

ADVANCED INFORMATION MX29F022T/B

2M-BIT[256K x 8]CMOS FLASH MEMORY

FEATURES

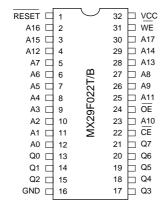
- 262,144x 8 only
- Fast access time: 70/90/120ns
- Low power consumption
 - -30mA maximum active current
 - -1µA typical standby current
- Programming and erasing voltage 5V±10%
- · Command register architecture
 - -Byte Programming (7us typical)
 - -Block Erase (16K-Byte x1, 8K-Byte x 2, 32K-Byte x1, and 64K-Byte x 3)
- Auto Erase (chip & block) and Auto Program
 - -Automatically erase any combination of sectors or the whole chip with Erase Suspend capability.
 - -Automatically programs and verifies data atspecified address
- Erase Suspend/Erase Resume
 - -Suspends an erase operation to read data from, or program data to, a sector that is not being erased, then resumes the erase operation.

- · Status Reply
 - -Data polling & Toggle bit for detection of program and erase cycle completion.
- Chip protect/unprotect for 5V only system or 5V/12V system
- 100,000 minimum erase/program cycles
- Latch-up protected to 100mA from -1 to VCC+1V
- Boot Code Sector Architecture
 - -T = Top Boot Sector
 - -B = Bottom Boot Sector
- Hardware RESET pin
 - -Resets internal state machine to read mode
- Low VCC write inhibit is equal to or less than 3.2V
- Package type:
 - -32-pin PDIP
 - -32-pin PLCC
 - -32-pin TSOP (Type 1)

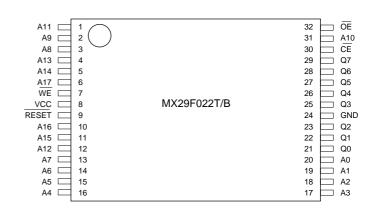
GENERAL DESCRIPTION

The MX29F022T/B is a 2-mega bit Flash memory organized as 256K bytes of 8 bits only. MXIC's Flash memories offer the most cost-effective and reliable read/write non-volatile random access memory. The MX29F022T/B is packaged in 32-pin PDIP, PLCC and 32-pin TSOP(I). It is designed to be reprogrammed and erased in-system or in-standard EPROM programmers.

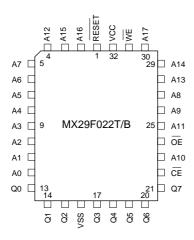
The standard MX29F022T/B offers access time as fast as 70ns, allowing operation of high-speed microproc essors without wait states. To eliminate bus contention, the MX29F022T/B has separate chip enable $(\overline{\text{CE}})$ and output enable $(\overline{\text{OE}})$ controls.


MXIC's Flash memories augment EPROM functionality with in-circuit electrical erasure and programming. The MX29F022T/B uses a command register to manage this functionality. The command register allows for 100% TTL level control inputs and fixed power supply levels during erase and programming, while maintaining maximum EPROM compatibility.

MXIC's Flash technology reliably stores memory contents even after 100,000 erase and program cycles. The MXIC cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling. The MX29F022T/B uses a 5.0V ± 10% VCC supply to perform the High Reliability Erase and auto Program/Erase algorithms.


The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on address and data pin from -1V to VCC + 1V.

PIN CONFIGURATIONS 32 PDIP



32 TSOP (TYPE 1)

(NORMAL TYPE)

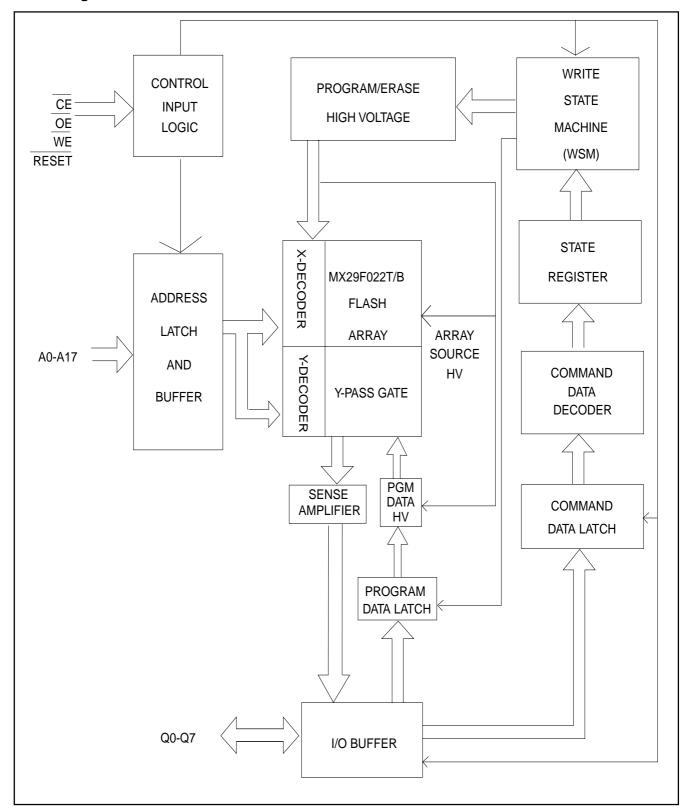
32 PLCC

BLOCK STRUCTURE

A 1 7 ~ A 0	
3 F F F H	16 K-BYTE (BOOT SECTOR)
3BFFFH	8 K-BYTE
3 9 F F F H	8 K-BYTE
37FFFH 2FFFFH	32 K-BYTE
1 F F F F H	64 K-BYTE
0 F F F F H	64 K-BYTE
0 0 0 0 0 H	64 K-BYTE

PIN DESCRIPTION:

SYMBOL	PIN NAME				
A0~A17	Address Input				
Q0~Q7	Data Input/Output				
CE	Chip Enable Input				
WE	Write Enable Input				
RESET	Hardware Reset Pin/Sector Protect Unlock				
OE	Output Enable Input				
VCC	Power Supply Pin (+5V)				
GND	Ground Pin				


MX29F022T Sector Architecture

A 17 ~ A 0	
3 F F F F H	
2 F F F F H	64 K-BYTE
	64 K-BYTE
1 F F F F H	
0 F F F F H	64 K-BYTE
	32 K-BYTE
0 7 F F F H	
0 5 F F F H	8 K-BYTE
	8 K-BYTE
03FFFH	16 K-BYTE
0 0 0 0 0 H	(BOOT SECTOR)

MX29F022B Sector Architecture

Block Diagram

AUTOMATIC PROGRAMMING

The MX29F022T/B is byte programmable using the Automatic Programming algorithm. The Automatic Programming algorithm does not require the system to time out or verify the data programmed. The typical chip programming time of the MX29F022T/B at room temperature is less than 2 seconds.

AUTOMATIC CHIP ERASE

The entire chip is bulk erased using 10ms erase pulses according to MXIC's High Reliability Chip Erase algorithm. Typical erasure at room temperature is accomplished in less than two second. The device is erased using the Automatic Erase algorithm. The Automatic Erase algorithm automatically programs the entire array prior to electrical erase. The timing and verification of electrical erase are internally controlled within the device.

AUTOMATIC BLOCK ERASE

The MX29F022T/B is block(s) erasable using MXIC's Auto Block Erase algorithm. Block erase modes allow blocks of the array to be erased in one erase cycle. The Automatic Block Erase algorithm automatically programs the specified block(s) prior to electrical erase. The timing and verification of electrical erase are internally controlled by the device.

AUTOMATIC PROGRAMMING ALGORITHM

MXIC's Automatic Programming algorithm requires the user to only write a program set-up commands (include 2 unlock arite cycle and A0H) include 2 unlock arite cycle and A0H and a program command (program data and address). The device automatically times the programming pulse width, verifies the program verification, and counts the number of sequences. A status bit similar to DATA polling and a status bit toggling between consecutive read cycles, provides feedback to the user as to the status of the programming operation.

AUTOMATIC ERASE ALGORITHM

MXIC's Automatic Erase algorithm requires the user to write commands to the command register using standard microprocessor write timings. The device will automatically pre-program and verify the entire array. Then the device automatically times the erase pulse width, verifily the erase, and counts the number of sequences. A status bit similar to DATA polling and status bit toggling between consecutive read cycles prodvides feedback to the user as to the status of the programming operation.

