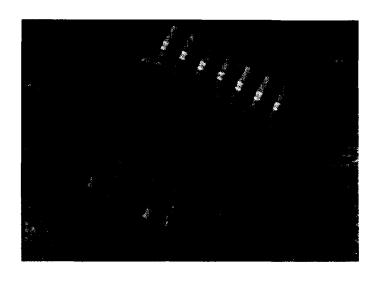
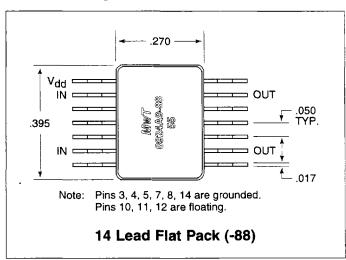


# MPS-0924A9-88

# 800 to 1000 MHz Receiver Amplifier


#### **Features**

- 1.5 dB NF and 38 dBm IP3
- Frequency Range of 800 to 1000 MHz
- 18 dB with Excellent Flatness
- Single Positive Bias
- Unconditionally Stable


#### **Description**

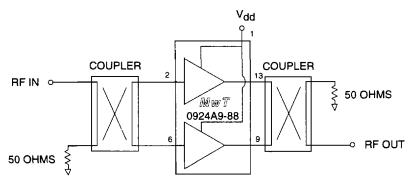
The MPS-0924A9-88 is a low noise high dynamic range amplifier module designed to meet the ultralinear receiver requirements for digitally modulated or multi carrier cellular applications. Paired amplifier stages in a surface mount package are externally hybrid combined (see application circuit) to produce a balanced amplifier which has an excellent noise figure (1.5 dB) and a very high IP3 (+38 dBm) relative to the DC power applied (1.2 Watts). Employing selfbiased GaAs MESFETs, each gain module is self-contained with all bias circuitry included. Other hybrid combined performance parameters include high gain (18 dB), excellent flatness over the operating bandwidth (±0.5 dB), very low input and output return losses (-20 dB), and high output power at 1dB compression point (24 dBm).

Typical applications for this device include: receiver stages for single channel and multi-carrier linear amplifiers used in AMPS, TACS, NMT, IS-54, IS-95, PDC and GSM systems. It is also useful for micro-cell or pico-cell receiver amplifier stages where multi carrier configurations require low noise performance and excellent multi tone inter modulation characteristics.



#### **Outline Diagram**




## Electrical Characteristics at 25°C\*, Vdd = 6.0 V

| Symbol           | Parameter                              | Unit  | Minimum | Typical | Maximum |
|------------------|----------------------------------------|-------|---------|---------|---------|
| Freq             | Frequency Range                        | MHz   | 800     |         | 1000    |
| SSG              | Small Signal Gain                      | dB    | 16      | 18      |         |
| NF               | Noise Figure                           | dB    |         | 1.5     | 2.0     |
| P1dB             | Output Power at 1 dB Compression Point | dBm   | +23.0   | +24.0   |         |
| IP3              | Third-order Intercept                  | dBm   | +35.0   | +38.0   |         |
| VSWR             | Input/Output VSWR                      |       |         |         | 1.2     |
| $\Delta GOF$     | Gain Variation over Frequency          | dB    |         |         | ±0.5    |
| $\Delta$ GOT     | Gain Variation over Temperature        | dB/°C |         | 01      |         |
| <sup>l</sup> dd  | Power Supply Current                   | mA    |         | 200     | 300     |
| $\emptyset_{jc}$ | Thermal Resistance                     | °C/W  | 55      |         |         |

### **Absolute Maximum Ratings**

| Symbol         | Parameter           | Unit | Continuous Max | Absolute Max |
|----------------|---------------------|------|----------------|--------------|
| Vdd            | Bias Voltage        | V    | 7.0            | 9.0          |
| T <sub>C</sub> | Case Temperature    | °C   | +85            | +110         |
| $T_{ch}$       | Channel Temperature | °C   | +150           | +175         |

#### **Application Circuit**



Required External Components: Anaren Couper PN# 1D1304-3 2ea. Termination Resistor 50 Ohms 1/8 Watt

Notes:

- 1. Two tone tests at Pout = +10 dBm for each tone; centered at 900 MHz with 20 MHz separation.
- 2. Chip to Package bottom.
- 3. Exposure to absolute maximum ratings for extended periods of time may cause permanent damage.
- \* Tested in a configuration shown in the appplication circuit.