
t _{olz}	Data low impeda	ince	0.5	2.5	ns
t _{ohz}	Data high imped	ance	0	1.75	ns
t _{enov}	Output enable no	onoverlap	0	-	ns

1. Refer to SEN #11066, "LSIFC949X Design Considerations", for further details regarding write valid and write hold times for MD[31:0].

2. Control signals include MWE[1:0]/, BWE[3:0]/, RAMCS/, ADSC/, and ADV/.

7.2.3.2 Flash ROM Read Timings

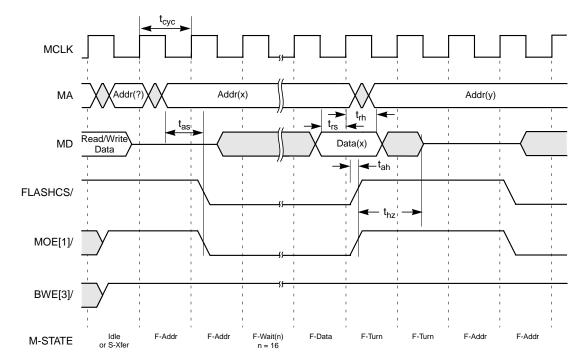


Figure 7.2 Flash ROM Read Timing Waveforms

Table 7.12 FLASH ROM Read Timings

Symbol	Parameter	Min	Мах	Unit
t _{cyc}	MCLK cycle time	9.410	9.413	ns
t _{as}	Address setup time	- 5.0 ¹	1 – MCLK ²	ns
t _{ah}	Address hold time	0	-	ns
t _{rs}	Read setup time	7	-	ns
t _{rh}	Read hold time	0	-	ns
t _{hz}	Data high impedance	0	32	ns

1. Address setup time defaults to one (1) MCLK but may be programmed to zero (0) MCLKs using the serial EEPROM.

7.2.3.3 Flash ROM Write Timings

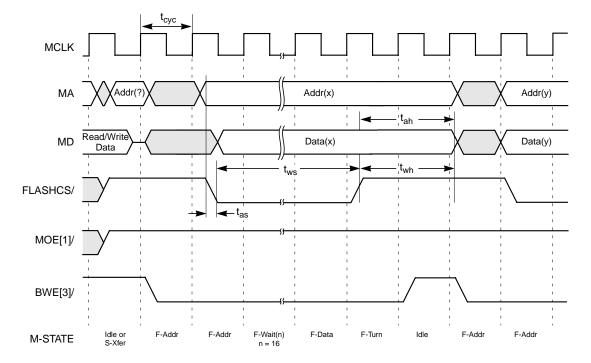


Figure 7.3 Flash ROM Write Timing Waveforms

Table 7.13 Flash ROM Write Timings

Symbol	Parameter	Min	Max	Unit
t _{cyc}	MCLK cycle time	9.410	9.413	ns
t _{as}	Address setup time	- 5.0 ¹	1 – MCLK ²	ns
t _{ah}	Address hold time	1 MCLK	-	ns
t _{ws} ²	Write setup time	2 ³	32	MCLK
t _{wh}	Write hold time	1 – MCLK	_	ns

1. Address setup time defaults to one (1) MCLK but may be programmed to zero (0) MCLKs using the serial EEPROM.

2. The default write setup time is 17 ns.

3. Programmed using the serial EEPROM.

7.3 Packaging

Figure 7.4 illustrates the signal locations for the 544 Flip Chip Plastic Ball Grid Array (FPBGA).

Also in this section are two listings of he alphanumeric pads: Table 7.14 lists them by PBGA position, and Table 7.15 by signal name. And a mechanical drawing of the package for the LSIFC949X (Figure 7.5 on page 7-14).

Figure 7.4 LSIFC949X 544-Pin FPBGA Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A		VSS	MD[11]	MD[15]	MD[21]	MD [22]	MD [26]	MD [28]	MA [12]	MA [10]	MA[6]	MA[0]	VSS	VSS	VSS	VSS	AD[38]	VSS	VSS	AD[49]	VSS	AD[52]	AD[55]	VSS	VDDIO 33_PCIX	
в	VDDIO 33	VSS	vss	MD[12]	MD[16]	MD [20]	MD [25]	MD [27]	MA [16]	MA [11]	MA[9]	MA[5]	MA[3]	vss	AD[35]	VSS	AD[39]	vss	AD[48]	VSS	AD[53]	AD[54]	VSS	VSS	VSS	VSS
с	MD[9]	VSS	vss	MD[10]	MD[13]	MD [19]	VDDIO 33	VDDIO 33	MA [17]	MA [15]	VSS	VSS	MA[4]	AD[34]	VDDIO 33	VDDIO 33	vss	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS
D	MD[6]	MD(8)	vss	VSS	MD[18]	MD [14]	vss	VSS	MA [23]	MA [18]	VDDIO 33	VDDIO 33	MA [13]	MA[1]	vss	vss	AD[42]	vss	VDDIO 33_PCIX	VDDIO 33_PCIX	VSS	AD[46]	VSS	VSS	vss	AD[57]
Е	MD[1]	MD[5]	MD[4]	BW/E3/	VSS	MD [17]	VDDIO 33	VDDIO 33	MD [31]	MA [21]	VSS	VSS	MA [14]	MA [2]	VDDIO 33_PCIX	VDDIO 33_PCIX	AD[44]	VSS	VSS	VSS	AD[47]	VSS	AD[58]	VSS	VSS	AD[60]
F	MD[0]	MD[2]	MD[3]	MD[7]	MCLK	MP[3]	MD [24]	MD [30]	MA [19]	MA [22]	VDDIO 33	VDDIO 33	MA[7]	AD[32]	VSS	VSS	AD[45]	AD[36]	AD[40]	VSS	AD[51]	VSS	AD[56]	AD[59]	VSS	AD[61]
G	MP[0]	MP[1]	VSS	VDDIO 33	VSS	MV/E0/	MP[2]	MD [23]	MD [29]	MA [20]	vss	VSS	MA[8]	AD[33]	VDDIO 33_PCIX	VDDIO 33_PCIX	AD[37]	AD[41]	AD[43]	AD[50]	AD[62]	VDDIO 33_PCIX	VSS	VDDIO 33_PCIX	AD[63]	VSS
н	ADSC/	ADV/	VSS	VDDIO 33	VSS	MODE [6]	MOE0/													VSS	VSS	VDDIO 33_PCIX	VSS	VDDIO 33_PCIX	VSS	PAR64
J	MODE [5]	RAM CS/	FLASH CS/	BWE1/	BWE2/	MODE [0]	MODE [7]													C_BE [4]/	REQ64/	C_BE [5]/	C_BE [6]/	ACK64/	AD[0]	VSS
к	MODE [3]	MODE [4]	NC	MOE1/	MWE1/	EVVE0/	MODE [1]													C_BE [7]/	VSS	VSS	VSS	VSS	AD[3]	AD[4]
L	vss	MODE [2]	MXSV DD	vss	VDDIO 33	VSS	VDDIO 33													vss	VDDIO 33_PCIX	vss	VDDIO 33_PCIX	VSS	vss	AD[6]
м	TX VDD0	TXB VSS0	MXS VDD	VSS	VDDIO 33	VSS	VDDIO 33					VSS	VDD12	VSS	VDD12					VSS	VDDIO 33_PCIX	VSS	VDDIO 33_PCIX	VSS	VSS	AD[8]
N	RXB VSS0	TX VSS0	TXB VDD0	RX0+	RX0-	TX0+	TX0-					VDD12	VSS	VDD12	VSS					VSS	AD[5]	AD[1]	AD[2]	VSS	AD[7]	AD[9]
р	RXB VDD0	RX VSS0	TXB VSS1	RX1+	RX1-	TX1-	TX1+					VSS	VDD12	VSS	VDD12					VSS	AD[11]	C_BE	VSS	AD[12]	VSS	VSS
R	RX VDD0	TXB VDD1	VSS	MXS VDD	VSS	VDDIO 33	VSS					VDD12	VSS	VDD12	VSS					VDDIO 33_PCIX	VSS	VDDIO 33_PCIX	VSS	VDDIO 33_PCIX	AD[13]	AD[10]
т	TX VSS1	TX VDD1	VSS	MXS VDD	VSS	VDDIO 33	VSS													- VDDIO 33_PCIX	VSS	- VDDIO 33_PCIX	VSS	- VDDIO 33_PCIX	vss	VSS
U	RXB VSS1	RXB VDD1	RX VSS1	VSS	TDIODE VSS	TDIODEP	REF CLKP													- AD[15]	DEV SEL/	VSS	PERR/	VSS	PAR	C_BE [1]/
v	RX VDD1	RTRIM	NC	REFCL KB	SCAN_ MODE	REF CLKN	TEST_ RESET/													VSS	AD[14]	VSS	TRDY/	SERR/	VSS	VSS
w	RTCK_	TCK_	VDDIO 33	VSS	VDDIO 33	SCAN_ ENABLE	TDO_													STOP/	VSS	VSS	VDDIO 33_PCIX	VSS	VSS	VSS
Y	TRST_	TMS_	VDDIO 33	VSS	VDDIO 33	TDI_ICE	MOD DEF0[0]	FAULT 0/	LED [2]/	GPIO [2]	VDDIO 33	VDDIO 33	CPCI_ EN/	AD[28]	VSS	VSS	vss	AD[19]	C_BE [2]/	VSS	VSS	vss	VDDIO 33_PCIX	VSS	REQ/	IDSEL
AA	тск	TMS	TDI	SERIAL_ CLOCK	PROC_ MON	MOD DEF0[1]	RX LOS1	LED [1]/	GPIO [3]	BY PASSI/	VSS	VSS	NC	AD[29]	VDDIO 33	VDDIO 33	AD[21]	AD[23]	AD[20]	AD[16]	GNT/	FRAME/	ENUM/	INTB/	VSS	RST/
AB	TRST/	IDDTN	SERIAL	TDO	UART RX	MOD DEF1[0]	VSS	VSS	ODIS1	RX LOS0	VDDIO 33	VDDIO 33	NC	AD[24]	vss	vss	AD[22]	VSS	VDDIO 33	VDDIO 33	VSS	VSS	IRDY/	INTA/	vss	VSS
AC	TN	FSELA	REFPLL	UART TX	ODISO	VSS	VDDIO 33	VDDIO 33	BY PASS0/	FAULT	vss	vss	NC	AD[25]	VDDIO 33_PCIX	VDDIO 33_PCIX	C_BE [3]/	VSS	VSS	vss	VSS	VSS	VSS	VSS	NC	64_ EN/
AD	VSS	REFPLL	VSS	VSS	VSS	VSS	VSS	VSS	LIP RESET/	LED [3]/	VDDIO 33_PCIX		NC	AD[31]	VSS	VSS	VSS	VSS	VDDIO 33	VDDIO 33	VSS	VSS	PCIPLL VSS	VSS	VSS	VSS
AE	vss	VSS	VSS	VSS	vss	MOD DEF0[4]	MOD DEF1[4]	MOD	LED [4]/	BLUE LED/	-	GPIO[5]	SWITCH	vss	AD[30]	vss	AD[26]	VSS	AD[18]	VSS	BZRSET	BZVDD	VSS	PCIPLL VDD	vss	VDDIO 33
AF		VDDIO 33	VSS	VSS	MOD	MOD	MOD	MOD	(4)/ LED [0]/	GPIO [0]	GPIO[4]	NC	VSS	VSS	vss	VSS	AD[27]	VSS	VSS	AD[17]	VSS	PCICLK	VSS	VSS	VSS	33
		33			DEFU[3]	veru[2]	DEF 1[3]	ver i(1)	foh	[U]	L															I