Commands are written to the command register using standard microprocessor write timings. Register contents serve as inputs to an internal state-machine which controls the erase and programming circuitry. During write cycles, the command register internally latches address and data needed for the programming and erase operations. During a system write cycle addresses are latched on the falling edge, and data are latched on the rising edge of $\overline{\rm WE}$.

MXIC's Flash technology combines years of EPROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MX29F022T/B electrically erases all bits simultaneously using Fowler-Nordheim tunneling. The bytes are programmed one byte at a time using the EPROM programming mechanism of hot electron injection.

During a program cycle, the state-machine will control the program sequences and command register will not respond to any command set. During a Sector Erase cycle, the command register will only respond to Erase Suspend command. After Erase Suspend is completed, the device stays in read mode. After the state machine has completed its task, it will allow the command register to respond to its full command set.

Table 1 Softwave Command Definitions

		First B	us	Secon	d Bus	Third I	Bus	Fourth	Bus	Fifth B	us	Sixth	Bus
Command	Bus	Cycle		Cycle		Cycle		Cycle		Cycle		Cycle	!
	Cycle	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Reset/Read	1	XXXH	F0H										
Reset/Read	4	555H	AAH	2AAH	55H	555H	F0H	RA	RD				
Read Silicon ID	4	555H	AAH	2AAH	55H	555H	90H	ADI	DDI				
Chip Protect Verify	4	555H	AAH	2AAH	55H	555H	90H	SA	00H				
								x02	01H				
Porgram	4	555H	AAH	2AAH	55H	555H	A0H	PA	PD				
Chip Erase	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	555H	10H
Sector Erase	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	SA	30H
Sector Erase Suspend	1	XXXH	B0H										
Sector Erase Resume	1	XXXH	30H										
Unlock for chip	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	555H	20H
protect/unprotect													

Note:

- 1. ADI = Address of Device identifier; A1=0,A0 =0 for manufacture code,A1=0, A0 =1 for device code (Refer to Table 3).
 - DDI = Data of Device identifier: C2H for manufacture code, 36H/37H for device code.
 - X = X can be VIL or VIH
 - RA=Address of memory location to be read.
 - RD=Data to be read at location RA.
- 2. PA = Address of memory location to be programmed.
 - PD = Data to be programmed at location PA.
 - SA = Address to the sector to be erased.
- 3. The system should generate the following address patterns: 555H or 2AAH to Address A0~A10. Address bit A11~A17=X=Don't care for all address commands except for Program Address (PA) and Sector Address (SA). Write Sequence may be initiated with A11~A17 in either state.
- 4. For Chip Protect Verify operation:If read out data is 01H, it means the chip has been protected. If read out data is 00H, it means the chip is still not being protected.

TABLE 2. MX29F022T/B BUS OPERATION

Pins	CE	ŌĒ	WE	A0	A1	A6	A9	Q0~Q7
Mode								
Read Silicon ID	L	L	Н	L	L	Х	V _{ID} (2)	C2H
Manfacturer Code(1)							15 .	
Read Silicon ID	L	L	Н	Н	L	Х	V _{ID} (2)	36H/37H
Device Code(1)								
Read	L	L	Н	A0	A1	A6	A9	D _{out}
Standby	Н	X	Χ	X	X	X	X	HIGH Z
Output Disable	L	Н	Н	X	X	Х	Х	HIGH Z
Write	L	Н	L	A0	A1	A6	A9	D _{IN} (3)
Chip Protect with 12V	L	V _{ID} (2)	L	X	X	L	V _{ID} (2)	X
system(6)								
Chip Unprotect with 12V	L	V _{ID} (2)	L	X	X	H	V _{ID} (2)	X
system(6)								
Verify chip Protect		L	L	H	X	H	X	V _{ID} (2)
Code(5) with 12V system								.5
Chip Protect without 12V	L	H	L	X	X	L	H	X
system (6)								
Chip Unprotect without 12V	L	Н	L	X	X	Н	Н	X
system (6)								
Verify Chip Protect/Unprotect	L	L	Н	X	Н	X	Н	Code(5)
without 12V system (7)								
Reset	Χ	Χ	Χ	X	Χ	Χ	X	HIGH Z

NOTES:

- 1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 1.
- 2. VID is the Silicon-ID-Read high voltage, 11.5V to 12.5V.
- 3. Refer to Table 1 for valid Data-In during a write operation.
- 4. X can be VIL or VIH.
- Code=00H means unprotected. Code=01H means protected.
- 6. Refer to chip protect/unprotect algorithm and waveform.

 Must issue "unlock for chip protect/unprotect" command before "chip protect/unprotect without 12V system" command.
- 7. The "verify chip protect/unprotect without 12V sysytem" is only following "chip protect/unprotect without 12V system" command.

READ/RESET COMMAND

The read or reset operation is initiated by writing the read/reset command sequence into the command register. Microprocessor read cycles retrieve array data. The device remains enabled for reads until the command register contents are altered.

If program-fail or erase-fail happen, the write of F0H will reset the device to abort the operation. A valid command must then be written to place the device in the desired state.

SILICON-ID-READ COMMAND

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacturer and device codes must be accessible while the device resides in the target system. PROM programmers typically access signature codes by raising A9 to a high voltage. However, multiplexing high voltage onto address lines is not generally desired system design practice.

The MX29F022T/B contains a Silicon-ID-Read operation to supplement traditional PROM programming methodology. The operation is initiated by writing the read silicon ID command sequence into the command register. Following the command write, a read cycle with A1=VIL, A0=VIL retrieves the manufacturer code of C2H. A read cycle with A1=VIL, A0=VIH returns the device code of 36H for MX29F022T,37H for MX29F022B.

SET-UP AUTOMATIC CHIP/BLOCK ERASE COMMANDS

Chip erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command 80H. Two more "unlock" write cycles are then followed by the chip erase command 10H.

The Automatic Chip Erase does not require the device to be entirely pre-programmed prior to executing the Automatic Chip Erase. Upon executing the Automatic Chip Erase, the device will automatically program and verify the entire memory for an all-zero data pattern. When the device is automatically verified to contain an all-zero pattern, a self-timed chip erase and verification begin. The erase and verification operations are completed when the data on Q7 is "1" at which time the device returns to the Read mode. The system is not required to provide any control or timing during these operations.

When using the Automatic Chip Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array(no erase verify command is required).

If the Erase operation was unsuccessful, the data on Q5 is "1" (see Table 4), indicating the erase operation of exceed internal timing limit.

The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates when the data on Q7 is "1" and the data on Q6 stops toggling for two consecutive read cycles, at which time the device returns to the Read mode.

TABLE 3. EXPANDED SILICON ID CODE

Pins	A0	A1	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Code(Hex)
Manufacture code	VIL	VIL	1	1	0	0	0	0	1	0	C2H
Device code	VIH	VIL	1	0	1	1	0	0	0	0	36H
for MX29F022T											
Device code	VIH	VIL	0	0	1	1	0	1	0	0	37H
for MX29F022B											
Chip Protection Verification	Χ	VIH	0	0	0	0	0	0	0	1	01H (Protected)
	Χ	VIH	0	0	0	0	0	0	0	0	00H (Unprotected)

SET-UP AUTOMATIC BLOCK ERASE COMMANDS

The Automatic Block Erase does not require the device to be entirely pre-programmed prior to executing the Automatic Set-up Block Erase command and Automatic Block Erase command. Upon executing the Automatic Block Erase command, the device will automatically program and verify the block(s) memory for an all-zero data pattern. The system does not require to provide any control or timing during these operations.

When the block(s) is automatically verified to contain an all-zero pattern, a self-timed block erase and verification begin. The erase and verification operations are complete when the data on Q7 is "1" and the data on Q6 stops toggling for two consecutive read cycles, at which time the device returns to the Read mode. The system does not required to provide any control or timing during these operations.

When using the Automatic Block Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array (no erase verification command is required). Sector erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the set-up command-80H. Two more "unlock" write cycles are then followed by the sector erase command-30H. The sector address is latched on the falling edge of WE, while the command(data) is latched on the rising edge

of WE. Block addresses selected are loaded into internal register on the sixth falling edge of WE. Each successive block load cycle started by the falling edge of WE must begin within 30ms from the rising edge of the preceding WE. Otherwise, the loading period ends and internal auto block erase cycle starts. (Monitor Q3 to determine if the sector erase timer window is still open, see section Q3, Sector Erase Timer.) Any command other than Block Erase (30H) or Erase Suspend (B0H) during the time-out period resets the device to read mode.