Ball #	Signal	Ball	# Signal	Ball	# Signal	Bal	l # Signal	Ball	# Signal
A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24	VSS MD[11] MD[22] MD[22] MD[26] MD[26] MA[26] MA[10] MA[10] MA[10] MA[10] VSS VSS VSS VSS VSS VSS VSS VS	$ \begin{array}{c} C11\\ C12\\ C13\\ C14\\ C15\\ C16\\ C17\\ C20\\ C22\\ C23\\ C24\\ C25\\ C26\\ D1\\ D2\\ D3\\ D4\\ D5\\ D6\\ D7\\ D11\\ D12\\ D13\\ D114\\ D15\\ D16\\ D17\\ D18\\ D19\\ D21\\ \end{array} $	# Signal VSS VSS VSS VSS VDI033 VDDI033 VSS MD[6] MD[714] VSS VSS MA[18] VDDI033 VDDI033 VDDI033 VSS VDSS VDSS VDSS VDSS VDDI033 VDI033 VDI033 VDI033 VDI033 VDI033 VDI033 VDI033 VDI033 VSS V		VSS VSS AD[47] VSS AD[58] VSS VSS VSS AD[60] MD[0] MD[2] MD[H1 H2 H3 H5 H6 H720 H223 H226 H223 J223 J225 J26 K2 K2 K5 K6 K20	ADSC/ ADV/ VSS VDDI033 VSS MODE[6] MOE0/ VSS VSS VDDI033_PCIX VSS VDDI033_PCIX VSS VDDI033_PCIX VSS VDDI033_PCIX VSS PAR64 MODE[5] RAMCS/ FLASHCS/ FLASHCS/ BWE1/ BWE2/ MODE[6] MODE[7] C_BE[6]/ ACK64/ AD[0] VSS MODE[4] MODE[4] NC MODE[1] C_BE[7]/ VSS	M5 M6 M7 M12 M12 M20 M21 M22 M23 M24 M25 M24 M25 M24 M25 M24 M25 M24 N2 N3 M24 N2 N3 N4 N5 N6 N7 N12 N13 N14 N20 N21 N22 N3 M14 M25 M26 N2 N23 N22 N23 N22 N26 P1 P2 P3 P3 P5	VDDI033 VSS VDD1033 VSS VDD12 VSS VDD12 VSS VDD1033_PCIX VSS VDD1033_PCIX VSS VDD1033_PCIX VSS VDD1033_PCIX VSS VSS AD[8] RXBVS20 TXVSS0 TXVS00 RX0+ RX0- TX0- TX0- TX0- TX0- TX0- TX0- VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS VDD12 VSS AD[7] AD[9] RXBVDD0 RXVSS0 TXBVSS1 RX1+ RX1-
B12 B13 B14 B15 B16 B17	MA[5] MA[3] VSS AD[35] VSS AD[39]	D20 D21 D22 D23 D24 D25	VDDIO33_PCIX VSS AD[46] VSS VSS VSS	G2 G3 G4 G5 G6 G7	MP[1] VSS VDDI033 VSS MWE0/ MP[2]	K20 K21 K22 K23 K24 K25	C_BE[7]/ VSS VSS VSS VSS AD[3]	P4 P5 P6 P7 P12 P13	RX1+ RX1- TX1- TX1+ VSS VDD12
B18 B19 B20 B21 B22 B23 B24 B25	VSS AD[48] VSS AD[53] AD[54] VSS VSS	D26 E1 E2 E3 E4 E5 E6 E7	AD[57] MD[1] MD[5] BWE3/ VSS MD[17] VDD(022	G8 G9 G10 G11 G12 G13 G14	MD[23] MD[29] MA[20] VSS VSS MA[8] AD[33] VDDIO22 DOIX	K26 L1 L2 L3 L4 L5 L6	AD[4] VSS MODE[2] MXSVDD VSS VDDIO33 VSS VDDIO33	P14 P15 P20 P21 P22 P23 P23 P24	VSS VDD12 VSS AD[11] C_BE[0]/ VSS AD[12]
B25 B26 C1 C2 C3 C4 C5 C6 C5	VSS VSS MD[9] VSS VSS MD[10] MD[13] MD[19]	E7 E8 E9 E10 E11 E12 E13 E14	VDDI033 VDDI033 MD[31] MA[21] VSS VSS MA[14] MA[2]	G15 G16 G17 G18 G19 G20 G21 G22 C22	VDDIO33_PCIX VDDIO33_PCIX AD[37] AD[41] AD[43] AD[50] AD[62] VDDIO33_PCIX	L7 L20 L21 L22 L23 L24 L25 L26	VDDIO33 VSS VDDIO33_PCIX VSS VDDIO33_PCIX VSS VSS ADI6] TXVDD0	P25 P26 R1 R2 R3 R4 R5 R6	VSS VSS RXVDD0 TXBVDD1 VSS MXSVDD VSS VDDI033
C7 C8 C9 C10	VDDIO33 VDDIO33 MA[17] MA[15]	E15 E16 E17 E18	VDDIO33_PCIX VDDIO33_PCIX AD[44] VSS	G23 G24 G25 G26	VSS VDDIO33_PCIX AD[63] VSS	M1 M2 M3 M4	TXVDD0 TXBVSS0 MXSVDD VSS	R7 R12 R13 R14	VSS VDD12 VSS VDD12

Table 7.14 Alphanumeric Pad Listing by PBGA Position

1. NC pins are not connected.

Table 7.14	Alphanumeric Pad Lis	sting by PBGA	Position (Cont.)

Ball # Sig	nal Bal	l # Signal	Ball #	# Signal	Ball #	Signal	Ball #	f Signal
R15 V R20 VDDIO33_P R21 VDIO33_P R23 VDIO33_P R24 VDDIO33_P R25 AD R26 AD T1 TXVE	'SS V26 CIX W1 'SS W2 CIX W3 'SS W4 CIX W5 13] W6 10] W7 SS1 W20	VSS RTCK_ICE TCK_ICE VDDIO33 VSS VDDIO33 SCAN_ENABLE TDO_ICE	AA9 AA10 AA11 AA12 AA13 AA14 AA15 AA16 AA17 AA18 AA19	F Signal GPI0[3] BYPASS1/ VSS VSS NC AD[29] VDDI033 VDDI033 AD[21] AD[21] AD[20] AD[20]	AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 VI	Signai VSS VDDI033 VDDI033 BYPASS0/ FAULT1/ VSS VSS NC AD[25] DDI033_PCIX DDI033_PCIX	AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13	F Signal VSS VSS MODDEF0[4] MODDEF1[4] MODDEF1[4] LED[4]/ BLUELED/ GPI0[1] GPI0[5] SWITCH
T4 MXSV T5 V T6 VDDIO3_P T20 VDDIO33_P T22 VDDIO33_P T23 V T24 VDDIO33_P T25 V	DD W23 'SS W24 033 W25 'SS W26 CIX Y1 'SS Y2 CIX Y3 'SS Y4 CIX Y5 'SS Y6	VDDIO33_PCIX VSS VSS TRST_ICE/ TMS_ICE VDDIO33 VSS VDDIO33 TD_ICE	AA20 AA21 AA22 AA23 AA24 AA25 AA26 AB1 AB2 AB3	AD[16] GNT/ FRAME/ ENUM/ INTB/ VSS RST/ TRST/ IDDTN SERIAL_DATA	AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC23 AC24 AC25 AC26	C_BE[3]/ VSS VSS VSS VSS VSS VSS VSS NC 64_EN/	AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23	VSS AD[30] VSS AD[26] VSS AD[18] VSS BZRSET BZVDD VSS
U1 RXBVS U2 RXBVD U3 RXVS U4 V U5 TDIODEV U6 TDIODE U7 REFCL U20 ADI U21 DEVS	DD1 Y9 SS1 Y10 'SS Y11 'SS Y12 EP Y13 KP Y14 15] Y15 EL/ Y16 'SS Y17	MODDEF0[0] FAULT0/ LED[2]/ GPI0[2] VDDI033 VDDI033 CPCI_EN/ AD[28] VSS VSS VSS AD[19]	AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15	TDO UARTRX MODDEF1[0] VSS ODIS1 RXLOS0 VDDIO33 VDDIO33 VDDIO33 NC AD[24] VSS		VSS REFPLLVDD VSS VSS VSS VSS VSS LIPRESET/ LED[3]/ DDIO33_PCIX DDIO33_PCIX	AE24 AE25 AE26 AF2 AF3 AF4 AF5 AF6 AF6 AF6 AF7 AF8 AF9 AF10	PCIPLLVDD VSS VDDIO33 VDDIO33 VSS VSS MODDEF0[3] MODDEF0[2] MODDEF1[3] MODDEF1[3] MODDEF1[1] LED[0]/ GPI0[0]
Ú24 V U25 F U26 C_BE V1 RXVE V2 RTF V3 V4 V4 REFCL V5 SCAN_MO V6 REFCL V7 TEST_RES	YSS Y19 YAR Y20 [1]/ Y21 YD1 Y22 XIM Y23 NC Y24 KB Y25 DE Y26 KN AA1	C_BE[2]/ VSS VSS VDDIO33_PCIX VSS REQ/ IDSEL TCK TMS TDI	AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 AB25 AB26	VSS AD[22] VSS VDDI033 VDDI033 VSS VSS IRDY/ INTA/ VSS VSS	AD12 VI AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23	ADIO33_PCIA AD[31] VSS VSS VSS VDDIO33 VDDIO33 VDDIO33 VSS VSS PCIPLIVSS	AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 AF21	GPI0[4] GPI0[4] NC VSS VSS VSS AD[27] VSS AD[27] VSS AD[27] VSS
V21 AD V22 V V23 TR V24 SEI	14] AA4 SS AA5 DY/ AA6	SERIAL_CLOCK PROC_MON MODDEF0[1] RXLOS1 LED[1]/	AB26 AC1 AC2 AC3 AC4 AC5	VSS TN FSELA REFPLLVSS UARTTX ODIS0	AD23 AD24 AD25 AD26 AE1 AE2	VSS VSS VSS VSS VSS VSS VSS	AF21 AF22 AF23 AF24 AF25	VSS PCICLK VSS VSS VSS