ERASE SUSPEND

This command is only valid while the state machine is executing Automatic Block Erase operation, and therefore will only be responded during Automatic/Block Erase operation. Writing the Erase Suspend command during the Block Erase time-out immediately terminates the time-out period and suspends the erase operation. After this command has been executed, the command register will initiate erase suspend mode. The state machine will return to read mode automatically after suspend is ready. At this time, state machine only allows the command register to respond to the Read Memory Array, Erase Resume and Program commands. The system can determine the status of the program operation using the Q7 or Q6 status bits, just as in the standard program operation. After an erase-suspendend program operation is complete, the system can once again read array data within non-suspended blocks.

Table 4. Write Operation Status

	Mode	Q7	Q6	Q5	Q3	Q2
		(Note 1)		(Note 2)		(Note 1)
Standard Mode	Auto Program Algorithm	Q7	Toggle	0	N/A	No Toggle
	Auto Erase Algorithm	0	Toggle	0	1	Toggle
Exceed Time Limits	Auto Program	Q7	Toggle	1	0	No Toggle
	Auto Sector/Chip Erase	0	Toggle	1	0	N/A
Erase Suspend Mode	Reading within Erase Suspended	1	No toggle	0	N/A	Toggle
	Sector					
	Reading within Non-Erase	Data	Data	Data	Data	Data
	Suspended Sector					
	Earse-Suspend-Program	Q7	Toggle	0	N/A	N/A

Note:

- 1. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
- 2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits. See "Q5:Exceeded Timing Limits " for more information.

ERASE RESUME

This command will cause the command register to clear the suspend state and return back to Sector Erase mode but only if an Erase Suspend command was previously issued. Erase Resume will not have any effect in all other conditions. Another Erase Suspend command can be written after the chip has resumed erasing.

SET-UP AUTOMATIC PROGRAM COMMANDS

To initiate Automatic Program mode, A three-cycle command sequence is required. There are two "unlock" write cycles. These are followed by writing the Automatic Program command A0H.

Once the Automatic Program command is initiated, the next WE pulse causes a transition to an active programming operation. Addresses are latched on the falling edge, and _data are internally latched on _the rising edge of the WE pulse. The rising edge of WE also begins the programming operation. The system does not require to provide further controls or timings. The device will automatically provide an adequate internally generated program pulse and verify margin.

If the program opetation was unsuccessful, the data on Q5 is "1", indicating the program operation of internally exceed timing limit. The automatic programming operation is complete when the data read on Q6 stops toggling for two consecutive read cycles and the data on Q7 and Q6 are equivalent to data written to these two bits, at which time the device returns to the Read mode(no program verify command is required).

WRITE OPERATION STATUS DATA POLLING-Q7

The MX29F022T/B also features Data Polling as a method to indicate to the host system that the Automatic Program or Erase algorithms are either in progress or completed.

While the Automatic Programming algorithm is in operation, an attempt to read the device will produce the complement data of the data last written to Q7. Upon completion of the Automatic Program Algorithm an attempt to read the device will produce the true data last written to Q7. The Data Polling feature is valid after the rising edge of the second WE pulse of the two write pulse sequences.

While the Automatic Erase algorithm is in operation, Q7 will read "0" until the erase operation is compete. Upon completion of the erase operation, the data on Q7 will read "1". The Data Polling feature is valid after the rising edge of the secone WE pulse of two write pulse sequences.

The Data Polling feature is active during Automatic Program/Erase algorithm or sector erase time-out.(see section Q3 Sector Erase Timer)

Q6:Toggle BIT I

The MX29F022T/B features a "Toggle Bit" as a method to indicate to the host system that the Auto Program/ Erase algorithms are either in progress or complete.

During an Automatic Program or Erase algorithm operation, successive read cycles to any address cause Q6 to toggle. The system may use either \overline{OE} or \overline{CE} to control the read cycles. When the operation is complete, Q6 stops toggling.

After an erase command sequence is written, if the chip is protected, Q6 toggles and returns to reading array data.

The system can use Q6 and Q2 together to determine whether a sector is actively erasing or is erase suspended. When the device is actively erasing (that is, the Automatic Erase algorithm is in progress), Q6 toggling. When the device enters the Erase Suspend mode, Q6 stops toggling. However, the system must also use Q2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use Q7(see the subsection on Q7:Data Polling).

If a program address falls within a protected sector, Q6 toggles for approximately 2us after the program command sequence is written, then returns to reading array data.

Q6 also toggles during the erase-suspend-program mode, and stops toggling once the Automatic Program algorithm is complete.

The Write Operation Status table shows the outputs for Toggle Bit I on Q6. Refer to the toggle bit algorithmg.

Q2:Toggle Bit II

The "Toggle Bit II" on Q2, when used with Q6, indicates whether a particular sector is actively eraseing (that is, the Automatic Erase alorithm is in process), or whether that sector is erase-suspended. Toggle Bit I is valid after the rising edge of the final WE pulse in the command sequence.

Q2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either \overline{OE} or \overline{CE} to control the read cycles.) But Q2 cannot distinguish whether the sector is actively erasing or is erase-suspended. Q6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sectors and mode information. Refer to Table 4 to compare outputs for Q2 and Q6.

Reading Toggle Bits Q6/ Q2

Refer to the toggle bit algorithm for the following discussion. Whenever the system initially begins reading toggle bit status, it must read Q7-Q0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on Q7-Q0 on the following read cycle.

However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of Q5 is high (see the section on Q5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as Q5 went high. If the toggle bit is no longer toggling, the device has successfuly completed the program or erase operation. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data.

The remaining scenario is that system initially determines that the toggle bit is toggling and Q5 has not gone high. The system may continue to monitor the toggle bit and

Q5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation(top of the toggle bit algorithm flow chart).

Q5

Exceeded Timing Limits

Q5 will indicate if the program or erase time has exceeded the specified limits(internal pulse count). Under these conditions Q5 will produce a "1". This time-out e condition indicates that the program or erase cycle was not successfully completed. Data Polling and Toggle Bit are the only operating functions not of the device under this condition.

If this time-out condition occurs during sector erase operation, it specifies that a particular sector is bad and it may not be reused. However, other sectors are still functional and may be used for the program or erase operation. The device must be reset to use other sectors. Write the Reset command sequence to the device, and then execute program or erase command sequence. This allows the system to continue to use the other active sectors in the device.

If this time-out condition occurs during the chip erase operation, it specifies that the entire chip is bad or combination of sectors are bad.

If this time-out condition occurs during the byte programming operation, it specifies that the entire sector containing that byte is bad and this sector maynot be reused, (other sectors are still functional and can be reused).

The time-out condition may also appear if a user tries to program a non blank location without erasing. In this case the device locks out and never completes the Automatic Algorithm operation. Hence, the system never reads a valid data on Q7 bit and Q6 never stops toggling. Once the Device has exceeded timing limits, the Q5 bit will indicate a "1". Please note that this is not a device failure condition since the device was incorrectly used.

Q3

Sector Erase Timer

After the completion of the initial sector erase command sequence th sector erase time-out will begin. Q3 will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.

If Data Polling or the Toggle Bit indicates the device has been written with a valid erase command, Q3 may be used to determine if the sector erase timer window is still open. If Q3 is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit. If Q3 is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of Q3 prior to and following each subsequent sector erase command. If Q3 were high on the second status check, the command may not have been accepted.

DATA PROTECTION

The MX29F022T/B is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise.

WRITE PULSE "GLITCH" PROTECTION

Noise pulses of less than 5ns(typical) on $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will not initiate a write cycle.

LOGICAL INHIBIT

Writing is inhibited by holding any one of $\overline{OE} = VIL$, $\overline{CE} = VIH$ or $\overline{WE} = VIH$. To initiate a write cycle \overline{CE} and \overline{WE} must be a logical zero while \overline{OE} is a logical one.

POWER SUPPLY DECOUPLING

In order to reduce power switching effect, each device should have a 0.1uF ceramic capacitor connected between its VCC and GND.