1. NC pins are not connected.

Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #I
64_EN/ ACK64/ ADSC/ ADV/ AD[0] AD[1] AD[2] AD[3] AD[4] AD[3] AD[4] AD[6] AD[6] AD[6] AD[10] AD[10] AD[10] AD[11] AD[12] AD[10] AD[11] AD[12] AD[12] AD[12] AD[22] AD[13] AD[14] AD[14] AD[12] AD[12] AD[20] AD[21] AD[22] AD[22] AD[23] AD[24] AD[24] AD[24] AD[25] AD[30] AD[31] AD[32] AD[33] AD[34] AD[34] AD[35] AD[40] AD[50] AD[AC26 J24 H1 H2 J25 N22 N23 K25 K26 N26 R26 N26 R26 N26 R26 N26 R26 N26 R27 A20 AE19 A20 AE19 AA17 AA17 AA17 AA17 AA17 AA17 AA17 AA	AD[56] AD[57] AD[58] AD[59] AD[60] AD[61] AD[61] AD[62] AD[63] BUUELED/ BWE0/ BWE1/ BWE2/ BWE3/ BWPASS0/ BYPASS0/ BYPASS1/ BZRSET BZVDD CPCLEN/ C_BE[0/ C_BE[1/ C_BE[3/ C_BD[3] C] CD[3/ C_BD[F23 D26 E23 F24 E26 G21 G25 AE10 K6 J4 J5 E4 AC9 AA10 AE21 AE22 Y13 P22 U26 Y19 AC17 J20 J22 J23 K20 U21 AA23 Y19 AC17 J20 J22 J23 K20 U21 AA23 Y19 AC17 J20 J22 J23 K20 U21 AA23 Y28 AC10 J3 AA22 AC10 J22 J23 K20 U21 AA23 Y28 AC10 J22 J23 K20 U21 AA23 Y28 AC10 J22 J23 K20 U21 AA23 Y28 AC10 J22 J23 K20 U21 AA23 Y28 AC10 A217 J20 J22 J23 K20 U21 AA23 Y28 AC10 A22 A22 A22 A217 J20 J22 J23 K20 U21 AA23 Y28 AC10 A217 J20 J22 J23 K20 U21 AA23 Y28 AC10 A22 A22 A22 A21 A217 A22 A22 A22 A217 A217	MA[9] MA[10] MA[11] MA[10] MA[11] MA[11] MA[11] MA[11] MA[12] MA[13] MA[14] MA[15] MA[16] MA[16] MA[17] MA[18] MA[20] MA[21] MA[22] MA[23] MCLK MD[0] MD[2] MD[2] MD[3] MD[4] MD[6] MD[7] MD[6] MD[7] MD[6] MD[7] MD[13] MD[14] MD[15] MD[16] MD[17] MD[18] MD[19] MD[20] MD[21] MD[22] MD[23] MD[24] MD[25] MD[26] MD[27] MD[28]	B11 A10 B10 A9 D13 E13 C10 B9 C10 F9 G10 F10 F10 F10 F10 F10 F10 F10 F10 F10 F	MODE[2] MODE[3] MODE[4] MODE[4] MODE[5] MODE[6] MODE[7] MOE0/ MOE1/ MP[0] MP[1] MP[2] MVE0/ MVE1/ MVE0/ MVE0/ MVE0/ MVSVDD MXSVD MXC NC NC NC NC NC NC NC NC NC NC NC NC NC	L2 K1 K2 J1 H6 J7 H7 K4 G2 G7 F6 G6 K5 L3 R4 H7 K4 G2 G7 F6 G6 K5 L3 R4 H7 K4 G2 G7 F6 G6 K5 L3 R4 H7 K4 C3 C7 F6 G6 S5 L3 R4 H7 K4 C3 C7 F6 G6 S5 L3 R4 H7 K4 C3 C7 F6 G6 S5 L3 R4 H7 K4 C3 C7 F6 G6 S5 L3 R4 C3 C7 F6 C6 S5 L3 R4 C3 C7 F6 C6 S5 L3 R4 C3 C7 F6 C6 S5 L3 R4 C3 C7 F6 C6 S5 L3 R4 C3 C7 F6 C6 S5 L3 R4 C3 C3 C7 F6 C6 S5 L3 R4 C3 C3 C4 C5 S1 C4 C5 C4 C5 S1 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C4 C5 C5 C4 C5 C4 C5 C4 C5 C5 C4 C5 C4 C5 C4 C5 C4 C5 C5 C4 C5 C4 C5 C4 C5 C5 C4 C5 C5 C4 C5 C4 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C4 C5 C5 C5 C5 C5 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	SCAN_ENAR SCAN_ENAR SCAN_MOD SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO SERIAL_CLO STOP STOP TODICE TEST_RESE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TMS_ICE TX0+ TX0+ TX0+ TX0+ TX0- TX1+ TXBVDD0 TXVDD1 TXBVSS0 TXBVSS1 TXVDD0 TXVDD1 TXVDD1 TXVDD0 TXVSS1 UARTTX VDD12 VDD13 VDDI033	BLE W6 E V5 DCK AA4 TA AB3 V24 W20 AE13 AA1 W2 AA3 U6 U5 V6 AB4 W7

Table 7.15 Alphanumeric Pad Listing by Signal Name

1. NC pins are not connected.

 Table 7.15
 Alphanumeric Pad Listing by Signal Name (Cont.)

Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #
VDDI033 PC VDDI033 PC VDDI032 PC VDDI033 PC VDDI032 PC VDD00 PC VDD0032 PC VDD003 PC VDD00 PC VDD003 PC VDD00 PC VDD0	CIX D19 CIX D20 CIX E15 CIX E15 CIX E16 CIX G15 CIX G16 CIX G22 CIX H24 CIX H2	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	A13 A14 A15 A16 A18 A21 A24 B3 B14 B18 B20 B23 B24 B25 C3 C11 C12 C17 C18 C20 C21 C22 C23 C24 C26 D3 D16 D18 D23 D24 D25 E11 E12 E18 E19 E20	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	E22 E24 E25 F15 F16 F20 F22 G3 G5 G11 G23 G26 H3 H20 H21 H25 J26 K22 K23 K24 L1 L4 L20 L22 L24 L25 M4 M12 M14 M22 M24 M12 M14 M22 M24 P12 P14 P20 P23 P25	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	P26 R3 R5 R7 R13 R21 R23 T5 T7 T21 T23 T25 U4 U22 U24 V20 V22 V25 V26 W4 W21 W22 W24 W24 W22 W24 W22 W24 W22 V25 V26 W4 W22 W24 W22 V25 V26 W4 W21 R23 T25 T26 U4 U22 V25 V26 W4 W21 R23 T25 T26 U4 V22 V25 V26 W4 W21 R23 R23 T25 T26 U4 V22 V25 V26 V26 V26 V26 V26 V26 V26 V26 V26 V26	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	AC11 AC12 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AD1 AD3 AD4 AD5 AD67 AD18 AD15 AD16 AD17 AD18 AD22 AD24 AD26 AD24 AD26 AE12 AE23 AE23 AE14 AE16 AE23 AE23 AF13 AF16 AF16 AF19 AF21 AF23 AF24 AF25

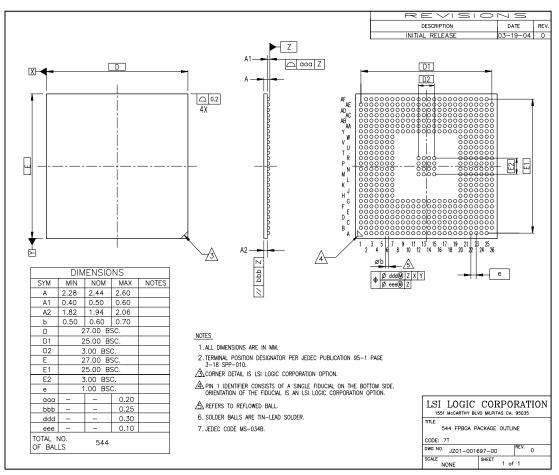


Figure 7.5 LSIFC949X 544-Pad FPBGA Mechanical Drawing

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code 7U.

Appendix A Register Summary

Table A.1 and Table A.2 list the register summary for the LSIFC949X.

Register Name	Address	Read/Write	Page
Vendor ID	0x00	Read Only	6-3
Device ID	0x02	Read Only	6-3
Command	0x04	Read/Write	6-4
Status	0x06	Read/Write	6-6
Revision ID	0x08	Read/Write	6-8
Class Code	0x09	Read/Write	6-8
Cache Line Size	0x0C	Read/Write	6-9
Latency Timer	0x0D	Read/Write	6-9
Header Type	0x0E	Read Only	6-10
Reserved	0x0F	Read Only	6-10
I/O Base Address	0x10	Read/Write	6-10
Memory[0] Base Address Low	0x14	Read/Write	6-11
Memory[0] Base Address High	0x18	Read/Write	6-11
Memory[1] Base Address Low	0x1C	Read/Write	6-12
Memory[1] Base Address High	0x20	Read/Write	6-12
Reserved	0x24–0x28	Read Only	6-12
(Sheet 1 of 3)			

 Table A.1
 LSIFC949X Multifunction PCI Registers

Register Name	Address	Read/Write	Page
Subsystem Vendor ID	0x2C	Read Only	6-13
Subsystem ID	0x2E	Read Only	6-13
Expansion ROM Base Address	0x30	Read/Write	6-14
Capabilities Pointer	0x34	Read Only	6-15
Reserved	0x38	Read Only	6-16
Interrupt Line	0x3C	Read/Write	6-16
Interrupt Pin	0x3D	Read Only	6-17
Minimum Grant	0x3E	Read Only	6-17
Minimum Latency	0x3F	Read Only	6-18
Power Management Capability ID	0xXX	Read Only	6-18
Power Management Next Pointer	0xXX	Read Only	6-20
Power Management Capabilities	0xXX	Read Only	6-19
Power Management Control/Status	0xXX	Read/Write	6-20
Power Management Bridge Support Extensions	0xXX	Read Only	6-21
Power Management Data	0xXX	Read Only	6-21
MSI Capability ID	0xXX	Read Only	6-21
MSI Next Pointer	0xXX	Read Only	6-22
MSI Message Control	0xXX	Read/Write	6-22
MSI Message Lower Address	0xXX	Read/Write	6-23
MSI Message Upper Address	0xXX	Read/Write	6-24
MSI Message Data	0xXX	Read/Write	6-24
MSI Mask Bits	0xXX	Read/Write	6-25
MSI Pending Bits	0xXX	Read Only	6-25
MSI-X Capability ID	0xXX	Read Only	6-25
(Sheet 2 of 3)	,		

Table A.1 LSIFC949X Multifunction PCI Registers (Cont.)

Register Name	Address	Read/Write	Page
MSI-X Next Pointer	0xXX	Read Only	6-26
MSI-X Message Control	0xXX	Read/Write	6-26
MSI-X Table Offset	0xXX	Read Only	6-27
MSI-X PBA Offset	0xXX	Read Only	6-27
PCI-X Capability ID	0xXX	Read Only	6-28
PCI-X Next Pointer	0xXX	Read Only	6-28
PCI-X Command	0xXX	Read/Write	6-29
PCI-X Status	0xXX	Read/Write	6-30
(Sheet 3 of 3)			

Table A.1 LSIFC949X Multifunction PCI Registers (Cont.)

Table A.2 LSIFC949X Host Interface Registers

Register Name	Address	Read/Write	Page
System Doorbell	0x00	Read/Write	6-34
Write Sequence	0x04	Read/Write	6-35
Host Diagnostic	0x08	Read/Write	6-36
Test Base Address	0x0C	Read/Write	6-38
Diagnostic Read/Write Data	0x10	Read/Write	6-38
Diagnostic Read/Write Address	0x14	Read/Write	6-39
Host Interrupt Status	0x30	Read Only	6-39
Host Interrupt Mask	0x34	Read/Write	6-40
Request FIFO	0x40	Read/Write	6-42
Reply FIFO	0x44	Read/Write	6-42
High Priority Request FIFO	0x48	Read/Write	6-43
Host Index Register	0x50	Read/Write	6-43

Appendix B Reference Specifications

The LSIFC949X is compliant with the specifications in Table B.1.

Specification	Revision
Fibre Channel Physical Interface (FC-PI-2)	5
Fibre Channel Arbitrated Loop (FC-AL-2)	7.0
FC Private Loop Direct Attach (FC-PLDA)	1.5
Fibre Channel Protocol for SCSI (FCP)	12
PCI Local Bus	2.3
PCI-X Addendum to the PCI Local Bus	2.0
PCI Bus Power Management Interface Specification	1.2

Table B.1 Reference Specifications

Appendix C Glossary of Terms and Abbreviations

8B/10B	A data encoding scheme, developed by IBM, that translates byte wide data to an encoded 10-bit format.
ANSI	American National Standards Institute, the coordinating organization for voluntary standards in the United States.
Arbitrated Loop Topology (FC-AL)	A FC topology that provides a low-cost solution to attach multiple ports in a loop without switches.
BER	Bit error rate.
Bit	A binary digit. The smallest unit of information a computer uses. The value of a bit (0 or 1) represents a two-way choice, such as on or off, and true or false.
Broadcast	Sending a transmission to all N_Ports on a Fabric.
Bus	A collection of unbroken signal lines across which information is transmitted from one part of a computer system to another. Connections to the bus are made using taps on the lines.
Bus Mastering	A high-performance way to transfer data. The host adapter controls the transfer of data directly to and from system memory without bothering the computer's microprocessor. This is the fastest way for multitasking operating systems to transfer data.
Byte	A unit of information consisting of 8 bits.
Channel	A point-to-point link, the main task of which is to transport data from one point to another.

Configuration	Refers to the way a computer is set up; the combined hardware components (computer, monitor, keyboard, and peripheral devices) that make up a computer system; or the software settings that allow the hardware components to communicate with each other.
CPU	Central processing unit. The "brain" of the computer that performs the actual computations. The term <i>microprocessor</i> unit (MPU) is also used.
Crosspoint- Switched Topology (FC-XS)	Highest performance FC Fabric, providing a choice of multiple path routings between pairs of F_Ports.
DMA	Direct memory access. A method of moving data from a storage device directly to RAM without using the resources of the CPU.
DMA Bus Master	A feature that allows a peripheral to control the flow of data to and from system memory by blocks, as opposed to PIO (programmed I/O), where the processor is in control and the flow is by byte.
Device Driver	A program that allows a microprocessor (through the operating system) to direct the operation of a peripheral device.
EEPROM	Electronically Erasable Programmable Read Only Memory. A memory chip that typically stores configuration information.
EISA	Extended Industry Standard Architecture. An extension of the 16-bit ISA bus standard. It allows devices to perform 32-bit data transfers.
Exchange	A term that refers to one of the FC "building blocks," composed of one or more nonconcurrent sequences for a single operation.
Fabric	FC-defined interconnection methodology that handles routing in FC networks.
FC	Fibre Channel.
FC-PH	FC physical standard, consisting of the three lower levels: FC-0, FC-1, and FC-2.
FC-0	Lowest level of FC-PH, covering the physical characteristics of the interface and media.
FC-1	Middle level of FC-PH, defining the 8B/10B encoding/decoding and transmission protocol.

FC-2	Highest level of FC-PH, defining the rules for signaling protocol and describing transfer of the frame, sequence, and exchanges.
FC-3	The hierarchical level in the FC standard that provides common services, such as striping definition.
FC-4	The hierarchical level in the FC standard that specifies the mapping of Upper Layer Protocols (ULPs) to levels below.
FCC	Federal Communications Commission.
FCP	Fibre Channel Protocol.
FDDI	Fiber Distributed Data Interface. The ANSI option for a Metropolitan Area Network (MAN); a network based on the use of optical fiber cable to transmit data at 100 Mbits/s.
Fibre Channel Service Protocol (FSP)	The common FC-4 level protocol for all services, transparent to the Fabric type or topology.
File	A named collection of information stored on a disk.
Firmware	Software that is permanently stored in ROM. Therefore, it can be accessed during boot time.
F_Port	A Fabric port, the access point of the fabric for physically connecting the N_Port.
FL_Port	A Fabric port configured for loop functionality.
Frame	A linear set of transmitted bits that define a basic transport element.
Hard Disk	A disk made of metal and permanently sealed into a drive cartridge. A hard disk can store very large amounts of information.
HAL	Hardware Abstraction Layer.
HIPPI	High Performance Parallel Interface, an 800 Mbit/s interface to supercomputer networks (formerly known as high speed channel) developed by ANSI.
Host	The computer system in which a SCSI host adapter is installed. It uses the SCSI host adapter to transfer information to and from devices attached to the SCSI bus.

Host Adapter	A circuit board or integrated circuit that provides a SCSI bus connection to the computer system.
IOP	I/O processor.
IP	Internet Protocol.
IPI	Intelligent Peripheral Interface.
ISA	Industry Standard Architecture. A type of computer bus used in most PCs. It allows devices to send and receive data up to 16 bits at a time.
Kbyte	Kilobyte. A measure of computer storage equal to 1024 bytes.
LCT	Logical Configuration Table.
Link_Control_ Facility	A termination card that handles the logical and physical control of the FC link for each mode of use.
LLC	Logical link control.
Local Bus	A way to connect peripherals directly to computer memory. It bypasses the slower ISA and EISA buses. PCI is a local bus standard.
Login Server	Entity within the FC fabric that receives and responds to login requests.
L_Port	An FC port which supports the Arbitrated Loop topology.
LUN	Logical Unit Number. An identifier, zero to seven, for a logical unit.
Mbyte	Megabyte. A measure of computer storage equal to 1024 kilobytes.
MFA	Message Frame Address.
MSI	Message Signaled interrupt.
Multicast	Refers to delivering a single transmission to multiple destination N_Ports.
NIC	Network interface card.
N_Port	A Node port, an FC-defined hardware entity at the node end of a link.
NL_Port	A Node port configured for loop functionality.