CHIP PROTECTION WITH 12V SYSTEM

The MX29F022T/B features hardware chip protection, which will disable both program and erase operations. To activate this mode, the programming equipment must force VID on address pin A9 and control pin \overline{OE} , (suggest VID = 12V) A6 = VIL and \overline{CE} = VIL.(see Table 2) Programming of the protection circuitry begins on the falling edge of the \overline{WE} pulse and is terminated on the rising edge. Please refer to chip protect algorithm and waveform.

To verify programming of the protection circuitry, the programming equipment must force VID on address pin A9 (with \overline{CE} and \overline{OE} at VIL and \overline{WE} at VIH. When A1=1, it will produce a logical "1" code at device output Q0 for the protected status. Otherwise the device will produce 00H for the unprotected status. In this mode, the addresses, except for A1, are in "don't care" state. Address locations with A1 = VIL are reserved to read manufacturer and device codes. (Read Silicon ID)

It is also possible to determine if the chip is protected in the system by writing a Read Silicon ID command. Performing a read operation with A1=VIH, it will produce a logical "1" at Q0 for the protected status.

CHIP UNPROTECT WITH 12V SYSTEM

The MX29F022T/B also features the chip unprotect mode, so that all sectors are unprotected after chip unprotect is completed to incorporate any changes in the code.

To activate this mode, the programming equipment must force VID on control pin \overline{OE} and address pin A9. The \overline{CE} pins must be set at VIL. Pins A6 must be set to VIH.(see Table 2) Refer to chip unprotect algorithm and waveform for the chip unprotect algorithm. The unprotection mechanism begins on the falling edge of the \overline{WE} pulse and is terminated on the rising edge.

It is also possible to determine if the chip is unprotected in the system by writing the Read Silicon ID command. Performing a read operation with A1=VIH, it will produce 00H at data outputs(Q0-Q7) for an unprotected chip. It is noted that all sectors are unprotected after the chip unprotect algorithm is complete.

CHIP PROTECTION WITHOUT 12V SYSTEM

The MX29F022T/B also feature a hardware chip protection method in a system without 12V power suppply. The programming equipment do not need to supply 12 volts to protect all sectors. The details are shown in chip protect algorithm and waveform.

CHIP UNPROTECT WITHOUT 12V SYSTEM

The MX29F022T/B also feature a hardware chip unprotection method in a system without 12V power supply. The programming equipment do not need to supply 12 volts to unprotect all sectors. The details are shown in chip unprotect algorithm and waveform.

POWER-UP SEQUENCE

The MX29F022T/B powers up in the Read only mode. In addition, the memory contents may only be altered after successful completion of a two-step command sequence. Vpp and Vcc power up sequence is not required.

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	0°C to 70°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to 7.0V
VCC to Ground Potential	-0.5V to 7.0V
A9	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

CAPACITANCE TA = 25°C, f = 1.0 MHz

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance			8	рF	VIN = 0V
COUT	Output Capacitance			12	pF	VOUT = 0V

READ OPERATION

DC CHARACTERISTICS TA = 0° C TO 70° C, VCC = 5V \pm 10%

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT	CONDITIONS
ILI	Input Leakage Current			1	mA	VIN = GND to VCC
ILO	Output Leakage Current			10	mA	VOUT = GND to VCC
ISB1	Standby VCC current			1	mΑ	CE = VIH
ISB2			1	100	mΑ	$\overline{CE} = VCC + 0.3V$
ICC1	Operating VCC current			50	mA	IOUT = 0mA, f=1MHz
ICC2				70	mA	IOUT = 0mA, f=10MHz
VIL	Input Low Voltage	-0.3(NOTE1)	8.0 (V		
VIH	Input High Voltage	2.0		VCC + 0.3	V	
VOL	Output Low Voltage			0.45	V	IOL = 2.1mA
VOH	Output High Voltage	2.4			V	IOH = -2mA

NOTES:

If VIH is over the specified maximum value, read operation cannot be guaranteed.

^{1.} VIL min. = -1.0V for pulse width is equal to or less than 50 ns.

VIL min. = -2.0V for pulse width is equal to or less than 20 ns.

 $^{2.}VIH\ max. = VCC + 1.5V\ for\ pulse\ width\ is\ equal\ to\ or\ less\ than\ 20\ ns$

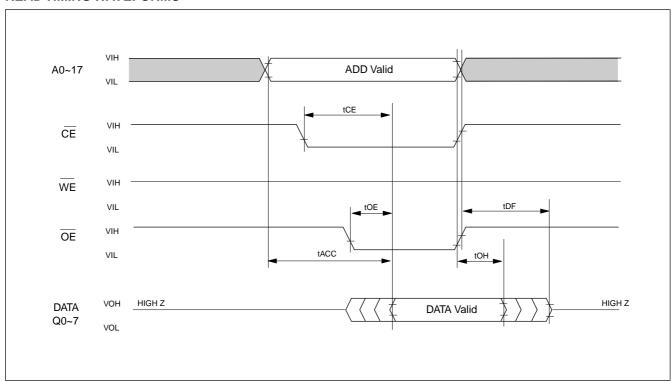
AC CHARACTERISTICS TA = 0°C to 70°C, VCC = 5V ± 10%

		005005	·/D. 70	005000	T/D 00	005000	T/D 40		
		29F022T	/B-70	29F022	1/B-90	_29F022	21/B-12	-	
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		70		90		120	ns	CE=OE=VIL
tCE	CE to Output Delay		70		90		120	ns	OE=VIL
tOE	OE to Output Delay		30		40		50	ns	CE=VIL
tDF	OE High to Output Float (Note1) 0	20	0	30	0	30	ns	CE=VIL
tOH	Address to Output hold	0		0		0		ns	CE=OE=VIL

TEST CONDITIONS:

• Input pulse levels: 0.45V/2.4V

• Input rise and fall times: is equal to or less than 10ns


• Output load: 1 TTL gate + 35pF(Including scope and jig)

• Reference levels for measuring timing: 0.8V, 2.0V

NOTE:

1.tDF is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

READTIMING WAVEFORMS

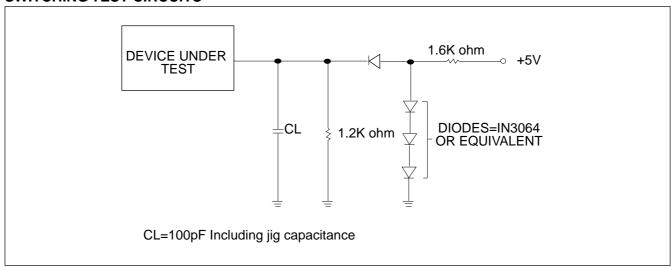
COMMAND PROGRAMMING/DATA PROGRAMMING/ERASE OPERATION

DC CHARACTERISTICS TA = 0° C to 70° C, VCC = $5V \pm 10\%$

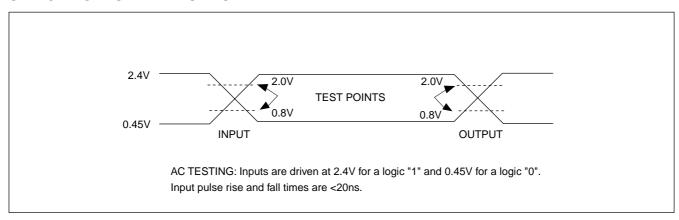
SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT	CONDITIONS
ICC1 (Read)	Operating VCC Current			30	mΑ	IOUT=0mA, f=1MHz
ICC2				50	mΑ	IOUT=0mA, F=10MHz
ICC3 (Program)				50	mΑ	In Programming
ICC4 (Erase)				50	mΑ	In Erase
ICCES	VCC Erase Suspend Current		2		mA	CE=VIH, Erase Suspended

NOTES:

- 1. VIL min. = -0.6V for pulse width is equal to or less than 20ns.
- 2. If VIH is over the specified maximum value, programming operation cannot be guranteed.
- 3. ICCES is specified with the device de-selected. If the device is read during erase suspend mode, current draw is the sum of ICCES and ICC1 or ICC2.
- 4. All current are in RMS unless otherwise noted.