Operating System	A program that organizes the internal activities of the computer and its peripheral devices. An operating system performs basic tasks such as moving data to and from devices, and managing information in memory. It also provides the user interface.
Operation	A term, defined in FC-2, that refers to one of the FC building blocks composed of one or more, possibly concurrent, exchanges.
Ordered Set	An FC term referring to four 10-bit characters (a combination of data and special characters) that provide low level link functions, such as frame demarcation and signaling between two ends of a link. It provides for initialization of the link after power-on and for some basic recovery actions.
Originator	An FC term referring to the initiating device.
Parity Checking	A way to verify the accuracy of data transmitted over the SCSI bus. One bit in the transfer makes the sum of all the 1 bits either odd or even (for odd or even parity). If the sum is not correct, an error message appears.
PCI	Peripheral Component Interconnect. A local bus specification that allows connection of peripherals directly to computer memory. It bypasses the slower ISA and EISA buses.
PDB	Packet Descriptor Block.
PIO	Programmed Input/Output. A way the CPU can transfer data to and from memory using the computer I/O ports. PIO is usually faster than DMA, but requires CPU time.
Port	The hardware entity within a node that performs data communications over the FC link.
Port Address	Also Port Number. The address through which commands are sent to a host adapter board. This address is assigned by the PCI bus.
Port Number	See Port Address.
RAM	Random Access Memory. The primary working memory of the computer in which program instructions and data are stored and are accessible to the CPU. Information can be written to and read from RAM. The contents of RAM are lost when the computer is turned off.
Responder	An FC term referring to the answering device.

- **RISC Core** LSIFC949X chips contain a RISC (Reduced Instruction Set Computer) processor, programmed through microcode scripts.
- **ROM** Read Only Memory. Memory from which information can be read but not changed. The contents of ROM are not erased when the computer is turned off.
- SAN Storage Area Network.
- SCAM SCSI Configuration Automatically. A method that automatically allocates SCSI IDs using software when SCAM compliant SCSI devices are attached.
- **Scatter/Gather** A device driver feature that lets the host adapter modify a transfer data pointer so that a single host adapter transfer can access many segments of memory. This minimizes interrupts and transfer overhead.
- SCB SCSI Command Block.
- **SCSI** Small Computer System Interface. A specification for a high-performance peripheral bus and command set. The original standard is referred to as SCSI-1.
- **SCSI-2** The current SCSI specification, which adds features to the original SCSI-1 standard.
- SCSI ID A way that uniquely identifies each SCSI device on the SCSI bus. Each SCSI bus has eight available SCSI IDs numbered 0–7 (or 0–15 for Wide SCSI). The host adapter usually gets ID 7, giving it priority to control the bus.
- **Sequence** A term referring to one of the FC building blocks, which are composed of one or more related frames for a single operation.
- SFF small form factor.
- SGL Scatter-gather list.
- SNAP Subnetwork Access Protocol.

SynchronousOne of the ways data is transferred over the SCSI bus. Transfers are
clocked with fixed frequency pulses. This is faster than asynchronous
data transfer. Synchronous data transfers are negotiated between the
SCSI host adapter and each SCSI device.

System BIOS	Controls the low level POST (Power-On Self Test), and basic operation of the CPU and computer system.
TID	Target ID.
Тороlоду	The logical and/or physical arrangement of stations on a network.
ULP	Upper Layer Protocol.
VCCI	Voluntary Control Council for Interference.
Virtual Memory	Space on a hard disk that can be used as if it were RAM.
VPD	Vendor Product Data.
Word	A 2-byte (or 16-bit) unit of information.
Х3Т9	A technical committee of the Accredited Standards Committee X3, titled X3T9 I/O Interfaces. It develops standards for moving data in and out of central computers.

Index

Numerics

133 MHz capable bit 6-31 133 MHz PCI-X bit 6-31 4 mA bidirectional signals 7-3 64-bit address capable bit 6-22 64-bit device bit 6-32 64EN/ 4-5 66 MHz capable 6-7 8 mA output signals 7-3 8b/10b decoding 2-2 8b/10b encoding 2-2

Α

AC timing 7-4 ACK64/ 4-3 AD[1:0] 5-2 AD[10:8] 5-2 AD[63:0] 4-3 AD[7:2] 5-2 address/data bus 6-32 ADSC/ 4-11 ADV/ 4-11 alias to memory read block 5-4, 5-5, 5-7 alias to memory write block 5-4, 5-6 alignment 5-8 arbitrated loop topology 2-8 arbitration 5-9 architecture 1-6 ARM966E-S 6-37 aux current bit 6-19

В

base address register zero 5-3

BER 1-9 BIOS 5-2 BIR 6-27

bit

133 MHz capable 6-31 64-bit address capable 6-22 64-bit device 6-32 aux current 6-19 bus number 6-32 D1 support 6-19 D2 support 6-19 data parity error recovery enable 6-30 data scale 6-20 data select 6-20 designed maximum cumulative read size 6-30 designed maximum memory read byte count 6-31 designed maximum outstanding split transactions 6-31 device complexity 6-31 device number 6-32 device specific initialization 6-19 function number 6-32 MSI enable 6-23 multiple message 6-23 per-vector masking capable 6-22 PME clock 6-19 PME enable 6-20 PME status 6-20 PME support 6-19 power management version 6-20 power state 6-20

received split completion error message 6-30 table BIR 6-27 unexpected split completion 6-31 bit error rate 1-9 block diagram 3-2 burst size selection 5-7 bus number 6-32 bus commands 5-3 bus mastering 5-9 functions 5-9 BWE[3:0]/ 4-11 BYPASS0/ 4-8 BYPASS1/ 4-8

С

C BE[3:0]/ 5-2, 5-3, 5-6 C BE[7:0]/ 4-3 cache line size 5-7, 5-8, 6-9 cache line size alignment 5-8 cache line size register 6-9 capabilities pointer register 6-15 capability ID 6-2 MSI 6-21, 6-25 PCI-X 6-28 power management 6-18 channel protocol 2-1 class 1 2-9 class 2 2-9 class 3 2-9 class code register 6-8 class intermix 2-10 classes of service 2-9 clock PME 6-19 CLS 6-9 CLS alignment 5-8 Command Descriptor Block (CDB) 2-6 command register 6-4 completer ID 6-32 configuration read command 5-2, 5-4, 5-6, 5-7, 6-6 write command 5-2, 5-4, 5-6, 5-7, 6-6 configuration space 5-2, 6-1 AD[1:0] 5-2 AD[10:8] 5-2 AD[7:2] 5-2 C_BE[3:0]/ 5-2, 5-3 context manager 1-8 controller link 1-8 memory 1-7 CPCI_EN/ 4-6 CRC 2-4 Cyclic Redundancy Check (CRC) 2-4