AC CHARACTERISTICS TA = 0° C to 70° C, VCC = 5V $\pm 10\%$

		29F022	T/B-70	29F022	F022T/B-90 29F		T/B-12	-
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT CONDITIONS
tOES	OE setup time	50		50		50		ns
tCWC	Command programming cycle	70		90		120		ns
tCEP	WE programming pulse width	35		45		50		ns
tCEPH1	WE programming pluse width High	20		20		20		ns
tCEPH2	WE programming pluse width High	20		20		20		ns
tAS	Address setup time	0		0		0		ns
tAH	Address hold time	45		45		50		ns
tDS	Data setup time	30		45		50		ns
tDH	Data hold time	0		0		0		ns
tCESC	CE setup time before command write	0		0		0		ns
tDF	Output disable time (Note 1)		30		40		40	ns
tAETC	Total erase time in auto chip erase	2(TYP.)		2(TYP.)		2(TYP.)		S
tAETB	Total erase time in auto block erase	1(TYP.)		1(TYP.)		1(TYP.)		S
tAVT	Total programming time in auto verify	7		7		7		us
	(Byte Program time)							
tBAL	Block address load time	80		80		80		us
tCH	CE Hold Time	0		0		0		us
tCS	CE setup to WE going low	0		0		0		us
tVLHT	Voltge Transition Time	4		4		4		us
tOESP	OE Setup Time to WE Active	4		4		4		us
tWPP1	Write pulse width for chip protect	10		10		10		us
tWPP2	Write pulse width for chip unprotect	12		12		12		ms


NOTES:

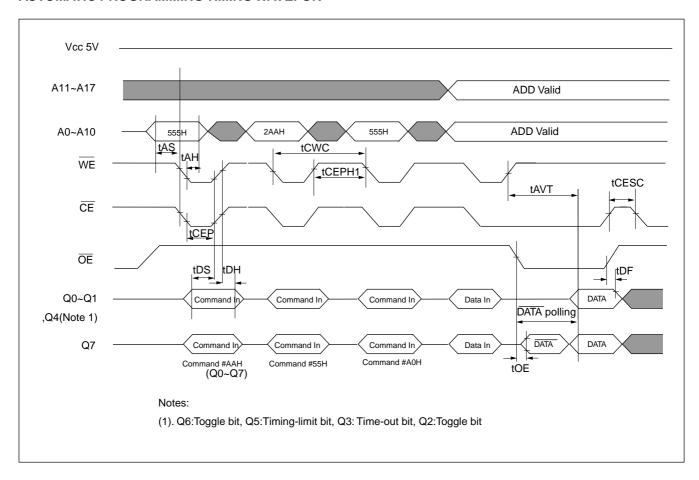
1.tDF defined as the time at which the output achieves the open circuit condition and data is no longer driven.

SWITCHING TEST CIRCUITS



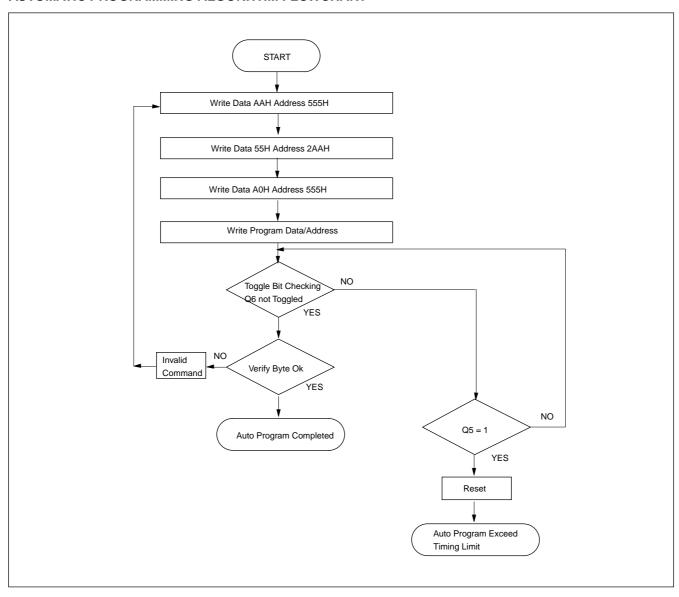
SWITCHING TEST WAVEFORMS

COMMAND WRITE TIMING WAVEFORM

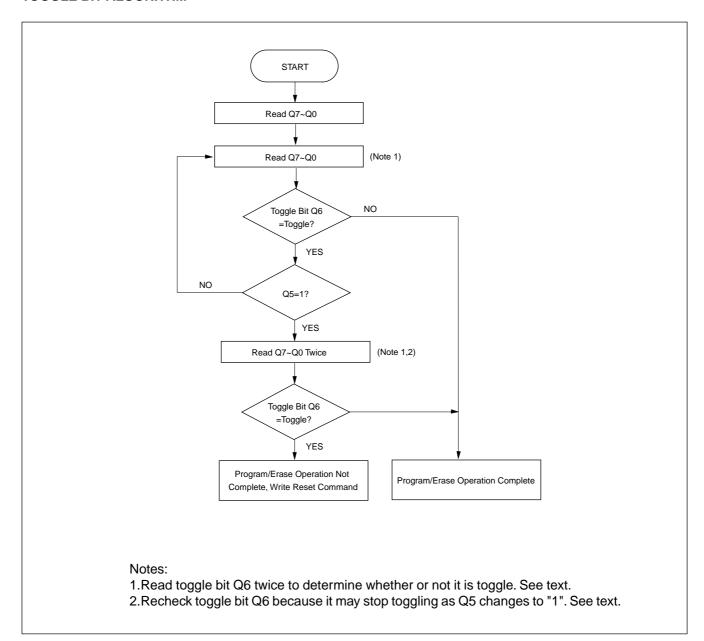


AUTOMATIC PROGRAMMING TIMING WAVEFORM

One byte data is programmed. Verifying in fast algorithm and additional programming by external control are not required because these operations are executed automatically by internal control circuit. Programming completion can be verified by DATA

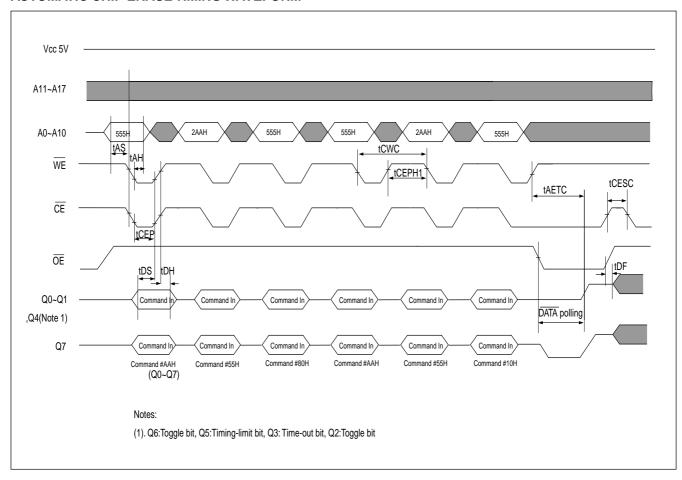

polling and toggle bit checking after automatic verification starts. Device outputs DATA during programming and DATA after programming on Q7.(Q6 is for toggle bit; see toggle bit, DATA polling, timing waveform)

AUTOMATIC PROGRAMMING TIMING WAVEFOR



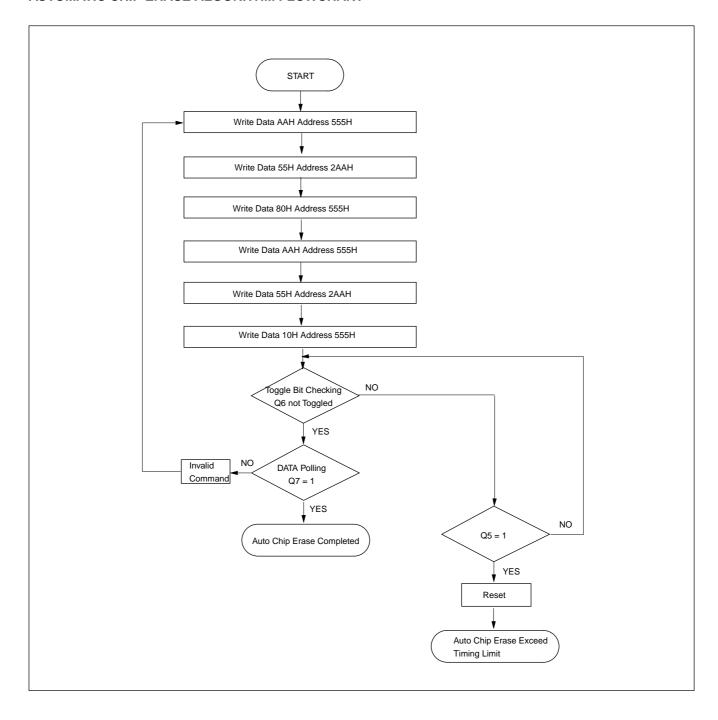
AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART

TOGGLE BIT ALGORITHM



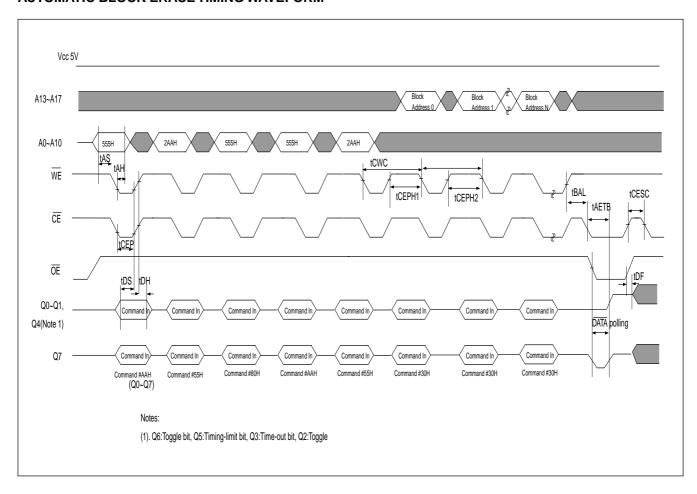
AUTOMATIC CHIP ERASE TIMING WAVEFORM

All data in chip are erased. External erase verification is not required because data is erased automatically by internal control circuit. Erasure completion can be verified by DATA polling and toggle bit checking after


automatic erase starts. Device outputs "0" during erasure and 1 <u>after</u> erasure on Q7.(Q6 is for toggle bit; see toggle bit, DATA polling, timing waveform)

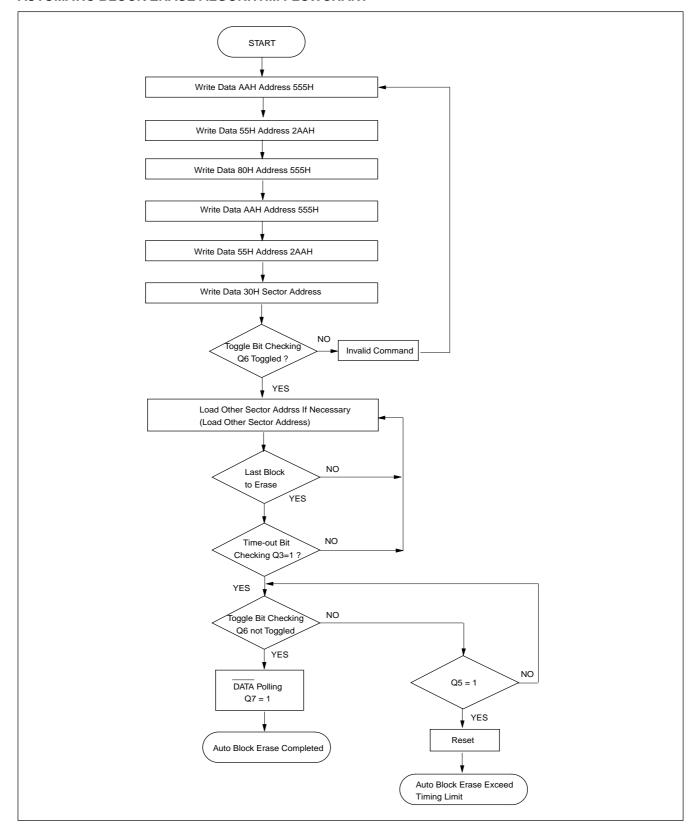
AUTOMATIC CHIP ERASE TIMING WAVEFORM

AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART

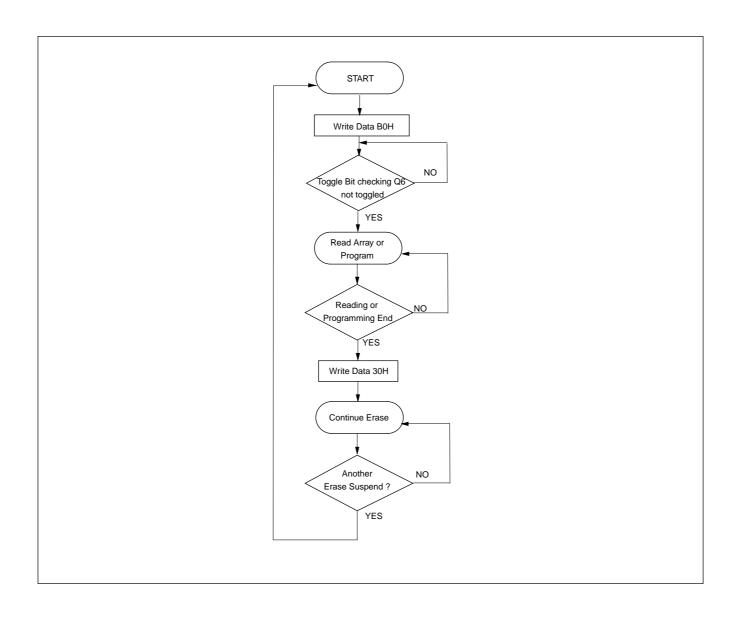


AUTOMATIC BLOCK ERASE TIMING WAVEFORM

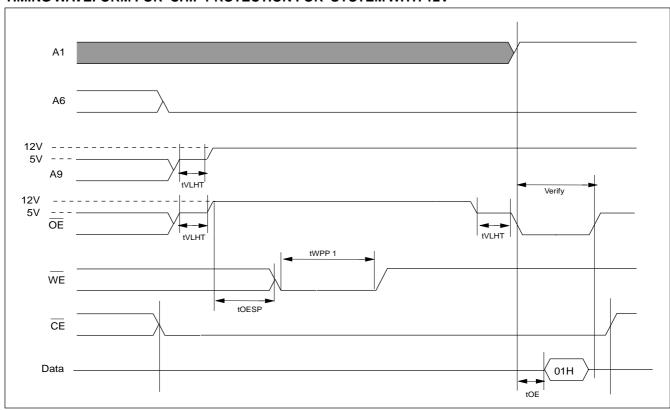
Block data indicated by A13 to A17 are erased. External erase verification is not required because data are erased automatically by internal control circuit. Erasure completion can be verified by DATA polling and toggle


bit checking after automatic erase starts. Device outputs 0 during erasure and 1 after erasure on Q7.(Q6 is for toggle bit; see toggle bit, DATA polling, timing waveform)