D

D0 6-20 D1 6-20 D1 support bit 6-19 D2 6-20 D2 support bit 6-19 D3 6-20 DAC 5-1, 5-4, 5-7 data parity error recovery enable bit 6-30 parity error reported 6-7 scale bit 6-20 select bit 6-20 data flows 3-2 data frames 2-3, 2-4 data sequence 2-6 decoding 8b/10b 2-2 designed maximum cumulative read size bit 6-30 designed maximum memory read byte count bit 6-31 designed maximum outstanding split transactions bit 6-31 destination identifier (D ID) 2-8 detected parity error (from slave) bit 6-6 device complexity bit 6-31 device ID register 6-3 device number bit 6-32 device specific initialization bit 6-19 DEVSEL/ 4-4 DEVSEL/ timing bit 6-6

diagnostic memory 6-32 diagnostic memory enable bit 6-37 diagnostic read/write address register 6-39 diagnostic read/write data register 6-38 diagnostic read/write enable bit 6-37 diagnostic write enable bit 6-36 DisARM bit 6-37 DMA 5-9 doorbell status bit 6-40 system interrupt bit 6-40 doorbell interrupt mask bit 6-41 dual address cycle (DAC) 1-7 dual address cycles command 5-1, 5-4, 5-7

Ε

enable bus mastering bit 6-5 diagnostic memory bit 6-37 diagnostic write bit 6-36 I/O space bit 6-5 memory space bit 6-5 MSI bit 6-23 parity error response bit 6-4 write and invalidate bit 6-5 encode/decode 2-2 End-of-Frame (EOF) 2-4 ENUM/ 4-5 exchanges transfer 2-2 expansion ROM base address register 6-14 expansion ROM enable bit 6-15

F

fabric topology 2-8 FAULT0/ 4-7 FAULT1/ 4-7 FC data structure 2-4 data traffic 3-1 devices 2-7 exchange 2-4 Fibre Channel 2-1 frames 2-4 interface 2-1

layer 2-2 link 1-8 N Ports 2-3 sequence 2-4 structure 2-1 word 2-4FCP 2-5 exchange 2-6 Fibre Channel Protocol 1-1 Fibre Channel (FC) 2-1 Fibre Channel Protocol (FCP) 1-1 FIFO reply 6-42, 6-43 request 6-42 flash ROM bad signature bit 6-37 Flash ROM read timing 7-7 Flash ROM write timing 7-8 FLASHCS/ 4-10 frame data 2-3 end of 2-4 link control 2-3 payload 2-6 start of 2-4 transfer 2-2 FRAME/ 4-4 function number bit 6-32 functional block diagram 1-7 functional signal grouping 4-2

G

GigaBlaze transceiver 3-2 GNT/ 4-3, 5-9 GPIO[2](BLUELED/) 4-6 GPIO[3:0] 4-12 grant 5-9

Н

header type register 6-10 host diagnostic register 6-36 host doorbell value 6-35 host interrupt mask register 6-40 host interrupt status register 6-39 I

I/O base address register 5-3, 6-10 key 6-35 read command 5-3, 5-4, 5-7 space 5-2, 6-1, 6-32 write command 5-3, 5-5, 5-7 IDDTN 4-13, 4-14 IDSEL 4-4, 5-2 implementation 1-5, 3-7 initiator command sequence 2-6 input signals 7-2 INTA/ 4-5, 6-23, 6-26, 6-37 INTB/ 4-5 integrated transceiver 1-8 integration 2-3 interface FC 2-1 media 2-2 system 1-7, 1-8 upper level protocol (ULP) 2-1 interface timing SSRAM read/write/read 7-6 intermix class 2-10 internet protocol (IP) 2-1 interrupt acknowledge command 5-3, 5-4, 5-7 doorbell mask bit 6-41 line register 6-16 pin register 6-17 reply bit 6-40 reply mask bit 6-41 request routing mode bits 6-41 signal routing 6-41 system doorbell bit 6-40 TTL bit 6-37 IOP doorbell status bit 6-40 IRDY/ 4-4

Κ

key I/O 6-35

L

latency timer register 6-9 LED[4:0]/ 4-12 link control frames 2-3, 2-4 link controller 1-8 LIPRESET/ 4-7

Μ

MA[21:0] 4-10 MAD[14] 6-32 MAD[15] 6-31 master data parity error 6-30 maximum latency register 6-18 maximum memory read byte count bits 6-29 maximum outstanding split transactions bits 6-29 maximum stress ratings 7-1 MCLK 4-11 MD[31:0] 4-9 media interface 2-2 memorv alias to read block 5-5, 5-7 alias to write block 5-4, 5-6 read block command 5-4, 5-5, 5-7, 5-8 read command 5-3, 5-5, 5-6, 5-7, 5-9 read dword command 5-3, 5-5, 5-7 read line command 5-4, 5-7, 5-9 read multiple command 5-4, 5-6, 5-9 space 5-3, 6-1 write and invalidate command 5-4, 5-8, 5 - 9write block command 5-4, 5-6, 5-9 write command 5-4, 5-5, 5-8, 5-9 memory [0] high register 6-11 memory [0] low register 6-11 memory [1] high register 6-12 memory [1] low register 6-12 memory controller 1-7 memory read 6-31 memory space [0] 5-3, 6-1, 6-32 memory space [1] 5-3, 6-1 memory space[1] 6-32 message flow 3-5

message interface 3-3 Message Queueing Models 3-4 message transport 1-7 minimum grant register 6-17 MODE[7:0] 4-12 MODEF0[2:0] 4-8 MODEF1[2:0] 4-8 MOE[1:0] 4-10 MP[3:0] 4-9 MSI capability ID register 6-21 enable bit 6-23 mask bits 6-25 message address 6-23 message data 6-24 message upper address register 6-24 multiple message 6-23 next pointer register 6-22 pending bits 6-25 MSI mask bits register 6-25 MSI message address register 6-23 MSI message control register 6-22 MSI message data register 6-24 MSI message upper address register 6-24 MSI pending bits register 6-25 MSI-X capability ID register 6-25 next pointer register 6-26 PBA offset 6-27 table offset 6-27 MSI-X message control register 6-26 MSI-X PBA offset register 6-27 MSI-X table offset register 6-27 multifunction PCI 5-2 multiple cache line transfers 5-8 multiple message capable 6-23 multiple message enable 6-22 MWE[1:0]/ 4-10

Ν

new capabilities 6-7

0

ODIS0 4-7

ODIS1 4-7 operating conditions 7-2 overview 1-1-1-4

Ρ

PAR 4-4 PAR64 4-5 parity error 6-7 payload 2-4, 2-6 PBA offset 6-27 PCI 66 MHz capable 6-7 address/data bus 6-32 addressing 5-2 alias to memory read block command 5-5, 5-7 alias to memory write block command 5-6 arbitration 5-9 bus commands 5-3 bus commands and encoding types 5-3 cache line size register 5-8 cache mode 5-9 command 5-3 configuration read 5-2 configuration write 5-2 dual address cycles 5-1 memory read block 5-5 memory write 5-5 configuration read command 5-4, 5-6, 5-7, 6-6 configuration space 5-2, 6-1 AD[1:0] 5-2 AD[10:8] 5-2 AD[7:2] 5-2 address map 6-2 C BE[3:0]/ 5-2, 5-3 configuration write command 5-4, 5-6, 5-7, 6-6 DAC 5-1, 5-4, 5-7 device complexity bit 6-31 dual address cycles command 5-4, 5-7 functional description 5-1 I/O read command 5-3, 5-4, 5-7 I/O space 5-2, 6-1, 6-32