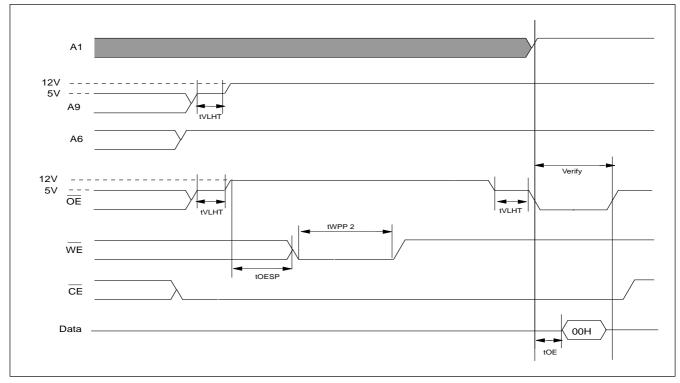
AUTOMATIC BLOCK ERASETIMING WAVEFORM

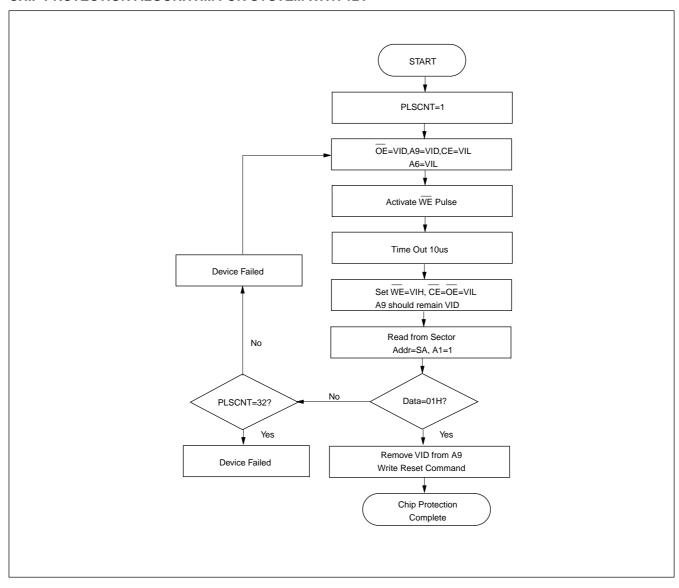


AUTOMATIC BLOCK ERASE ALGORITHM FLOWCHART

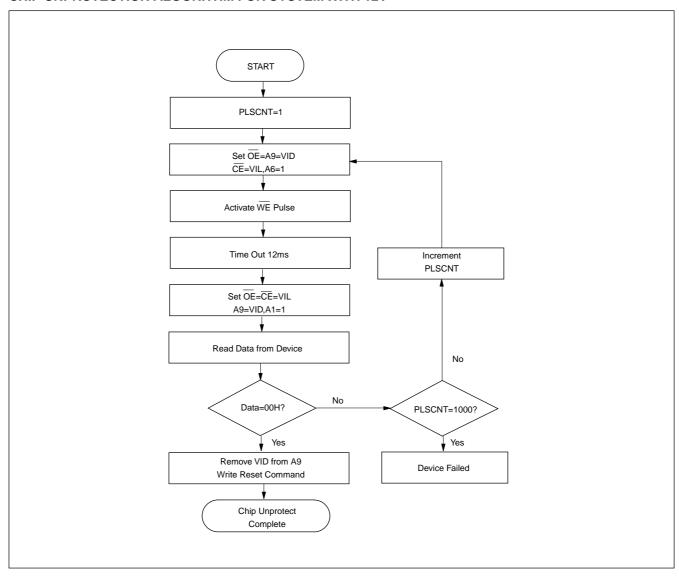


ERASE SUSPEND/ERASE RESUME FLOWCHART

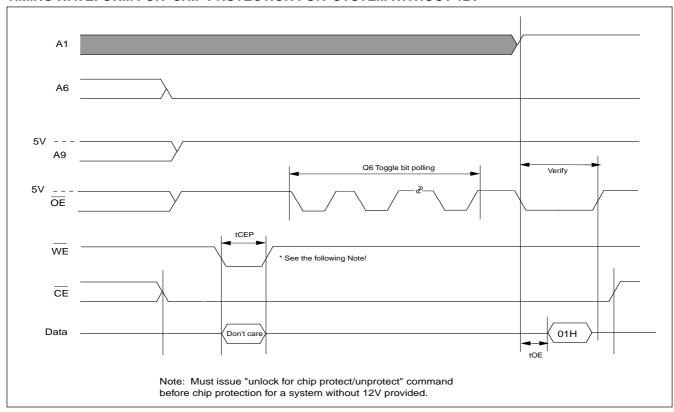



TIMING WAVEFORM FOR CHIP PROTECTION FOR SYSTEM WITH 12V

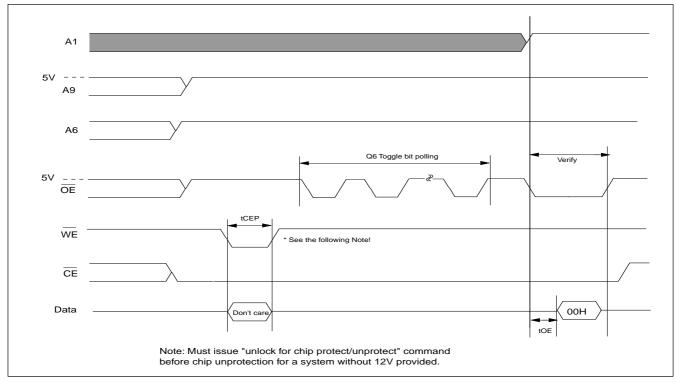
TIMING WAVEFORM FOR CHIP UNPROTECTION FOR SYSTEM WITH 12V



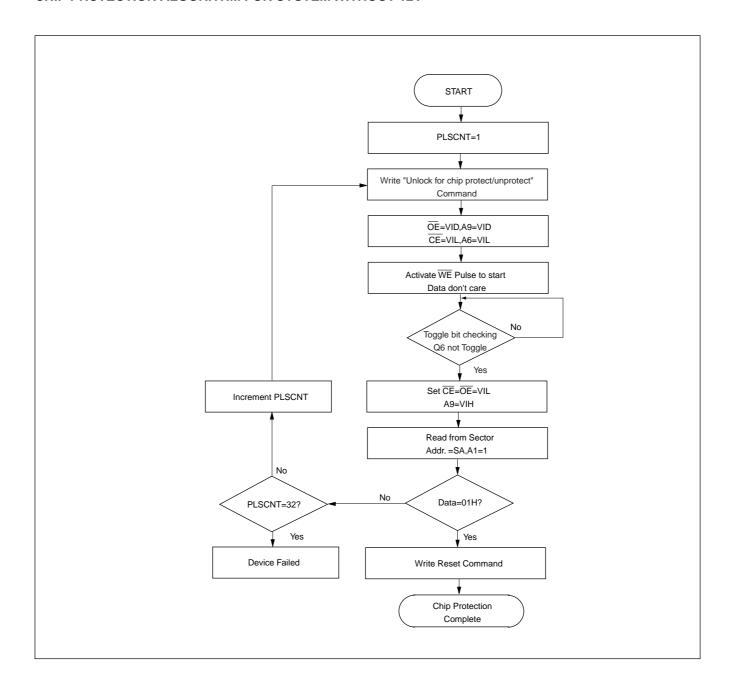
CHIP PROTECTION ALGORITHM FOR SYSTEM WITH 12V



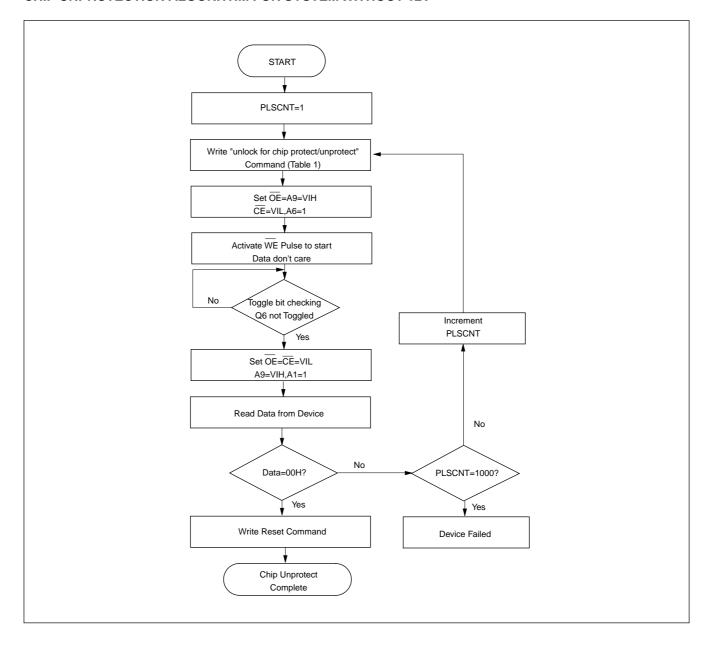
CHIP UNPROTECTION ALGORITHM FOR SYSTEM WITH 12V