I/O space address map 6-33 I/O space and memory space [0] 6-32 I/O write command 5-3, 5-5, 5-7 interrupt acknowledge command 5-3, 5-4, 5-7 memory [0] address map 6-34 memory [1] address map 6-34 memory read block command 5-7, 5-8 memory read command 5-3, 5-5, 5-6, 5-7, 5-9 memory read dword command 5-5, 5-7 memory read line command 5-4, 5-7, 5-9 memory read multiple command 5-4, 5-6, 5-9 memory space 5-2, 5-3, 6-1 memory space [0] 5-3, 6-1 memory space [1] 5-3, 6-1 memory write and invalidate command 5-4, 5-8, 5-9 memory write block command 5-6, 5-9 memory write command 5-4, 5-8, 5-9 multifunction 5-2 new capabilities 6-7 reset 6-37 special cycle command 5-3, 5-4, 6-6 split completion command 5-7 system address space 6-1 PCI bidirectional signals 7-4 PCI input signals 7-4 PCI output signals 7-4 PCICLK 4-3 PCI-X 5-1 133 MHz capable bit 6-31 64-bit device bit 6-32 alias to memory read block command 5-4 alias to memory write block command 5-4 bus commands 5-3 bus number 6-32 capability ID register 6-28 command 5-3 command register 6-29 data parity error recovery enable bit 6-30 designed maximum cumulative read size bit 6-30

designed maximum memory read byte count bit 6-31 designed maximum outstanding split transactions bit 6-31 device complexity bit 6-31 device number bit 6-32 function number bit 6-32 maximum memory read byte count bits 6-29 maximum outstanding split transactions bits 6-29 memory read block command 5-4 memory read dword command 5-3 memory write block command 5-4 next pointer register 6-28 received split completion error message bit 6-30 split completion command 5-4 split completion discarded bit 6-31 status register 6-30 unexpected split completion bit 6-31 pending bits 6-25 PERR/ 4-4 per-vector masking capable bit 6-22 PME 6-19, 6-20 clock bit 6-19 enable bit 6-20 status bit 6-20 support bits 6-19 point-to-point topology 2-8 POR 6-37 ports 2-7 power management aux current bit 6-19 bridge support extensions register 6-21 capabilities register 6-19 capability ID register 6-18 control/status register 6-20 D0 6-20 D1 6-20 D1 support bit 6-19 D2 6-20 D2 support bit 6-19 D3 6-20

data register 6-21 data scale bit 6-20 data select bit 6-20 device specific initialization bit 6-19 event 6-19 next pointer register 6-18 PME clock bit 6-19 PME enable bit 6-20 PME status bit 6-20 power state bit 6-20 support bits 6-19 version bit 6-20 power on reset 6-37 power state D3 6-20 power state bit 6-20 PROC DRVLS 4-13, 4-14 processor ARM RISC 1-6, 1-7, 1-8 I/O 1-7 protocol channel 2-1 fibre channel (FCP) 1-1, 2-5 internet 2-1 signaling 2-2 transmission 2-2 upper level 2-1 protocols upper layer 2-3

R

RAMCS/ 4-11 received master abort (from master) bit 6-6 target abort (from master) bit 6-6 received split completion error message bit 6-30 receiver 1-8 REFCLK 4-8, 4-9 reference specifications B-1 register cache line size 6-9 capabilities pointer 6-15 class code 6-8 command 6-4 device ID 6-3 diagnostic read/write address 6-39 diagnostic read/write data 6-38 expansion ROM base address 6-14 header type 6-10 host diagnostic 6-36 host interrupt mask 6-40 host interrupt status 6-39 I/O base address 6-10 interrupt line 6-16 interrupt pin 6-17 latency timer 6-9 map PCI I/O space 6-33 maximum latency 6-18 memory [0] high 6-11 memory [0] low 6-11 memory [1] high 6-12 memory [1] low 6-12 minimum grant 6-17 MSI capability ID 6-21 MSI mask bits 6-25 MSI message address 6-23 MSI message control 6-22 MSI message data 6-24 MSI message upper address 6-24 MSI next pointer 6-22 MSI pending bits 6-25 MSI-X capability ID 6-25 MSI-X message control 6-26 MSI-X next pointer 6-26 MSI-X PBA offset 6-27 MSI-X table offset 6-27 PCI memory [0] address map 6-34 PCI memory [1] address map 6-34 PCI-X capability ID 6-28 PCI-X command 6-29 PCI-X next pointer 6-28 PCI-X status 6-30 power management bridge support extensions 6-21 power management capabilities 6-19 power management capability ID 6-18 power management control/status 6-20

power management data 6-21 power management next pointer 6-18 reply FIFO 6-42, 6-43 request FIFO 6-42 revision ID 6-8 status 6-6 subsystem ID 6-14 subsystem vendor ID 6-13 system doorbell 6-34 test base address 6-38 vendor ID 6-3 write sequence 6-35 register map A-1, A-3 PCI configuration space 6-2 reply FIFO register 6-42, 6-43 reply interrupt bit 6-40 reply interrupt mask bit 6-41 reply message 3-3 reply message frames 5-9 REQ/ 4-3, 5-9 REQ64/ 4-3 request FIFO register 6-42 request message 3-3 request message frames 5-9 request status 1-9 requester ID 6-32 reset adapter bit 6-37 reset history bit 6-37 response sequence 2-6 revision ID register 6-8 ROM expansion enable bit 6-15 RST/ 4-3 RTRIM 4-7 RX0neg 4-6 RX0pos 4-6 RX1neg 4-6 RX1pos 4-6 RXLOS0 4-8 RXLOS1 4-8

S

Schmitt input signals 7-3 SCL 4-12, 4-13 SCSI

bus mastering functions 5-9 functions 5-9 SCSI message interface 3-6 SDA 4-12 sequences transfer 2-2 SERR/ 4-4, 6-30 SERR/ enable bit 6-4 signaled system error bit 6-6 signaling protocol 2-2 special cycle command 5-3, 5-4, 6-6 split completion command 5-4, 5-7 split completion discarded bit 6-31 split completion error 6-30 split completion received error message 6-30 split completion unexpected 6-31 split transaction 6-31 SSRAM Memory 3-7 Start-of-Frame (SOF) 2-4 status register 6-30 status IOP doorbell bit 6-40 status register 6-6 STOP/ 4-4 subsystem ID register 6-14 subsystem vendor ID register 6-13 Support Components 3-7 Flash ROM 3-8 Serial EEPROM 3-8 SSRAM Memory 3-7 SWITCH/ 4-5 system address space 6-1 system BIOS 5-2 system doorbell interrupt bit 6-40 system doorbell register 6-34 system interface 1-7, 1-8, 5-9 bus mastering function 5-9

Т

table BIR 6-27 table offset 6-27 target message class 3-6 target operation 1-9 target response 2-6

TCK 4-14 TDI 4-14 TDO 4-14 test base address register 6-38 TestReset/ 6-37 timing diagram Flash ROM read 7-7 Flash ROM write 7-8 SSRAM read/write/read 7-6 TMS CHIP 4-14 TMS ICE 4-14 topology arbitrated loop 2-7 fabric 2-7 point-to-point 2-7 transceiver 1-8, 3-2 transfer exchanges 2-2 frames 2-2 sequences 2-2 transmission protocol 2-2 transmitter 1-8 TRDY/ 4-4 **TRST 4-14** TTL interrupt bit 6-37 TX0neg 4-6 TX0pos 4-6 TX1neg 4-6 TX1pos 4-6

U

unexpected split completion bit 6-31 upper layer protocols (ULPs) 2-3

V

vendor ID register 6-3 version bit 6-20

W

write and invalidate enable bit 6-5 write I/O key 6-35 write sequence register 6-35

Customer Feedback

We would appreciate your feedback on this document. Please copy the following page, add your comments, and fax it to us at the number shown.

If appropriate, please also fax copies of any marked-up pages from this document.

Important: Please include your name, phone number, fax number, and company address so that we may contact you directly for clarification or additional information.

Thank you for your help in improving the quality of our documents.

Reader's Comments

Fax your comments to: LSI Logic Corporation Technical Publications M/S AF-198 Fax: 408.433.4333

Please tell us how you rate this document: *LSIFC949X Dual Channel Fibre Channel I/O Processor Technical Manual.* Place a check mark in the appropriate blank for each category.

	Excellent	Good	Average	Fair	Poor
Completeness of information)				
Clarity of information					
Ease of finding information					
Technical content					
Usefulness of examples and illustrations					
Overall manual					

What could we do to improve this document?

If you found errors in this document, please specify the error and page number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you directly for clarification or additional information.

Name		Date
Telephone	Fax	
Title		
Department		Mail Stop
Company Name		-
Street		
City, State, Zip		

Customer Feedback Copyright © 2003, 2004, 2005 by LSI Logic Corporation. All rights reserved.