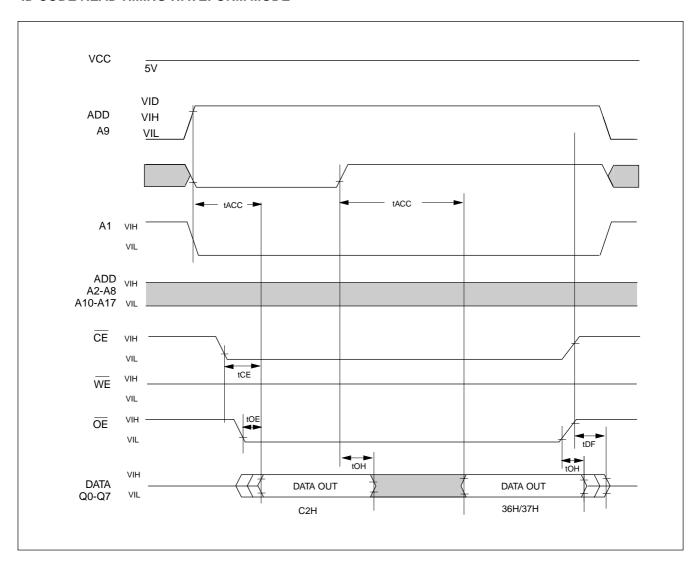
TIMING WAVEFORM FOR CHIP PROTECTION FOR SYSTEM WITHOUT 12V



TIMING WAVEFORM FOR CHIP UNPROTECTION FOR SYSTEM WITHOUT 12V



CHIP PROTECTION ALGORITHM FOR SYSTEM WITHOUT 12V

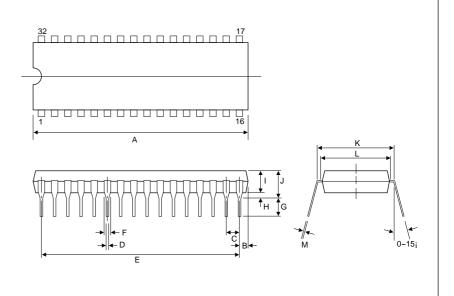


CHIP UNPROTECTION ALGORITHM FOR SYSTEM WITHOUT 12V

ID CODE READ TIMING WAVEFORM MODE

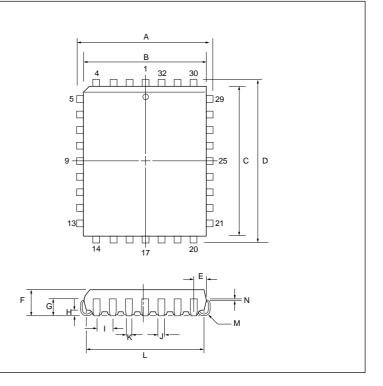
ORDERING INFORMATION

PLASTIC PACKAGE


PART NO.	ACCESS TIME	OPERATING CURRENT	STANDBY CURRENT	PACKAGE
FART NO.				FACRAGE
M/00500550 70	(ns)	MAX.(mA)	MAX.(uA)	00 B. BBIB
MX29F022TPC-70	70	30	1	32 Pin PDIP
MX29F022TPC-90	90	30	1	32 Pin PDIP
MX29F022TPC-12	120	30	1	32 Pin PDIP
MX29F022TTC-70	70	30	1	32 Pin TSOP
				(Normal Type)
MX29F022TTC-90	90	30	1	32 Pin TSOP
				(Normal Type)
MX29F022TTC-12	120	30	1	32 Pin TSOP
				(Normal Type)
MX29F022TQC-70	70	30	1	32 Pin PLCC
MX29F022TQC-90	90	30	1	32 Pin PLCC
MX29F022TQC-12	120	30	1	32 Pin PLCC
MX29F022BPC-70	70	30	1	32 Pin PDIP
MX29F022BPC-90	90	30	1	32 Pin PDIP
MX29F022BPC-12	120	30	1	32 Pin PDIP
MX29F022BTC-70	70	30	1	32 Pin TSOP
				(Normal Type)
MX29F022BTC-90	90	30	1	32 Pin TSOP
				(Normal Type)
MX29F022BTC-12	120	30	1	32 Pin TSOP
				(Normal Type)
MX29F022BQC-70	70	30	1	32 Pin PLCC
MX29F022BQC-90	90	30	1	32 Pin PLCC
MX29F022BQC-12	120	30	1	32 Pin PLCC

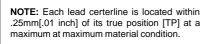
PACKAGE INFORMATION 32-PIN PLASTIC DIP

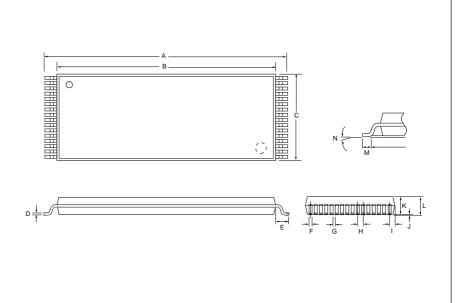
ITEM	MILLIMETERS	INCHES
Α	42.13 max.	1.660 max.
В	1.90 [REF]	.075 [REF]
С	2.54 [TP]	.100 [TP]
D	.46 [Typ.]	.050 [Typ.]
Е	38.07	1.500
F	1.27 [Typ.]	.050 [Typ.]
G	3.30 ± .25	.130 ± .010
Н	.51 [REF]	.020 [REF]
I	3.94 ± .25	1.55 ± .010
J	5.33 max.	.210 max.
K	15.22 ± .25	.600 ± .101
L	13.97 ± .25	.550 ± .010
М	.25 [Typ.]	.010 [Typ.]


NOTE: Each lead certerline is located within .25mm[.01 inch] of its true position [TP] at a maximum at maximum material condition.

32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

ITEM	MILLIMETERS	INCHES
Α	12.44 ± .13	.490 ± .005
В	11.50 ± .13	.453 ± .005
С	14.04 ± .13	.553 ± .005
D	14.98 ± .13	.590 ± .005
Е	1.93	.076
F	3.30 ± .25	.130 ± .010
G	2.03 ± .13	.080 ± .005
Н	.51 ± .13	.020 ± .005
I	1.27 [Typ.]	.050 [Typ.]
J	.71 [REF]	.028 [REF]
K	.46 [REF]	.018 [REF]
L	10.40/12.94	.410/.510
	(W) (L)	(W) (L)
М	.89R	.035R
N	.25[Typ.]	.010[Typ.]


NOTE: Each lead certerline is located within .25mm[.01 inch] of its true position [TP] at a maximum at maximum material condition.



32-PIN PLASTIC TSOP

ITEM	MILLIMETERS	INCHES
Α	20.0 ± .20	.078 ± .006
В	18.40 ± .10	.724 ± .004
С	8.20 max.	.323 max.
D	0.15 [Typ.]	.006 [Typ.]
Е	.80 [Typ.]	.031 [Typ.]
F	.20 ± .10	.008 ± .004
G	.30 ± .10	.012 ± .004
Н	.50 [Typ.]	.020 [Typ.]
I	.45 max.	.018 max.
J	0 ~ .20	0 ~ .008
K	1.00 ± .10	.039 ± .004
L	1.27 max.	.050 max.
М	.50	.020
N	0 ~5°	.500

REVISION HISTORY

Revision	Description	Page	Date
0.1	This protect is featured with functions of chip protect/unprotect.		JUN/29/1998
0.2	Chip Protect Verification is added on the software command table.		AUG/18/1998
0.3	Modify the block diagram		AUG/28/1998
0.4	Modify the Q3 status into "0" for Exceeded Time Limits in		
	Write Operation Status Table	P9	SEP/14/1998
0.5	Change IOH value at DC CHARACTERISTICS	P13	NOV/04/1998
	Change resistance value at SWITCHING TEST CIRCUIT	P17	
0.6	Modify Table 1 software command definitions	P5	DEC/09/1998
	Modify "Chip protection with 12V system" section	P11	
	To correct typing error	P28,29	
		31,32	

MACRONIX INTERNATIONAL CO., LTD.

HEADQUARTERS:

TEL:+886-3-578-8888 FAX:+886-3-578-8887

EUROPE OFFICE:

TEL:+32-2-456-8020 FAX:+32-2-456-8021

JAPAN OFFICE:

TEL:+81-44-246-9100 FAX:+81-44-246-9105

SINGAPORE OFFICE:

TEL:+65-747-2309 FAX:+65-748-4090

TAIPEI OFFICE:

TEL:+886-3-509-3300 FAX:+886-3-509-2200

MACRONIX AMERICA, INC.

TEL:+1-408-453-8088 FAX:+1-408-453-8488

CHICAGO OFFICE:

TEL:+1-847-963-1900 FAX:+1-847-963-1909

http://www.macronix.com